
Learning Optimal Decision Trees with MaxSAT
and its Integration in AdaBoost

Hao Hu1∗ , Mohamed Siala1 , Emmanuel Hebrard1 , Marie-José Huguet1

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France1

{hhu, siala, hebrard, huguet}@laas.fr

Abstract

Recently, several exact methods to compute deci-
sion trees have been introduced. On the one hand,
these approaches can find optimal trees for vari-
ous objective functions including total size, depth
or accuracy on the training set and therefore. On
the other hand, these methods are not yet widely
used in practice and classic heuristics are often still
the methods of choice. In this paper we show how
the SAT model proposed by [Narodytska et al.,
2018] can be lifted to a MaxSAT approach, mak-
ing it much more practically relevant. In particu-
lar, it scales to much larger data sets; the objective
function can easily be adapted to take into account
combinations of size, depth and accuracy on the
training set; and the fine-grained control of the ob-
jective function it offers makes it particularly well
suited for boosting. Our experiments show promis-
ing results. In particular, we show that the predic-
tion quality of our approach often exceeds state of-
the-art heuristic methods. We also show that the
MaxSAT formulation is well adapted for boosting
using the well-known AdaBoost Algorithm.

1 Introduction
Decision tree is still a very popular machine learning model
for a number of reasons. A first important element in favour
of decision trees is their interpretability, which, in some set-
tings might be essential even at the cost of a lower accuracy.
The wide range of efficient methods to compute decision trees
is also a decisive factor to their success. Moreover, models
using decision trees within ensemble methods, such as (deep)
random forests, can have state of the art accuracy on a number
of benchmarks [Zhou and Feng, 2017].

The most widely used techniques for computing decision
trees (e.g. CART [Breiman et al., 1984], ID3 [Quinlan, 1986]
and C4.5 [Quinlan, 1993]) are greedy heuristics, typically
build trees from top to bottom selecting the feature yielding
the highest information gain. However, it was observed early
that significantly simpler trees than those computed by greedy

∗Corresponding author

methods might exist [Bennett, 1994]. Moreover, simpler (e.g.
smaller) trees, are often more accurate on unknown data.

Recently, several exact methods have been introduced to
find optimal decision trees for some combinations of criteria
involving, their size (i.e., nodes), depth, and their empirical
accuracy. However, despite the advantages of optimal trees,
these exact algorithms have not yet replaced greedy heuristics
as the most popular method. Firstly, even though great ad-
vances have been made on exact algorithms, scalability is still
an issue. Moreover, one must use proxy criteria which may
be more or less relevant in practice. For instance, some ap-
proaches (e.g., [Bessiere et al., 2009; Narodytska et al., 2018;
Avellaneda, 2020]) minimize some size criterion, either num-
ber of nodes or maximum depth, subject to the constraint that
the tree is perfectly accurate on the training set. However, this
approach is often criticized as it requires consistent data sets,
may entail overfitting and produces unnecessarily large trees.
Indeed, greedy methods often use pruning techniques which
compromise the accuracy on the training set for (often) better
generalization performance. Therefore, other methods [Ni-
jssen and Fromont, 2007; Bertsimas and Dunn, 2017; Verwer
and Zhang, 2019; Verhaeghe et al., 2019; Aglin et al., 2020;
Hu et al., 2019] opt instead for optimizing accuracy (on the
training set) subject to constraints on the maximum depth.
This approach seems better suited to most usages of decision
trees since it deals naturally with noisy data sets, and the trees
produced are smaller and usually more accurate. However,
restricting the constraints on the tree structure to a maximum
depth is very restrictive and usually entails that if the “best”
tree is narrow and deep, finding it will be very costly. For
instance, the SAT-encoding in [Avellaneda, 2020] can be eas-
ily adapted to use number of meaningful nodes as objective,
however, the encoding will grow exponentially in the depth
and therefore intractable.

In this paper, we show that a simple adaptation of the SAT
model introduced by Narodytska et al. to a MaxSAT for-
mula, offsets most of its drawbacks and makes it a very at-
tractive method in many cases. Firstly, it makes it easy to use
more practical objective functions based on accuracy. In fact,
this formulation allows to use any linear combination of size,
depth and accuracy as objective. Moreover, and somewhat
counter-intuitively, it goes some way toward solving the scal-
ability issue. Solving the MaxSAT formula to optimality is of
course harder than solving the corresponding SAT formula.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1170

However, dropping the constraint of perfect accuracy means
that the tree, and hence the formula, can be smaller. In addi-
tion, when using state-of-the-art MaxSAT solvers [Berg et al.,
2019], we observe that we can handle much larger formulas.
This model finds smaller trees than the standard greedy meth-
ods in reasonable time on data sets that are out of reach for
the previous SAT method from [Narodytska et al., 2018]. Fi-
nally, the MaxSAT approach can be integrated within a clas-
sical boosting method easily to improve the prediction perfor-
mance. This technique still improves the scalability because
individual trees of the ensemble can be smaller. Our exper-
imental evaluation outlines the overfitting phenomenon due
to the requirement of perfect accuracy in earlier approaches,
and shows that the proposed approach is competitive with the
state-of-the-art heuristics and exact methods.

The rest of the paper is organised as follows. In Section 2,
we give the technical background of the paper. Then, we
present our MaxSAT propositions in Section 3. Finally, in
Section 4, we show details of our experimental results .

2 Technical Background
We present in this section a brief formal background to intro-
duce the different notations used throughout the paper.

2.1 Classification via Decision Trees
Using for instance the fairly standard one-hot-encoding and
other standard techniques, non-binary categorical features
and numerical features of a dataset can be transformed into
binary values. In this paper, we then focus on binary classifi-
cation for data with binary features and we use similar nota-
tions to those of [Narodytska et al., 2018].

Let F = {f1, . . . , fK} be a set of K binary features, all of
them take value in {0, 1}. The training data, denoted by E =
{e1, . . . , eM}, is a set of M examples. The examples in E are
partitioned into E+ and E−, denoting respectively positives
examples and negative examples. Precisely, an example eq ∈
E is represented as a 2-tuple (xq, cq), where xq ∈ {0, 1}K
denotes the value vector for all binary features associated with
the example and cq ∈ {0, 1} is the class of the example. We
have cq = 1 if eq ∈ E+ and cq = 0 if eq ∈ E−.

The classification problem is to learn some function h (the
classifier) mapping value vectors to class values, matching as
accurately as possible the actual function φ on the training
data (i.e., φ(xq) = cq) and generalizes well to unseen test
data. We shall use the term learner in Section 2.2 to denote
the method to learn the classifier. In this paper, the function h
we learn is represented by a binary and full decision tree (DT).
That is, a binary tree where every internal node has exactly
two children. Every internal node is associated to a feature or
its negation and every leaf node is associated to a class.

2.2 Ensemble Methods
Ensemble methods is a set of methods that train multiple
learners and then combine them for getting better predictions
than a single classifier [Zhou, 2012]. We distinguish two fam-
ilies of ensemble methods: (1) Boosting methods where the
learners draw from the same data set and are dependent on
each other: (2) Bagging methods where the learners draw

from different independent samplings and build classifiers in-
dependently from each other.

As a typical Boosting method, AdaBoost [Freund and
Schapire, 1997] constructs T learners in a sequence of T iter-
ations. Every iteration t learns a classifier ht. In each iteration
t, the data distribution Dt indicating the importance of each
example is updated using a coefficient αt = 1

2 ln(1−εtεt
) where

εt is the error rate of the tth iteration.
Let φ be the actual function, and Zt a normalization fac-

tor. AdaBoost sets the initial distribution D1(xq) = 1/|E| for
each example eq = (xq, cq) ∈ E . Then it updates the data
distribution for the (t+1)-th iteration Dt+1 based on the t-th
data distribution Dt using the equation (1):

Dt+1(xq) =
Dt(xq)
Zt

×
{

exp(−αt) if ht(xq) = φ(xq)

exp(αt) if ht(xq) 6= φ(xq)
(1)

Intuitively, examples that were misclassified in previous it-
erations will receive more attention in future iterations than
those correctly classified. The final predictions are based on
weighted voting where every learner ht is associated to a
weight αt. That is, if H denotes the aggregated prediction,
then H is calculated using equation (2).

H(xq) = 1 if
T∑
t=1

αtg(ht(xq)) > 0 and 0 otherwise (2)

where g(0) = −1, g(1) = 1.
In reverse, Bagging [Breiman, 1996] constructs indepen-

dent learners using different subsets (with the same size) from
the original dataset. The data sampling is performed with re-
placement and the final prediction uses majority voting.

2.3 SAT & MaxSAT
We give a brief background on (Maximum) Boolean Satis-
fiablity and we refer the reader to [Biere et al., 2009] for a
comprehensive reference. Boolean Satisfiablity (SAT) is a
declarative approach to solve decision problems expressed
with Boolean variables and clauses. The variables cap-
ture the unknowns of the problem and the clauses represent
the constraints to satisfy. A Boolean variable var takes a
value in a domain Dom(var) = {0, 1} (or equivalently in
{false, true}). A literal is a Boolean variable or its negation.
A clause is a disjunction of literals. A value val ∈ {0, 1} is
assigned to a variable var if Dom(var) = {val}. An as-
signment satisfies a clause if one of its literals is true. Given
a set of variables X and a set of clauses defined over X , the
SAT problem can be defined as finding an assignment of the
variables such that all the clauses are satisfied.

Maximum Satisfiability (MaxSAT) is an optimization ver-
sion of SAT. The MaxSAT problem is to find an assignment
of the variables maximizing the number of satisfied clauses.
Here we consider the weighted partial MaxSAT problem,
where clauses are separated into hard clauses (clauses that
must be satisfied) and soft clauses (clauses that can be vio-
lated). Every soft clause is associated to a weight (a positive
integer). In weighted Partial MaxSAT, the problem is to find
an assignment that satisfies all hard clauses, and maximizes
the sum of weights of soft clauses that are satisfied.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1171

2.4 SAT-based Learning of Decision Trees
Consider the following decision problem:
P (E , N) : Given a set of examples E , is there a full binary

decision tree of size N that classifies correctly every example
in E?

In [Narodytska et al., 2018], a SAT model for the problem
P (E , N) is proposed. This model can be used as an oracle to
compute a decision tree of minimal size that classifies every
example. The encoding consists of three parts:
• Part 1: Constraints on the structure of the tree
• Part 2: Constraints for mapping features (respectively,

classes) to internal nodes (respectively, leaf nodes)
• Part 3: Constraints for correctly classifying every ex-

ample in the training set
We refer the reader to the original paper for the full model.

In the following, we describe a part of the model needed to
explain the changes proposed in Section 3.1. Let N be the
size of the tree. For all i = 1, . . . , N , LR(i) denotes the set
of even integers in [i+1,min(2i,N−1)] andRR(i) denotes
the set of odd integers in [i+2,min(2i+1, N)]. We consider
the following Boolean variables (where i ∈ {1, . . . , N}):
• vi is true iff node i is a leaf node
• lij (respectively rij) is true iff node j is the left (respec-

tively right) child of node i where i ∈ {1, . . . , N} and
j ∈ LR(i) (respectively j ∈ RR(i)).
• ci is true iff the class associated to leaf node i is 1
• dvri is true iff fr is discriminated for value v by node
i, or by its ancestors, where r ∈ [1,K], and v ∈ {0, 1}
(i.e., the test [fr 6= v] is used on the branch from the root
to node i)

Let eq ∈ E+, and let σ(r, q) ∈ {0, 1} be the value of the
feature fr for eq . The following constraints are used to forbid
eq to be classified by a leaf node i (i ∈ [1, . . . , N]) associated
with a negative class:

vi ∧ ¬ci →
K∨
r=1

d
σ(r,q)
r,i (3)

The same idea is used for every example eq ∈ E−:

vi ∧ ci →
K∨
r=1

d
σ(r,q)
r,i (4)

3 MaxSAT-based Learning for Decision Trees
By classifying every example in the training set, the previous
SAT model naturally introduces overfitting. This issue can be
avoided by considering the optimisation problem:
P ∗(E , N): Given a set of examples E , find a full binary de-

cision tree of size N that maximises the number of examples
in E that are correctly classified.

In the following we show how the problem P ∗(E , N) can
be effectively modelled using MaxSAT. Next, we show adap-
tations of the model to take care of the maximum/exact depth
of the tree and to model a relaxation of the problem where N
is an upper bound on the number of nodes.

3.1 MaxSAT Model to Learn Decision Trees
We propose in this section a MaxSAT encoding for the opti-
misation problem P ∗(E , N). That is, given a set of examples
E , find a full binary decision tree of size N that maximises
the number of examples in E that are correctly classified.

All the constraints from part 1 and part 2 of the SAT model
discussed in Section 2.4 are kept as hard clauses. Then, for
classifying the examples, we introduce one Boolean variable
bq for every example eq ∈ E that is true only if eq is correctly
classified by the tree. Linking the bq variables with part 3 of
the SAT model is done with the following hard clauses:

∀eq ∈ E+, ∀i ∈ [1, N], bq → (vi ∧ ¬ci →
K∨
r=1

d
σ(r,q)
r,i) (5)

∀eq ∈ E−, ∀i ∈ [1, N], bq → (vi ∧ ci →
K∨
r=1

d
σ(r,q)
r,i) (6)

Finally, in order to model the objective of maximizing cor-
rectly classified examples, each literal bq is declared as a soft
clause. Clearly, the number of satisfied soft clauses is equal
to the number of correctly classified examples.

3.2 Constraints for Controlling Depth
A same tree size might clearly lead to different tree topolo-
gies. From Figure 1, we can see two extreme situations using
the same size 7: a fully unbalanced binary tree (left), and a
complete (balanced) binary tree (right). Having a way to con-
trol the topology of the tree, via both the depth and the size, is
a desired property to have, when learning decision trees. We
show how to control the depth of the tree in this section. Note
that we count the depth of binary tree from root as depth 0.

1

2 3

4 5

6 7

depth 3

1

2 3

4 5 6 7

depth 2

Figure 1: Two Binary Trees of the Same Size with Different Depths

We introduce a Boolean variable depthi,t that is true iff the
node i is in depth t. Observe that t can only be in [dlog(i +
1)e − 1, d(i− 1)/2e]. We present the different constraints to
encode the maximum allowed depth of the tree. Notice first
that depth1,0 has to be true since the root node is always in
depth 0. Then every node should be in one exact depth.∑
t∈[dlog(i+1)e−1,d(i−1)/2e]

depthi,t = 1, for i = 1, . . . , N

(7)
If node i is in depth t, and node j is a child of node i, then

node j must be in depth t+ 1.

depthi,t ∧ lij → depthj,t+1, for i = 1, . . . , N , j ∈ LR(i)
depthi,t ∧ rij → depthj,t+1, for i = 1, . . . , N , j ∈ RR(i)

(8)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1172

If the maximum depth given is U , then all possible nodes
in depth U must be leaf nodes.

depthi,U → vi, for i ∈ [2U,min(2U+1 − 1, N)] (9)

The following constraint can be added if U is given as an
exact depth instead of an upper bound.

min(2U+1−1,N)∨
i=2U

depthi,U = 1 (10)

3.3 Constraints for Controlling Tree Size
We show that the previous encoding can be easily adapted to
build a tree with an upper bound on the size of the tree instead
of the exact size. Consider firstly the relationship between the
size and the depth in a full binary tree. For a maximum depth
U , the upper bound of the size is 2U+1 − 1. If U is set as
exact depth, we additionally get the lower bound for the size
as 2U + 1. Observe also that the size of a full and binary
decision tree can only be an odd number starting from 3.

Suppose that N is an upper bound on the number of
nodes. We introduce a set of Boolean variables mi (where
i ∈ {3, 5, 7 . . . N}) to indicate if at least i nodes are used to
construct the tree. Recall that we need at least 3 nodes. We
therefore need to enforce m3 to be true. If at least i+2 nodes
are used then at least i nodes are used:

mi+2 → mi, for all i ∈ [1, N − 2] (11)

We then apply the following simple rule to adapt each con-
straint (parts 1 & 2, the new constraints of part 3, and the
depth constraints): We look at each clause C from the encod-
ing separately, and consider j, the largest node index used in
C. We simply replace the clause C by:

mj → C if j is odd
mj+1 → C if j is even

(12)

That is, if j is odd (respectively even) and at least j (re-
spectively j+1) nodes are used, then the clause C must hold.

3.4 Integration in AdaBoost
In this section, we explain how the framework of MaxSAT is
well adapted to implement AdaBoost. The MaxSAT model
used to learn the decision tree at iteration t is identical to the
previous model (in which one can control the size and the
depth) except for the weight associated to each soft clause
bq . Indeed, we use weighted partial MaxSAT to approximate
the data distribution Dt by associating every soft clause bq to
a positive integer weight wtq . The weighted voting follows
the original AdaBoost algorithm in Equation (2). We set all
weights at the first iteration with the value 1 as initial distribu-
tion indicating the equal importance of the examples. Then,
the value of wt+1

q is calculated based on wtq in two steps as
follows. Firstly, we update and normalize the weights:

ŵt+1
q =

wtq ∗ factortq∑M
q=1(w

t
q ∗ factortq)

(13)

where factortq is the updating factor based on prediction:

factortq =

{
exp(−αt) if ht(xq) = φ(xq)

exp(αt) if ht(xq) 6= φ(xq)
(14)

Secondly, we discretize the weight ŵt+1
q as follows:

wt+1
q = round(

ŵt+1
q

mini∈{1,...,M}(ŵ
t+1
i))

) (15)

4 Experimental Results
We perform three experiments on datasets from CP4IM1. The
first experiment aims at highlighting the overfitting behaviour
of the SAT approach. In the second experiment we compare
the performance with the state of the art heuristic (CART) and
exact (DL8.5) methods. Finally, we evaluate the MaxSAT im-
plementation of Boosting and Bagging. The datasets are bina-
rized with the one-hot-encoding. We ran all experiments us-
ing Xeon E5-2695 v3 @ 2.30GHz CPU and running xUbuntu
16.04.6 LTS. Our code source and datasets are available on-
line at https://gepgitlab.laas.fr/hhu/maxsat-decision-trees.

4.1 The Overfitting Phenomenon
The first set of experiments aims to show the existence of the
overfitting behaviour for the SAT method of learning optimal
size decision trees that classify every example in the train-
ing set. For this, we learn decision trees with our MaxSAT
encoding by increasing the size of the trees starting from
3 until we find the size that classifies correctly every ex-
ample in the training set. The final decision tree obtained
with the proposed MaxSAT model corresponds to the SAT
model of [Narodytska et al., 2018]. We use the hold-out
method to split training set and testing set for all datasets
used. Following [Narodytska et al., 2018], we choose (only
in this experiment) three (small) different splitting ratios
r = {0.05, 0.1, 0.2} to generate training sets. And remain-
ing examples are used for testing. This process is repeated 10
times using different randomisation seeds. We use the RC2
MaxSAT solver [Ignatiev et al., 2019]. In the context of these
experiments, the solver is left with no limit until it finds the
optimal solution (in terms of training accuracy).

In Figure 2, we report the average training accuracy and
testing accuracy for one dataset using the different sampling
ratios. We can see that the training accuracy increases with
the tree size, until reaching a perfect classification. Notice
that the tree that classifies every example has the same size
as the one using the original SAT approach of [Narodytska et
al., 2018]. The testing accuracy shown in Figure2(b) shows
that the perfect tree overfits the training data, since smaller
trees, while less accurate on the training set have a better test-
ing accuracy. This phenomenon is not as marked for every
dataset, however, we almost systematically observe a plateau
whereby the testing accuracy stays constant at best while the
training accuracy increases.

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1173

https://gepgitlab.laas.fr/hhu/maxsat-decision-trees

(a) Training accuracy as a function of the tree size

(b) Testing accuracy as a function of the tree size

Figure 2: Tendency of training accuracy (a) and testing accuracy (b)
for the “breast-cancer” in different ratios

4.2 Comparison with Different Methods
In this section, we compare the prediction accuracy of the
decision trees learnt by MaxSAT with CART [Breiman et al.,
1984] as a state-of-the-art heuristic method (from the scikit-
learn python library [Pedregosa et al., 2011]) and DL8.5
[Aglin et al., 2020] as a state-of-the-art exact approach via
its python package (version 0.0.9). Their parameters are kept
to their default values, except for the maximum depth which
is a fixed parameter for all the models. We use stratified
sampling to preserve the class distribution with 5-fold cross-
validation. This process is repeated with 10 different ran-
domisation seeds for each dataset. We use the MaxSAT solver
Loandra [Berg et al., 2019; Demirović and Stuckey, 2019] as
RC2 did not scale as well on the datasets we used. Indeed
RC2 is a bottom-up approach, whereas Loandra can return
good solutions within a limited time. The timeout for train-
ing is set to 15 minutes and the memory limit to 16GB for
all the experiments in this section. The core guided phase
in Loandra is limited to 10 minutes. We choose three differ-
ent maximum depths d ∈ {2, 3, 4} for CART and DL8.5. We
test two version of the MaxSAT model: DT(exact) the model
that learns trees with an exact depth (in the set {2, 3, 4}); and
DT(max) the model that learns trees with an upper bound on
the depth.

The accuracy of the different methods are reported in Table
1. The second column shows the size of dataset (#s) and the
number of binary features (#fb). The third column shows the
chosen maximum depth. The column “Acc” stands for accu-
racy in percent, “Opt” stands for the percentage of optimality,
and “Time” stands for the run time in seconds for instances

proven to optimality. The value “MO” indicates a memory
out. The value “TO” indicates a time out. The best values
among all methods are in bold. Testing and training accura-
cies of DT(max) and DT(exact) are marked with * if they are
within 3 percentage points of the best.

We do not report exact run time of CART cause it takes only
few seconds. In terms of training and testing accuracy, Ta-
ble 1 shows that the trees learnt via MaxSAT encoding are
competitive with both heuristic and exact methods in predic-
tion performance. Although MaxSAT model can not always
report optimality, it is close to the optimal solution obtained
by DL8.5. In addition, DL8.5 needs massive memory for
deep trees, while the MaxSAT model does not. For instance,
for a maximum depth of 5, DL8.5 runs out of memory on 6
datasets, even when lifting the limit to 50GB.

4.3 Boosting via MaxSAT
In order to show the impact of our AdaBoost implementation
with MaxSAT, we compare it to bagging, a single learner us-
ing MaxSAT, and AdaBoost based on CART. We fix the pa-
rameters (size, depth, timeout) for every learner to be the
same. In particular, we use the MaxSAT model with an upper
bound for the depth (i.e., DT(max)) using the Loandra solver
and a timeout of 15 minutes. The number of learners (for
boosting and bagging) is set yo be 21 as reasonable. We chose
datasets where the MaxSAT models do not perform well from
the results in Table 1. We use the hold-out method with ra-
tio r = 0.8 to split each dataset into training and testing set,
which is repeated with 10 different randomisation seeds.

The results are shown in Table 2 (where BS stands for the
AdaBoost model via MaxSAT, BSH stands for the AdaBoost
model based on CART, and BG stands for the Bagging model).
The accuracy values are shown in percent. The best values be-
tween the three methods are in bold. This table clearly shows
that the Boosting via MaxSAT does improve the training ac-
curacy in almost all the cases with respect both to bagging and
to a single learner. The boosted trees via MaxSAT generalises
very well and are competitive with those based on CART.

5 Conclusion
We propose an exact method for learning decision trees based
on the MaxSAT framework. Our initial motivation behind
this work was to avoid the overfitting issue with the previous
SAT encoding and to address the scalability issue. The declar-
ative nature of MaxSAT made it possible to additionally con-
trol the size and the depth of the learnt trees. The empirical
results show that our approach learns good quality decision
trees compared to heuristics method and the recent state-of-
the-art. We also show that our MaxSAT-based method is well
suited for applying boosting techniques.

In the future, it would be interesting to guide the branching
heuristic using the information gain coefficient. Furthermore,
we will explore the integration of our method into the Ran-
dom Forest framework [Breiman, 2001].

Acknowledgements
The authors would like to thank Nina Narodytska for kindly
sharing the source code of the original SAT model.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1174

Datasets #s / #fb d Testing Accuracy Training Accuracy
DT(exact) DT(max) CART DL8.5 DT(exact) DT(max) CART DL8.5

Acc Acc Acc Acc Acc Opt Time Acc Opt Time Acc Acc Time

anneal 812 / 89
2 82.16* 82.05* 81.09 82.31 83.19 86 593.71 83.19 93.3 530.45 81.48 83.19 0.03
3 84.23* 84.29* 81.22 85.26 85.06* 0 TO 85.05* 0 TO 81.60 86.26 1.76
4 83.71* 84.50* 80.94 86.42 86.11* 0 TO 85.79 0 TO 82.68 89.10 73.53

audilogy 216 / 146
2 94.82* 94.49* 94.56 94.92 95.44 100 25.84 95.44 100 25.17 94.91 95.44 0.04
3 93.72* 93.91* 94.16 93.53 97.87* 0 TO 97.84* 0 TO 97.33 98.07 2.42
4 94.70 94.08* 94.51 94.50 94.43 36 706.00 99.43* 34 777.25 98.89 99.90 46.33

australian-credit 653 / 124
2 84.72* 84.89* 86.59 84.81 87.00* 12 866.79 87.00* 12 883.78 86.68 87.01 0.06
3 84.92* 85.31* 84.99 85.33 87.83* 0 TO 87.79* 0 TO 86.88 89.00 6.96
4 85.00* 85.31* 85.44 MO 88.44* 0 TO 88.19* 0 TO 89.04 MO MO

breast-cancer 683 / 89
2 93.97 93.92* 93.89 93.88 94.94 100 2.90 94.94 100 3.19 94.42 94.94 0.02
3 94.07* 94.45 93.80 94.14 96.66* 20 842.64 96.66* 7 844.62 95.66 96.67 0.71
4 94.05 93.95* 93.79 93.66 97.70* 0 TO 97.39* 0 TO 96.91 98.10 20.38

car 1728 / 21
2 85.53 85.53 85.53 85.53 85.53 100 3.48 85.53 100 3.95 85.53 85.53 0.01
3 87.49* 87.49* 87.65 87.49 89.24 96 591.65 89.24 74 700.19 88.48 89.24 0.03
4 89.69* 89.84* 87.93 90.69 91.60* 0 TO 91.47* 0 TO 89.62 92.31 0.31

heart-cleveland 296 / 95
2 71.59* 71.60* 72.71 71.53 80.94* 0 TO 80.95 0 TO 78.20 80.95 0.03
3 76.08 76.09 79.37 75.85 83.95 0 TO 85.00* 0 TO 85.78 87.20 2.99
4 75.11 75.82* 76.55 78.15 85.57 0 TO 85.31 0 TO 88.32 92.77 134.72

hypothyrold 3247 / 86
2 97.84 97.84 97.84 97.84 97.84 100 130.88 97.84 100 131.56 97.84 97.84 0.04
3 97.83* 97.83* 97.87 97.86 98.13* 0 TO 98.13* 0 TO 98.12 98.14 2.95
4 97.98* 98.04* 98.10 97.87 98.36* 0 TO 98.35* 0 TO 98.38 98.44 121.92

kr-vs-kp 3196 / 73
2 86.92 86.92 76.75 86.92 86.92 100 130.88 86.92 100 131.56 77.49 86.92 0.03
3 93.57* 93.56* 90.43 93.75 93.60* 0 TO 93.61* 0 TO 90.43 93.81 1.60
4 93.69* 94.10* 94.09 95.36 93.80* 0 TO 94.20* 0 TO 94.09 95.50 67.18

lymph 148 / 68
2 79.16* 79.42* 80.85 79.07 86.07 100 31.32 86.07 100 35.98 84.58 86.07 0.01
3 80.95* 80.45* 79.05 81.80 91.71* 0 TO 91.78* 0 TO 89.97 92.81 0.44
4 80.53* 81.71* 82.15 80.28 94.51* 0 TO 94.87* 2 868.11 94.88 99.00 7.75

mushroom 8124 / 112
2 96.90 96.90 92.71 96.90 96.90 100 89.89 96.90 100 132.94 92.71 96.90 0.09
3 99.97 99.66* 96.53 99.90 99.73* 0 TO 99.69* 0 TO 96.55 99.90 4.94
4 100 99.98* 99.90 100 100 100 354.33 99.99* 96 388.80 99.92 100 28.65

primary-tumor 336 / 31
2 79.55* 79.82* 80.15 80.06 83.07 100 17.16 83.07 100 17.74 82.82 83.07 0.01
3 82.79* 82.61* 79.83 83.27 86.32* 0 TO 86.44* 0 TO 84.81 86.58 0.10
4 82.74* 83.24* 81.72 83.30 87.45* 0 TO 87.71* 0 TO 87.45 90.22 1.57

soybean 630 / 50
2 91.27 91.27 87.94 91.27 91.27 100 8.54 91.27 100 8.56 89.29 91.27 0.01
3 94.29* 94.19* 90.46 94.35 95.46* 0 TO 95.50* 0 TO 92.23 95.51 0.20
4 95.30* 96.04* 92.46 96.17 97.14* 0 TO 97.05* 0 TO 94.39 98.02 3.58

splice-1 3190 / 287
2 83.44* 83.22* 84.04 82.80 84.13* 0 TO 84.17* 0 TO 84.04 84.31 0.50
3 83.62 85.60 90.96 92.83 84.06 0 TO 85.90 0 TO 91.31 92.98 81.01
4 85.87 83.18 95.25 MO 86.21 0 TO 83.91 0 TO 95.43 MO MO

tic-tac-toe 958 / 27
2 67.45* 67.51* 68.22 67.59 71.12 100 99.50 71.12 100 92.00 70.92 71.12 0.01
3 73.54 73.42* 72.04 72.22 77.45* 0 TO 76.94* 0 TO 75.70 78.65 0.08
4 78.15* 78.04* 80.97 80.30 82.05 0 TO 81.33 0 TO 83.82 86.65 1.14

vote 435 / 48
2 94.94* 94.98* 95.44 94.84 96.22 100 3.49 96.22 100 3.61 95.63 96.22 0.01
3 94.16* 94.18* 94.67 93.95 97.39* 0 TO 97.35* 0 TO 96.91 97.50 0.23
4 94.64 94.25* 94.57 93.61 98.50* 0 TO 98.51* 0 TO 98.03 99.18 4.04

Table 1: Evaluation of the MaxSAT Model with CART and DL8.5

Datasets d Testing accuracy Training accuracy
DT(max) BS BSH BG DT(max) BS BSH BG

anneal
2 80.98 80.98 83.99 80.98 83.20 83.36* 85.21 83.17
3 82.82 84.90* 86.81 82.82 84.90 88.60 88.26 85.00
4 82.82 84.82* 87.55 83.30 85.52 90.14* 91.05 85.81

australian-credit
2 87.12 87.20 85.98 89.20 86.56 89.98 93.84 85.89
3 87.88 87.54* 87.05 88.72 87.33 89.66 93.80 87.03
4 87.88 87.88* 85.91 89.14 88.48 90.21 99.31 87.03

car
2 84.68 96.53 95.29 84.68 85.75 97.47 96.27 85.75
3 87.86 95.44* 97.83 89.92 89.15 97.10* 98.84 91.08
4 90.46 98.36* 98.67 95.02 91.24 98.70* 99.91 95.30

heart-cleveland
2 73.33 78.33* 79.83 76.85 80.93 90.25 90.13 85.22
3 78.33 83.70 81.17 81.48 83.90 93.97 99.15 88.37
4 85.0 80.17 77.83 83.89 83.47 96.09 100 90.07

primary-tumor
2 82.35 82.35 81.91 82.03 82.84 86.19* 87.05 83.25
3 82.65 84.48 80.74 84.31 86.34 90.92 89.96 87.77
4 80.88 79.14 78.97 84.80 86.57 88.81 93.77 89.59

tic-tac-toe
2 68.91 77.14* 78.08 71.27 70.98 80.39* 82.61 72.37
3 74.61 94.69 93.01 81.46 76.86 95.96* 96.31 89.46
4 76.74 94.49* 96.94 85.26 81.31 95.80 100 85.37

Table 2: Evaluation of the MaxSAT Boosting Approach

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1175

References
[Aglin et al., 2020] Gael Aglin, Siegfried Nijssen, and Pierre

Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of the Thirty-
Fourth Conference on Artificial Intelligence (AAAI), New
York, USA, February 2020.

[Avellaneda, 2020] Florent Avellaneda. Efficient inference
of optimal decision trees. In Proceedings of the Thirty-
Fourth Conference on Artificial Intelligence (AAAI), New
York, USA, February 2020.

[Bennett, 1994] Kristin Bennett. Global tree optimization: A
non-greedy decision tree algorithm. In Computing Science
and Statistics, pages 156–160, 1994.

[Berg et al., 2019] Jeremias Berg, Emir Demirović, and Pe-
ter J. Stuckey. Core-boosted linear search for incomplete
maxsat. In Proceedings of the 16th International Confer-
ence on the Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research - CPAIOR,
pages 39–56, June 4-7, 2019.

[Bertsimas and Dunn, 2017] Dimitris Bertsimas and Jack
Dunn. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017.

[Bessiere et al., 2009] Christian Bessiere, Emmanuel He-
brard, and Barry O’Sullivan. Minimising decision tree size
as combinatorial optimisation. In Proceedings of the of
15th International Conference on Principles and Practice
of Constraint Programming - CP, pages 173–187, Septem-
ber 20-24, 2009.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability, volume 185 of Frontiers in Artificial Intelligence
and Applications, 2009.

[Breiman et al., 1984] Leo Breiman, J. H. Friedman, R. A.
Olshen, , and C. J. Stone. Classification and Regression
Trees. Chapman & Hall/CRC, 1st edition, 1984.

[Breiman, 1996] Leo Breiman. Bagging predictors. Machine
Learning, 24(2):123–140, 1996.

[Breiman, 2001] Leo Breiman. Random forests. Machine
Learning, 45(1):5–32, 2001.

[Demirović and Stuckey, 2019] Emir Demirović and Peter J.
Stuckey. Techniques inspired by local search for incom-
plete maxsat and the linear algorithm: Varying resolution
and solution-guided search. In Thomas Schiex and Simon
de Givry, editors, Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019,
Stamford, CT, USA, September 30 - October 4, 2019, Pro-
ceedings, volume 11802 of Lecture Notes in Computer Sci-
ence, pages 177–194. Springer, 2019.

[Freund and Schapire, 1997] Yoav Freund and Robert E.
Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Com-
puter and System Sciences, 55(1):119–139, 1997.

[Hu et al., 2019] Xiyang Hu, Cynthia Rudin, and Margo
Seltzer. Optimal sparse decision trees. In Advances in

Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14, pages 7265–7273, December 2019.

[Ignatiev et al., 2019] Alexey Ignatiev, Antonio Morgado,
and Joao Marques-Silva. Rc2: an efficient maxsat solver.
Journal on Satisfiability, Boolean Modeling and Compu-
tation, 11:53–64, 09 2019.

[Narodytska et al., 2018] Nina Narodytska, Alexey Ignatiev,
Filipe Pereira, and João Marques-Silva. Learning optimal
decision trees with SAT. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence - IJCAI, pages 1362–1368, July 13-19, 2018.

[Nijssen and Fromont, 2007] Siegfried Nijssen and Elisa
Fromont. Mining optimal decision trees from itemset lat-
tices. In Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining - KDD, page 530–539, August 12-15, 2007.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux,
A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830,
2011.

[Quinlan, 1986] J. R. Quinlan. Induction of decision trees.
Machine Learning, 1(1):81–106, March 1986.

[Quinlan, 1993] J. Ross Quinlan. C4.5: programs for ma-
chine learning. Morgan Kaufmann Publishers Inc., 1993.

[Verhaeghe et al., 2019] Hélène Verhaeghe, Siegfried Ni-
jssen, Gilles Pesant, Claude-Guy Quimper, and Pierre
Schaus. Learning optimal decision trees using constraint
programming. In Proceedings of the 25th International
Conference on Principles and Practice of Constraint Pro-
gramming - CP, Sept 30 - Oct 4, 2019.

[Verwer and Zhang, 2019] Sicco Verwer and Yingqian
Zhang. Learning optimal classification trees using a
binary linear program formulation. In The Thirty-Third
National Conference on Artificial Intelligence (AAAI),
pages 1625–1632, 2019.

[Zhou and Feng, 2017] Zhi-Hua Zhou and Ji Feng. Deep for-
est: Towards an alternative to deep neural networks. In
Proceedings of the 26th International Joint Conference on
Artificial Intelligence - IJCAI, page 3553–3559, August,
19-25, 2017.

[Zhou, 2012] Zhi-Hua Zhou. Ensemble Methods: Founda-
tions and Algorithms. Chapman & Hall/CRC, 1st edition,
2012.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1176

	Introduction
	Technical Background
	Classification via Decision Trees
	Ensemble Methods
	SAT & MaxSAT
	SAT-based Learning of Decision Trees

	MaxSAT-based Learning for Decision Trees
	MaxSAT Model to Learn Decision Trees
	Constraints for Controlling Depth
	Constraints for Controlling Tree Size
	Integration in AdaBoost

	Experimental Results
	The Overfitting Phenomenon
	Comparison with Different Methods
	Boosting via MaxSAT

	Conclusion

