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Abstract

The Boolean satisfiability problem (SAT) is a fa-
mous NP-complete problem in computer science.
An effective way for solving a satisfiable SAT prob-
lem is the stochastic local search (SLS). However,
in this method, the initialization is assigned in a
random manner, which impacts the effectiveness
of SLS solvers. To address this problem, we pro-
pose NLocalSAT . NLocalSAT combines SLS with
a solution prediction model, which boosts SLS by
changing initialization assignments with a neural
network. We evaluated NLocalSAT on five SLS
solvers (CCAnr, Sparrow, CPSparrow, YalSAT, and
probSAT) with instances in the random track of
SAT Competition 2018. The experimental results
show that solvers with NLocalSAT achieve 27% ∼
62% improvement over the original SLS solvers.

1 Introduction
Boolean satisfiability (also referred to as propositional satis-
fiability and abbreviated as SAT) is the problem to determine
whether there exists a set of assignments for a given Boolean
formula to make the formula evaluate to true. SAT is widely
used in solving combinatorial problems, which are generated
from various applications, such as program analysis [Harris et
al., 2010], program verification [Leino, 2010], and schedul-
ing [Kasi and Sarma, 2013]. These applications first reduce
the target problem into a SAT formula and then find a solution
using a SAT solver. However, the SAT problem has proven to
be NP-complete [Cook, 1971], which means that algorithms
for solving SAT Instances may need exponential time in the
worst case. Therefore, many techniques have been proposed
to increase the efficiency of the search process of SAT solvers.

The state-of-the-art SAT solvers can be divided into two
categories, CDCL (Conflict Driven Clause Learning) solvers
and SLS (Stochastic Local Search) solvers. CDCL solvers
are based on the deep backtracking search, which assigns one
variable each time and backtracks when a conflict occurs. On
the other hand, SLS solvers initialize an assignment for all

∗Lu Zhang is the corresponding author. The code is available at
https://github.com/myxxxsquared/NLocalSAT

variables and then find a solution by constantly flipping the
assignment of variables to optimize some score.

Over the last few years, artificial neural networks have
been widely used in many problems [Edwards and Xie, 2016;
Selsam and Bjørner, 2019]. A neural network is a machine
learning model with a large number of parameters. Neu-
ral networks have been used on many data structures, such
as sequences [Mikolov et al., 2010], images [Simonyan and
Zisserman, 2015], and graphs [Edwards and Xie, 2016].
The graph convolutional network (GCN) [Edwards and Xie,
2016] is a neural network model on graph structures, which
extracts both structural information and information on nodes
in a graph. GCN performs well on many tasks on graphs.

There have been some studies on solving SAT problem
with neural networks. Some of them use end-to-end neural
networks to solve SAT problem directly as the outputs of the
neural networks, while others use neural network predictions
to boost CDCL solvers. Selsam et al. proposed an end-to-
end neural network model to predict whether a SAT instance
is satisfiable [Selsam et al., 2019] in 2019. Later, Selsam et
al. modified NeuroSAT to NeuroCore [Selsam and Bjørner,
2019]. NeuroCore guides CDCL solvers with unsat-core pre-
dictions which are computed every certain interval in the neu-
ral network on GPUs. CDCL solvers with NeuroCore solve
6%-11% more instances than the original.

In this paper, we propose NLocalSAT , which is the first
method that uses a neural network to boost SLS solvers and
the first off-line method to boost SAT solvers with neural net-
works. Different from NeuroCore which induces large over-
head to CDCL by an on-line prediction1, NLocalSAT uses the
prediction in an off-line way. In this method, the neural net-
work is computed only once for each SAT instance.

In our proposed method, we first train a neural network
to predict the solution space of a SAT instance. Then, we
combine SLS solvers with the neural network by modify-
ing the solvers’ initialization assignments under the guidance
of the output of the neural network. Such combination in-
duces limited overhead, and it can easily be applied to SLS
solvers. Furthermore, we evaluated SLS solvers, and NLocal-
SAT solves 27%∼ 62% more instances than the original SLS
solvers. Such experimental results show the effectiveness of

1The on-line prediction means to predict every certain interval in
CDCL.
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Figure 1: The overview of our model, NLocalSAT .

NLocalSAT .
Contributions. (1) We train a neural network to predict the
solution of a SAT instance. (2) We propose a method to boost
SLS solvers by modifying its initialization of assignments
with the guidance of predictions of the neural network. (3)
To the best of our knowledge, we are the first to combine
SLS with a neural network model and we are the first to pro-
pose an off-line method to boost SAT solvers with a neural
network.

2 Approach
Figure 1 shows an overview of our model, NLocalSAT . Our
model combines a neural network and an SLS solver. Given
a satisfiable input formula, the neural network is to output a
candidate solution and the solver is to find a final solution
with the guidance of the neural network. For an input for-
mula, we first transfer it into a formula graph, which is further
fed to a graph-based neural network for extracting features.
Then the neural network in NLocalSAT outputs a candidate
solution for the formula by a multi-layer perceptron after the
neural network. We use this candidate solution to initialize
the assignments of an SLS SAT solver to guide the search
process.

2.1 Formula Graph
To take the structural information of an input formula into
consideration, we first transfer it into a formula graph. A
general Boolean formula can be any expressions consisting
of variables, conjunctions, disjunctions, negations, and con-
stants. All Boolean formulas can be reduced into an equisat-
isfiable conjunctive normal form (CNF) with linear length in
linear time [Tseitin, 1983]. In a CNF, a SAT instance is a
conjunction of clauses C1 ∧ C2 ∧ · · · ∧ Cn. Each clause is
a disjunction of literals (i.e., variables and negated variables)
Ci = Li1 ∨ Li2 ∨ · · · ∨ Lin, where Lij = xk or Lij = ¬xk.
In this paper, we assume that all SAT problems are in CNFs.
A SAT instance S in the CNF can be seen as a bipartite graph
G = (C,L,E), where C (clause set of S) and L (literal set
of S) are the node sets of G and E is the edge set of G. (c, l)
is in E if and only if the literal l is in the clause c. A is
the adjacent matrix of the bipartile graph G. The element
Aij of the adjacent matrix equals to one when there is an
edge between node i and node j, otherwise 0. For example,
(x1 ∨ x2) ∧ ¬ (x1 ∧ x3) is a Boolean formula. This Boolean

c1 c2

x1 ¬x1 x2 ¬x2 x3 ¬x3

Figure 2: The bipartite graph representation for the CNF formula.

formula can be converted into (x1 ∨ x2)∧(¬x1 ∨ ¬x3) in the
conjunctive normal form. The bipartite graph for this prob-
lem is shown in Figure 2. The adjacency matrix for this graph
is

A =

(
1 0 1 0 0 0
0 1 0 0 0 1

)
.

2.2 Graph-Based Neural Network
The graph-based neural network aims to predict the candidate
solution for a SAT instance. The network consists of a gated
graph convolutional network to extract structural information
about the graph and a two-layer perceptron to predict the so-
lution.

Gated Graph Convolutional Network
Inspired by NeuroSAT [Selsam et al., 2019], we use a similar
gated graph convolutional network (GGCN) to extract fea-
tures of variables. The gated graph convolutional network
(GGCN) takes the adjacency matrix as the input and outputs
the features of each variable extracted from the graph.

In a SAT instance, the satisfiability is not influenced by the
names of clauses and literals (e.g., the satisfiability of two
formulas (x1 ∨ x2), (x3 ∨ x4)). To use this property, for an
input formula graph G, we initialize each clause ci ∈ G as
a vector c(init) ∈ Rd, each literal li ∈ G as another vector
l(init) ∈ Rd, where d is the embedding size and d is set to
64 in this paper. These vectors are further fed to GGCN to
extract structural information in the graph.

Each iteration of GGCN is an update for the vectors of
these nodes where each node updates its vector by taking its
neighbors’ information (vectors). Formally, at the t-th itera-
tion, the detailed computations for clause c and literal l are
represented by

ct = LSTMCell(ct−1,
∑
l′∈G

Ãcl′l
′
t−1) (1)

lt = LSTMCell(lt−1,
∑
c′∈G

Ãc′lc
′
t + ¬lt−1) (2)

Here, Ã is a normalized adjacency matrix for the graph (the
detailed computation is presented in Equation 3). l′t and c′t
denote the vector of the literal l′ and clause c′ at the t-th it-
eration. ¬lt is the vector of negated literal of l at the t-th
iteration. c0 = c′0 = c(init), l0 = l′0 = l(init). The LSTMCell is a
long short-term memory (LSTM) unit with layer normaliza-
tion. We use symmetrical normalization on adjacency matrix.

Ã = S
−1/2
1 AS

−1/2
2 , (3)

where S1 and S2 are the diagonal matrices with summation
of A in columns and rows.

We apply the GGCN layer of 16 iterations on the initial
value and get a vector containing structural information about
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each literal. Then, the two vectors for a literal and its negation
are concatenated for each variable.

Two-layer Perceptron
After GGCN, vectors of nodes contain structural information
of literals. A two-layer perceptron MLP with hidden 512 size
is applied on the vector for each variable to extract classifica-
tion information from the structural information. Through a
softmax function, we get the probability for the variable to be
true.

P (v = FALSE), P (v = TRUE)

=softmax {W2 ReLU [W1(lv : l¬v) + b1] + b2} ,
(4)

where W1,W2,b1,b2 are weights and biases for the two
perceptrons and the colon indicates the connection of two
vectors.

Loss Function
Our model is trained by minimizing the cross-entropy loss
against the ground truth. For the predicted variables <
v1, v2 · · · , vn >, where n denotes the number of variables,
the cross-entropy loss is computed as

Loss = −
n∑

i=1

[g(vi) log(P (v = TRUE))

+ (1− g(vi)) log(P (v = FALSE))],

(5)

where g(vi) denotes the ground truth of vi.

2.3 Training Data
The goal of our network is to predict the solution to the SAT
instances, so we should generate training data for SAT in-
stances with solution labeling. Due to the scarcity of SAT
Competition data, using additionally generated small SAT in-
stances could help provide thorough training. We generate
two training datasets and train our model in order. Our model
is first pretrained with a large number of generated small SAT
instances. We generate tens of millions of small SAT in-
stances with solution labeling. Such large amounts of data
can make the training process more effective and avoid over-
fitting. These small instances can help our network better
learn structural information. Then, our model is fine-tuned
on a dataset generated from SAT Competitions. By finely
tuning on the dataset from SAT Competition instances, our
model can learn specific information in the field and learn to
predict the solution on large instances.

Small Generated Instances
We generate small instances containing 10 to 20 variables by
a random generator. The number of clauses is 2 to 6 times the
number of variables. Each clause contains 3 variables with
the probability of 0.8 and 2 variables with the probability of
0.2. Each clause is generated by randomly randomly select-
ing variables or negated variables from the instance.

After the generation of instances, we solve these instances
with a SAT solver. We drop unsatisfied instances because our
model only learns to predict the solution of a satisfiable SAT
instance. However, there can be more than one solution for a
specific SAT instance, which can confuse the neural network.
To address this problem, we use a complete solver to find all

Algorithm 1 Algorithm for stochastic local search solvers
Data: SAT instance P

while End condition not reached do
S ← initialize assignment randomly;
while Restart condition not reached do

if P evaluate to true under S then
Return S;

end if
l← Select a variable by some heuristics;
Flip(S, l);

end while
end while

solutions for each SAT instance. Then we label each variable
based on whether itself or its negation appears more among
all solutions.

After data generation, we pretrain NLocalSAT on these
small instances. Small data instances have high overhead dur-
ing training the neural network, so we combine several small
instances into one large batch. Since our model is indepen-
dent of the order and the size of SAT variables, we can com-
bine many instances via simply putting them together.

SAT Competition Instances
To train our model on larger instances, we generate training
data from SAT instances in random tracks of SAT Compe-
titions. We use a SAT solver to get one solution for each
instance. Instances that are not solved by the solver will be
removed. We then use the solution as labeling in the training
data.

Training on GPU requires more memory than evaluation.
So, if the instance is too large to fit in the memory of our
GPU during training, we will cut these instances into smaller
ones. Let us denote the largest number of variables that can
fit into the memory of our GPU as NL. For every large in-
stance, we first get a solution S0 with a SAT solver. Then, we
sample NL variables X0 from all variables. For one clause c
in the original SAT instance, if c contains no literals from X0,
the clause is removed. If c is not satisfied on X0 after remov-
ing literals that are not from X0, the clause is also removed.
Clauses with only one literal are also removed to prevent the
instance from being too easy. Otherwise, the clause c remains
in the instance. If the sampling generates a instance with too
few clauses, the instance is removed because this will lead to
too many solutions.

2.4 Combination with Local Search
Stochastic local search algorithms can be considered as an op-
timization process. The solver flips the assignments of vari-
ables to maximize some total score. For example, we can
use the number of clauses that evaluate to true as the score.
When the score reaches the number of clauses, the instance
is solved. Algorithm 1 shows a general algorithm in a local
search solver.

In SLS solvers, it is not counter-intuitive that the initial as-
signment has a great impact on whether it can quickly find a
solution, because there can be many local optimum in the in-
stance and badly initialized assignments near a local optimum
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Algorithm 2 Initialization of variables with NLocalSAT
Data: Probability p0, Assignment of variables assignment,
Neural network predictions N

for i < number of variables do
if rand() < p0 then

assignment[i]← N [i]
else
assignment[i]← ¬N [i]

end if
end for

Algorithm 3 Algorithm for stochastic local search solvers
with NLocalSAT (The underlined code is the different part
from the original solvers)
Data: SAT instance P

N ← predicting solution of P by NLocalSAT;
while End condition not reached do
S ← initialize assignment with N ;
while Restart condition not reached do

if P evaluate to true under S then
Return S;

end if
l← Select a variable by some heuristics;
Flip(S, l);

end while
end while

can cause the SLS solvers to get stuck. Intuitively, the closer
to the solution of the instance, the easier it is to find a solu-
tion. In order to avoid falling into the local optimum, these
solvers restart the searching process by reassigning new ran-
dom values to variables after a period of time without a score
increase. However, most of the existing SLS solvers initial-
ize assignments in a random manner. Random generation of
initial values can explore more space for the SAT instance.
However, if the distance between initial values and solution
values is too large, the solver is more likely to fall into a local
optimum.

We propose a new initialization method using the output
of our neural network. Before starting the solver, we run our
neural network to predict a solution. We replace the initial-
ization function with our neural initialization, where, instead
of randomly generating 0 or 1, the function assigns the pre-
dicted values to a variable with a probability of p0 and as-
signs the negation of the predicted value with a probability
of 1 − p0. This neural-initialization function can keep the
assignment with a probability of p0 to explore near the can-
didate solution and explores new solution space with a prob-
ability of 1 − p0 in case that the neural network’s prediction
is wrong. The initialization process is shown in Algorithm
2. Algorithm 3 shows the architecture of our modified SLS
solvers. Note that our neural network model is executed only
once for one SAT instance. Though the cost of computing a
neural network is high, the cost of calling a neural network
only once is acceptable, which consumes 0.1 seconds to tens
of seconds depending on the size of the instance.

3 Experiments
3.1 Datasets
Our model was trained on a dataset with generated instances
with small SAT instances (denoted as Datasetsmall) and a
dataset with instances in random tracks of SAT Competitions
in 2012, 2013, 2014, 2016, 2017 (denoted as Datasetcomp)
2. Our model was evaluated on instances in the random track
of SAT Competition in 2018 (denoted as Dataseteval) with
255 SAT instances in total. We found that there are sev-
eral duplicate instances in 2018 and previous years, so we
removed them from the training and validation datasets to en-
sure instances in the Dataseteval are generated with differ-
ent random seeds with those in Datasetcomp. So, it’s almost
impossible to have isomorphic instances between these two
datasets. However, there will be some similar substructures
between the training set and the test set, so that neural net-
works can predict by learning these substructures.

The Datasetcomp and the Dataseteval both contain two
categories of instances, i.e., uniformly generated random SAT
instances (denoted as Uniform) [Heule, 2018] and hard SAT
instances generated with a predefined solution (denoted as
Predefined) [Balyo and Chrpa, 2018].

3.2 Pretraining
In Datasetsmall, we generated about 2.5 × 107 small in-
stances and combined them into about 4 × 105 batches with
about ten thousand variables each as our pretraining dataset.
We generated 200 batches in the same approach with different
random seeds as validation data during pretraining.

We trained our model to converge using the Adam [Kingma
and Ba, 2015] optimizer with its default parameters by min-
imizing the loss function. After pretraining, the precision on
the validation dataset of Datasetsmall is 98%.

3.3 Training
We used Datasetcomp as the training dataset and the valida-
tion dataset. We loaded the pretrained model and continued to
train with the same optimizer and loss function. After train-
ing, the precision on the validation dataset of Datasetcomp is
95%.

3.4 Evaluation
We tested our proposed method on five recent SLS solvers,
i.e., CCAnr [Cai et al., 2015], Sparrow [Balint and Fröhlich,
2010], CPSparrow, YalSAT [Biere, 2016], probSAT [Balint
and Schöning, 2018]. These solvers have performed very
well among SLS solvers on random tracks of SAT Com-
petitions in recent years. CCAnr is an SLS solver pro-
posed in 2015 to capture structural information on SAT in-
stances. CCAnr is a variant of CCASat [Cai and Su, 2013].
CCAnr performs better on all tracks of SAT Competitions
than CCASat. Sparrow is a clause weighting SLS solver.
CPSparrow is a combination of Sparrow and a preprocessor
Coprocessor [Balint and Manthey, 2013]. CPSparrow is the

2The competition of SAT in 2015 was called SAT Race 2015.
There was no random track in SAT Race 2015
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best pure SLS solver in the random track of SAT Competi-
tion 2018. YalSAT is the champion of the random track of
SAT Competition 2017.

Due to the strong randomness of SLS solvers, the experi-
ments for SLS solvers were performed three times with three
different random seeds and then we aggregated the results.

We evaluated these original solvers and those modified
with NLocalSAT on Dataseteval. We also evaluated three
other solvers MapleLCMDistChronoBT [Ryvchin and Nadel,
2018], gluHack, and Sparrow2Riss [Balint and Manthey,
2018] under the same set. MapleLCMDistChronoBT and
Sparrow2Riss are the champions of SAT Competition 2018
in the main track and the random track. gluHack is the
best CDCL solver of SAT Competition 2018 in the random
track. MapleLCMDistChronoBT is a CDCL solver with
recently proposed techniques to improve performance such
as chronological backtracking [Nadel and Ryvchin, 2018],
learned clause minimization [Luo et al., 2017], and so on.
Sparrow2Riss is a combination of Coprocessor, Sparrow, and
a CDCL solver Riss.

We set up a timeout limit to 1000 seconds. Solvers failed
to find a solution within the time limit will be killed immedi-
ately. In our experiments, p0 is set to 0.9. Our experiments
were performed on a work station with an Intel Xeon E5-
2620 CPU and a TITAN RTX GPU. During our experiment,
the time for initialization of the GPU environment was ig-
nored but the time of the GPU computation was included in
the total time.

4 Results
4.1 Number of Instance Solved
Table 1 shows the number of instances solved in 1000 sec-
onds time limit. Each row represents a tested solver. The
experiments of SLS solvers are performed three times to re-
duce the randomness of results. Each number in the rows of
SLS solvers is the average and the standard deviation of re-
sults in the three experiments. Each column in the table rep-
resents a category of instances in the dataset. The number in
parentheses indicates the total number of instances in the cat-
egory. Dataseteval contains unsatisfiable instances [Heule,
2018]. However, no solvers reported unsatisfiability on any
instances within the time limit. So, the solved problems in
Table 1 are all satisfiable ones.

The experimental result shows that solvers with NLocal-
SAT solve more instances than the original ones. CCAnr,
Sparrow, CPSparrow, YalSAT, and probSAT with NLocalSAT
solve respectively 41%, 30%, and 27%, 62%, and 62% more
instances than the original solvers. This improvement has
been shown in Predefined instances and in Uniform instances
on Sparrow and CPSparrow. Sparrow with NLocalSAT and
CPSparrow with NLocalSAT solve more instances than all
other solvers including the champions on SAT Competition
2018. Sparrow2Riss is a combination of a preprocessor, an
SLS solver, and a CDCL solver, thus showing good perfor-
mance, but the SLS solvers with NLocalSAT still outperforms
Sparrow2Riss. CDCL solvers perform well on Predefined in-
stances and NLocalSAT can help to improve performance par-
ticularly on this category, from which we can conclude that

Solver Predefined(165) Uniform(90) Total(255)

CCAnr 107.3± 1.2 18.0± 0.8 125.3± 1.2
CCAnr with NLocalSAT 165.0± 0.0 12.7± 0.9 177.7± 0.9

Sparrow 126.7± 0.5 23.7± 1.7 150.3± 1.2
Sparrow with NLocalSAT 165.0± 0.0 31.0± 0.8 196.0± 0.8

CPSparrow 128.0± 0.8 27.0± 1.6 155.0± 1.4
CPSparrow with NLocalSAT 165.0± 0.0 32.0± 0.8 197.0± 0.8

YalSAT 75.0± 0.0 49.5± 1.5 124.5± 1.5
YalSAT with NLocalSAT 165.0± 0.0 37.3± 0.9 202.3± 0.9

probSAT 75.7± 0.5 51.0± 0.0 126.7± 0.5
probSAT with NLocalSAT 165.0± 0.0 40.7± 1.2 205.7± 1.2

Sparrow2Riss 165 23 188
gluHack 165 0 165
MapleLCMDistBT 165 0 165

Table 1: Number of instances solved in time limit.

Solver Predefined(165) Uniform(90) Total(255)

CCAnr 747± 15 1644± 11 1063± 7
CCAnr with NLocalSAT 0.30± 0.00 1736± 16 613± 5

Sparrow 472± 7 1531± 24 846± 3
Sparrow with NLocalSAT 0.26± 0.00 1379± 9 487± 3

CPSparrow 457± 11 1454± 38 809± 13
CPSparrow with NLocalSAT 0.35± 0.06 1385± 9 489± 3

YalSAT 1095± 3 962± 33 1048± 9
YalSAT with NLocalSAT 0.26± 0.00 1226± 23 433± 8

probSAT 1086± 5 928± 3 1030± 3
probSAT with NLocalSAT 0.26± 0.00 1155± 26 408± 9

Sparrow2Riss 107.7 1560 620
gluHack 15.0 2000 715
MapleLCMDistBT 8.8 2000 711

Table 2: Average running time with timeout penalty (PAR-2).

NLocalSAT can improve particularly on those instances, on
which CDCL solvers perform well.

4.2 Time of Solving Instances

Figure 3 shows the relationship between the number of in-
stances solved and time consumption comparing solvers with
NLocalSAT and without NLocalSAT . In this figure, we can
see that some simple instances which are solved within 1
second with the original solver need more solving time with
NLocalSAT than the original solver. This is because the neu-
ral network computation takes a certain amount of time be-
fore the solver starts and this time is especially noticeable for
simple instances. But on hard instances, our modifications
can improve the solver significantly.

Table 2 compares the average running time with the time-
out penalty (PAR-2) between different solvers. The PAR-2
running time of instances that are not solved by the solver in
the time limit is twice of the time limit (i.e., 2000 seconds
in our experiments). The PAR-2 score was used in previous
SAT Competitions. Values in this table show that solvers with
NLocalSAT are slightly slower on easy instances but much
faster on hard instances, particularly, on Predefined. Solvers
with NLocalSAT can find a solution faster than those without
NLocalSAT on most instances, i.e., solvers with NLocalSAT
are more effective than the original ones.
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(a) CCAnr (b) Sparrow

(c) CPSparrow (d) YalSAT

(e) probSAT (f)

Figure 3: Cactus plots comparing NLocalSAT initialization with ran-
dom initialization over CCAnr, Sparrow, and CPSparrow.

4.3 Discussion
To find out why our method can boost SLS solvers, we an-
alyzed the experimental result on CCAnr. The geometric
mean of ratios of steps that the solver took to find a solution
with NLocalSAT to the steps without NLocalSAT is 0.005.
Namely, the solver with NLocalSAT takes much fewer steps
to find a solution overall. Among all solved instances, the av-
erage proportion of correctly predicted variables (i.e., those
where the predicted value by the neural network and the final
value by the solver are the same) is 0.88, and, with a chi-
square analysis, this rate and the speedup of our approach
shows a correlation with the p-value 3 × 10−5. This exper-
imentally verified our intuition that the closer the initial val-
ues are to the solution of the instance, the easier the solver
can find a solution. Our neural network can give better initial
values, which can boost SLS solvers.

5 Related Work
Recently, several studies have investigated how to make use
of neural networks in solving NP-complete constraint prob-
lems. There are two categories of methods to solve NP-
complete problems using neural networks. The first cat-

egory of methods is end-to-end approaches using end-to-
end neural networks to solve SAT instances, i.e., given the
instance as an input, the neural network outputs the solu-
tion directly. In these methods, the neural network can
learn to solve the instance itself [Amizadeh et al., 2019;
Galassi et al., 2018; Selsam et al., 2019; Xu et al., 2018;
Prates et al., 2019]. However, due to the accuracy and struc-
tural limitations of neural networks, the end-to-end meth-
ods can only solve small instances. The other category of
methods is heuristic methods that treat neural networks as
heuristics [Balunovic et al., 2018; Li et al., 2018; Selsam
and Bjørner, 2019]. Among these methods, traditional solvers
work with neural networks together. Neural networks gener-
ate some predictions, and the solvers use these predictions as
heuristics to solve the instance. Constraints in the instances
can be maintained in the solver, so these methods can solve
large-scale instances. Our proposed method (i.e., NLocal-
SAT) belongs to the second category, heuristic methods, so
NLocalSAT can be used for larger instances than those end-
to-end methods. Balunovic et al. [Balunovic et al., 2018] pro-
posed a method to learn a strategy for Z3, which greatly im-
proves the efficiency of Z3. Li et al. [Li et al., 2018] proposed
a model on solving maximal independent set problems with a
tree search algorithm. NeuroCore [Selsam and Bjørner, 2019]
is a method to improve CDCL solvers with predictions of
unsat-cores. None of these methods is used to boost stochas-
tic local search solvers with solution predictions and none of
these is an off-line method to boost SAT solvers. The training
data used in NLocalSAT are solutions of instances or solution
space distribution of instances, which is also different from
previous works, where NeuroSAT uses the satisfiability of in-
stances and NeuroCore uses unsat-core predictions.

6 Conclusion and Future Work
This paper explores a novel perspective of combining SLS
with a solution prediction model. We propose NLocalSAT to
boost SLS solvers. Experimental results show that NLocal-
SAT significantly increases the number of instances solved
and decreases the solving time for hard instances. In partic-
ular, Sparrow and CPSparrow with our proposed NLocalSAT
perform better than state-of-the-art CDCL, SLS, and hybrid
solvers on the random track of SAT Competition 2018.

NLocalSAT can boost SLS SAT solvers effectively. With
this learning-based method, we may build a domain-specific
SAT solver without expertise in the domain by training NLo-
calSAT with SAT instances from the domain. It is also in-
teresting to further explore building domain-specific solvers
with NLocalSAT .
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