Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Bipartite Encoding: A New Binary Encoding for Solving Non-Binary CSPs

Ruiwei Wang and Roland H.C. Yap
School of Computing, National University of Singapore
{ruiwei,ryap } @comp.nus.edu.sg

Abstract

Constraint Satisfaction Problems (CSPs) are typ-
ically solved with Generalized Arc Consistency
(GAC). A general CSP can also be encoded into
a binary CSP and solved with Arc Consistency
(AC). The well-known Hidden Variable Encoding
(HVE) is still a state-of-the-art binary encoding
for solving CSPs. We propose a new binary en-
coding, called Bipartite Encoding (BE) which uses
the idea of partitioning constraints. A BE encoded
CSP can achieve a higher level of consistency than
GAC on the original CSP. We give an algorithm for
creating compact bipartite encoding for non-binary
CSPs. We present a AC propagator on the binary
constraints from BE exploiting their special struc-
ture. Experiments on a large set of non-binary CSP
benchmarks with table constraints using the Wdeg,
Activity and Impact heuristics show that BE with
our AC propagator can outperform existing state-
of-the-art GAC algorithms (CT, STRbit) and binary
encodings (HVE with HTAC).

1 Introduction

Many combinatorial problems from Al can be naturally mod-
elled as Constraint Satisfaction Problems (CSPs) with con-
straints. Typically solving a (non-binary) CSP uses General-
ized Arc Consistency (GAC) on the (non-binary) constraints.
Alternatively, a non-binary CSP can be transformed with bi-
nary encoding into a CSP with only binary constraints so that
Arc Consistency (AC) is applicable. While AC is simpler
than GAC and binary encodings are well known, it is only re-
cently that solving with binary encoding is shown to be prac-
tical. The hidden variable encoding with the AC algorithm
HTAC [Wang and Yap, 2019] was shown to be competitive
with state-of-the-art GAC algorithms on non-binary CSPs.
Bit representation is the key to the efficiency of many state-
of-the-art GAC/AC algorithms for table constraints. A re-
cent survey describes improvements in GAC algorithms [Yap
et al., 2020]). Here, we summarize some recent GAC al-
gorithms and ideas. Bit sets are used to represent variable
domains in AC3%*[Lecoutre and Vion, 2008]. GAC algo-
rithms STRbit [Wang ef al., 2016] and CT [Demeulenaere et
al., 2016] optimize the simple tabular reduction algorithms

1184

[Lecoutre, 2011; Lecoutre et al., 2012] representing con-
straint relations as bit sets. Recently, bit representation were
extended to handle compact representations and high-order
consistencies. However, experiments show that the CT algo-
rithm is still overall faster than these newer algorithms (see
the experimental results of PW-CT [Schneider and Choueiry,
2018], compact-MDD [Verhaeghe er al., 2018] and smart
MDD [Verhaeghe et al., 2019]).

The hidden variable encoding (HVE) [Rossi et al., 1990],
dual encoding [Dechter and Pearl, 1989] and double encoding
[Stergiou and Walsh, 1999] are well known binary encodings
for reducing non-binary CSPs to binary CSPs. AC on a HVE
instance achieves GAC on the original CSP but is weaker
than AC on the dual/double encoding instance [Bessiere et
al., 2008]. However, the drawback is that dual/double encod-
ing instances may be much larger than HVE instances. HVE,
proposed 30 years ago, is the state-of-the-art binary encod-
ing [Wang and Yap, 2019]. We observe that binary encod-
ing instances have special structure. Specialized AC algo-
rithms, such as HAC, PW-AC [Samaras and Stergiou, 2005]
and HTAC have been proposed to handle binary encoded in-
stances. In particular, HTAC is competitive with CT, suggest-
ing that AC algorithms on binary encoded instances have the
potential to outperform the state-of-the-art GAC algorithms.

In this paper, we propose a new binary encoding, called
bipartite encoding (BE), which encodes constraints as binary
constraints between factor variables which partition the con-
straint scopes. AC on a BE encoded CSP is stronger than
GAC on the original CSP. We give an algorithm to construct
BE instances, followed by a AC propagator AC-BE which
treats a connected component in the binary encoding as a
“special constraint”. We evaluate the bipartite encoding to
solve non-binary CSPs comparing with state-of-the-art GAC
algorithms and the binary encoding HVE (with HTAC) on a
large set of benchmarks. The results show that the BE prop-
agator outperforms CT, STRbit and HTAC across many vari-
able heuristics (Wdeg, Activity, Impact). The usefulness of
higher consistency is also shown to be effective making some
instances backtrack free.

The remainder of the paper is organized as follows. Sec-
tion 2 provides preliminaries. The bipartite encoding, an al-
gorithm to create BE instances and a special propagator for
BE are given in Sections 3, 4 and 5. Experiments are pre-
sented in Section 6 and Section 7 concludes.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

X1 X2 Is5 Te
Tr1 T2 T3 T4 0O 0 0 1 fU1 f’U3
0 0 0 1 0 0 1 1 fur foe 0 1 fo2 xg foa xf: fus xé fus mg
001 0 01 0 1 0 1 0 3| [fur 2] [fu = 0 0 0 0 T 0 T 1
01 0 0 0110 0 2 11 0 0 0 0 1 0 11 2 1 2 0
1 00 1 1 100 1 0 1 2 1 0 11 2 1 2 0 301 301
(@) c1 (b) co (©) ci (d) c3 (e) cit ®) ci? (g) c3* (h) 5* @) c5° () c5°

Figure 1: Bipartite encoding example

2 Preliminaries

A CSP P is a pair (X,C) where X = {x1,2z2,...,2,}isa
set of n variables, D(x;) is the domain of variable z;, and
C = {c1,ca,...,cc} is a set of e constraints. In this paper,
we assume that D(z) is finite, also known as finite domain.
A literal of a variable z is a variable value (z,a). A tuple
over a set of variables {z;,,x;,,...,x;_ } is a set of literals
{(xsy,01), (%iy,a2), ..., (i, a)}. Each constraint ¢; con-
sists of a constraint scope scp(c;) € X and a relation rel(c;)
which is defined by a set of tuples over scp(c;). The arity of
constraint c is the number of variables in the constraint scope,
i.e. |sep(c)|. P is a r-arity CSP if the largest constraint ar-
ity is r. A 2-arity CSP is also called a binary CSP. Without
loss of generality, all 1-arity constraints are removed by mod-
ifying variable domains. A non-binary CSP is a r-arity CSP
where r > 2. We assume the CSP is normalized, i.e. for each
constraint ¢; € C such that scp(c;) C sep(c;), ¢; is removed
by joining ¢; with c;.

The projection of a tuple 7 (or a set T of tuples) on a set .S
of variables, denoted by 7[S] (or T'[S]), is {(x,a) € 7|z € S}
(or {7[S]|7 € T}). A tuple 7 is valid iff for all liter-
als (z,a) € 7, the value a is in D(x) and z only appears
once in 7. A tuple 7 over variables X C X is consistent
iff 7[scp(c)] € rel(c) for all constraints ¢ € C such that
sep(e) € X. A solution of P is a consistent and valid tu-
ple over X. P is satisfiable iff there is a solution over X.
A support of a value a € D(x) on a constraint ¢ is a tuple
7 € rel(c) such that (x,a) = 7[z]. A support of a tuple
71 € rel(c;) on a constraint ¢; is a tuple 7, € rel(c;) such
that m»[scp(c;)] = T1[scp(c;)]. For binary CSPs, b € D(y)
is a support of @ € D(x) on y if the tuple {(z, a), (y,b)} is a
support of a on the constraints between x and y.

A variable x € scp(c;) is Generalized Arc Consistent
(GAC) on a constraint ¢; € C if a has a valid support on
¢; for all @ € D(x). A constraint ¢; is GAC if all vari-
ables in scp(c;) are GAC on ¢;. A CSP (X,C) is GAC
if all constraints in C are GAC. For binary CSPs, GAC is
also called Arc Consistent (AC). GAC is a first-order consis-
tency, filtering variable domains. We also introduce a higher-
order consistency to further filter inconsistent tuples. A tuple
T € rel(c;) is Pairwise Consistent (PWC) if 7 has a valid sup-
port on ¢; for all ¢; € C [Janssen ez al., 1989]. A constraint
¢; is PWC if all tuples 7 € rel(c;) are PWC. A CSP (X, C) is
PWC if all constraints in C are PWC. A CSP P is Full Pair-
wise Consistent (FPWC) if P is PWC and GAC [Lecoutre et
al., 2013; Likitvivatanavong et al., 2014].

3 Bipartite Encoding

We start with an observation that in a binary CSP, every bi-
nary constraint is between two variables which partition the
constraint scope. So we can think of a binary CSP as being
encoded with such a partitioning. We generalize this idea of
encoding to a new binary encoding of non-binary CSPs called
bipartite encoding which can also give stronger consistency
than GAC.

Definition 1. Given a CSP P = (X, C), a factor variable fv
over a non-empty set of variables S C X is a new variable
such that D(fv) is a set of tuples over S, and T[S]| € D(fv)
for all solutions T of P. We use scp(fv) = S to denote the
scope of the variables covered by fv. A factor variable fuv is
original if |sep(fv)| = 1 and compound if |scp(fv)| > 1.

The minimum domain of a factor variable fv consists of
all tuples 7 over scp(fv) which can be extended to solutions
of the CSP. As such, it is NP-hard to find the minimum do-
main of fv. We propose to use some local consistent tuples
to construct D(fv).

Definition 2. A bipartite encoding BE(P) of a CSP P =
(X,C)isa CSP (XT UX*,CTUC*), where

e Variables are either compound or original factor variables
denoted by X* and X7 respectively and for all variables

foi. fuj € X*UXT, sep(fui) # sep(fv)) if i # J.

Partition constraints C*: for each ¢; € C, c; € C* is a bi-
nary constraint such that scp(c})={ fvj, fui}, {sep(fv;),
sep(for)} is either a disjoint or non-disjoint partition
of sep(c;), and rel(c))={{m, m}|m1 € D(fv;), 2 €
D(fvk), (11 UTa) € rel(c;)}.

Mapping constraints C*: for each fv; € X* and x €
sep(fuv;), ¢& € C*V is a binary constraint such that
sep(cy) = {fvi, fv;}, sep(fvy) = {x}, and rel(c]) =
{1, m2}m € D(fv)), 71 € D(fv;), 72 = Talsep(fuy)]}-

For all factor variables fuv;, the information of the tuples
in the domain D(fv;) is recorded in the mapping constraints
{c?|z € sep(fuv;)}, which ensures that the tuple 71 U ... U Ty,
is an assignment of P if the tuple {(fv1,71)s..(fVm,Tm)}
is consistent on BE(P). We remark that the mapping con-
straints used are similar to the constraints in HVE encod-
ing and there may be other mapping constraints ensuring
the same property. Additionally, for each partition con-
straint ¢ € C*, all tuples {(fv;, 1), (fok,)} in rel(c))
correspond to the tuples 73 U 72 in rel(c;), which ensures
that the tuple 74 U ... U 75, is a solution of P if the tuple
(fv1,71)se-(fUm, Tm) } is a solution of BE(P).

1185

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Algorithm 1: BE(X,C)

Algorithm 2: partition(C)

1 scpp < partition(C);
S (U, ec sepplei]) U (Upert{z}}):
2 V0
for S; € Sdo
Generate a factor variable fv; & domain on S;;
3 [Ve Vu{fu,};
4 C* +0;
for ¢; € C do
{55, Sk} sepplei]s
Construct a constraint c¢; between fv; and fvy;
| C*+C U {ci]s
5 Construct constraints C* with factor variables in V;
return (V,C* UCT);

Example 1. Let CSP P=(X, C) where C={cy, ca}, X={x1,

-+, xg} and domains are {0,1}. Constraint scopes are:
sep(er)={x1, -+, x4} and scp(co)={z1, x2, T5, X6} With
relations given in Figure la, 1. A bipartite encoding ({ fv1,

fva, fus, @l - mg} {c}, ¢, ci*, -+, c5°}) of P is
shown in Figures Ic,---,1j. Constraints ¢y and cy are rep-
resented as ¢ and ¢4, where scp(ct) = {fvi, fua} and

sep(es) = {fv1, fus}. fvi, fue and fus are compound
factor variables on S1 = {x1,x2}, So = {x3, x4} and
Sy = {as,26}. 2! is an original factor variable over {x;}
for 1 < i < 6. For each factor variable on {x,y}, we
use values 0, 1, 2 and 3 to denote tuples {(z,0), (y,0)},
{(2,0), (g, 1)}, {(2,1),(y,0)} and {(x,1), (y,1)}, respec-
tively. For each original factor variable xf , value a denotes
{(zi,a)}. Each solution of BE(P) corresponds to a solu-

tion of P, e.g. {(fv1,0), (fva,1), (fvs,3), («,0), («1,0),
(xg,()), (asf:,l), (xg, 1), (xé, 1)} corresponds to {(z1,0),
(.%'2, O)’ (:L‘3, 0), (1‘4, 1)’ (1‘5, 1)’ (ZCG, 1)}

For a bipartite encoding BE(P) = (X* U Xt,C*UC™),
every original factor variable in Xt (or constraint in C*) cor-
responds to a variable (or constraint) in P. An image P’
of BE(P) is a CSP (X’,C’) such that X’ = {z/|z € X}
and C' = {cl|c; € C}, where D(a')={a|(z,a) € D(z¥)},
sep(ch) = {2’ |z € sep(e;)} and rel(c;) = {{(¢/, a)|(z, a) €
Ut} [{(fvj,), (fuk,72)} € rel(c})}. The image P’ of
BE(P) has the same variables and constraints as P, except
the domains and relations of P’ may be reduced. P’ is useful
for comparing the consistencies on BFE(P) with that on P.

Proposition 1. The image P’ of BE(P) is GAC if BE(P) =
(X*UX+,CUCH) is AC.

Proof. Assume scp(c;) = {fvj, fur}, |sep(fv;)| > 1,
x € scp(fvj), and a € D(2’). BE(P) is AC, hence,
(2, {(z,a)}) has a valid support on 7, € D(fv;) and 71 has
a valid support 72 € D(fvg). So {(v/,b)|(y',b) € 1 U} is
a valid support of (z’,a) on /. O

AC on BE(P) can be stronger than GAC on P (see Propo-

sition 2). For example, (], 1) is not AC on the BE instance
given in Figure 1, but the original CSP is GAC.

1186

cur < C;
while cur # () do
1 E + maxEdge(cur);
if E = () then
L break;
2 for {c;,c;} € Edo
Sk sep(c;) Nsep(cj)s
L sepplei] < {Sk, sep(ei) \ Sk }s
sepplc;] < { Sk, sep(e;) \ Sk ki

4 for ¢; € cur do
Select a variable x from scp(c;);

5 | sepplei] = {sep(ei) \ {x}, {z}};

return scpp;

Algorithm 3: maxEdge(cur)

Let FE be all maximum edges in cur;
S {sep(ei) Nsep(ey)|{ci ¢} € E};

for S, € Sdo
1 size[Sy] < domain size of a factor variable on Si;
2 | NI[Sk] + U{e € Ele C cur, scp(e) = Sy };
E, +0;
while S # 0 do
3 Let M be the maximum cardinality subsets in .S}
4 Select Sj, from M such that ‘E\z,ﬁ[;‘z ﬁ] is minimum;
S« S\ {Sk};
5 A + {c € (N[Sk] N cur)| cis size_splittable by
Sk}
Es < {e € E|scp(e) = Sk, e C A}
6 E. + E,UEjy;
cur < cur '\ (UeeEA e);

return F,;

4 A Bipartite Encoding Algorithm

We present Algorithm 1 for constructing a bipartite encod-
ing instance from a CSP (X, C). It is based on partitions of
constraint scopes and has three parts given in Algorithm 1:
(i) For each constraint ¢; € C, the partition function split
scps(c;) into 2 subsets scpplc;] (Line 1—see Sec. 4.1).

(ii) Generating factor variables (Lines 2-3). We use the pro-
jection ({rel(c)[scp(fv)]le € C,sep(fv) C sep(e)}
as the domain of a factor variable fv, and remove in-
valid tuples from constraint relations after generating
each factor variable, e.g. for the CSP in Figure 1, we
can remove the tuple {(z1,1), (z2,1), (x5,0), (z¢,0)}
from rel(cy) after generating the factor variable fu;
on {z1,z2}. As {(x1,1),(z2,1)} is removed, then
{(z5,0), (x6,0)} is not included in the domain of the
factor variable fuvz on {z5, x¢}.

(iii) Constructing bipartite encoding instance based on the
generated factor variables and partitions of constraint
scopes (Lines 4-5)—this is a straightforward construc-
tion using Definition 2.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

The number of possible partitions of constraint scopes is ex-
ponential in the number of constraints and constraint arity.
Thus, many BE instances can be constructed for a CSP by
applying different partitions. We introduce a heuristic used to
generate some disjoint partitions in the following subsection.

4.1 Maximum Edge Partition

We now give a method to partition the non-binary constraints
taking into account obtaining higher level consistency where
feasible. We first introduce some notations. A dual graph
[Dechter and Pearl, 1989] of a CSP P = (X,() is a undi-
rected graph such that constraints C are nodes and edges are
{{ei e} C Clsep(ei) Nosep(cj) # 0}, We use scp(e) =
sep(e;) N sep(c;) to denote the scope of variables covered by
aedge e = {c¢;,¢;}. The size of an edge e is the cardinality
of scp(e). The edge e = {c;,¢;} is a maximum edge of ¢;
in C' C C if the size of e is greater than 1 and largest on all
edges in C including c;, and e is a maximum edge in C' if
e is a maximum edge of ¢; or c¢; in C'. A bipartite encoding
BE(P) covers an edge e = {c¢;,c;} if there exists a factor
variable fv in scp(c;) N scp(c;) such that sep(fv) = scp(e),
e.g. the bipartite encoding given in Figure 1 covers the edge
{c1,¢a}, since sep(er) N sep(cs) includes a factor variable
fv1 on {x1,x2}. Our strategy is that for overall propagation
efficiency, the size of the encoding should be compact, in par-
ticular, we will focus on bit representations used in GAC/AC
propagators. We propose a bipartite encoding heuristic where
the encoding is compact and can cover some maximum edges
for higher level consistency (see Proposition 2).

Proposition 2. The image P’ of BE(P) is FPWC if BE(P)
is AC and covers all edges whose sizes are greater than 1.

Proof. For all ¢j,c; € C" and 7 € rel(c]) such that S =
sep(ce;) N sep(cy) includes at least 2 variables, 7 has a valid
support on ¢}, since 7[S] is in D(fvy) and has valid supports
on cj, where fuy, € sep(c;) N scp(c;) is a factor variable on
S. Recall, P’ is AC (Proposition 1), so P’ is FPWC. O

Algorithm 2 generates partitions of constraint scopes. The
data structure scpp|c;] records the partition of scp(c;). Al-
gorithms 2 and 3 use a global set cur to record a set of con-
straints which are not partitioned. At Line 1, Algorithm 3 is
called to generate a subset £/ of maximum edges in cur such
that: (i) for each ¢; € cur, there is at most one partition of
sep(c;) based on E, i.e. |{scp(e)le € E,c; € e}| < 1; and
(i) for each edge e = {c;,c;} in E, the constraints ¢; and
c; are size_splittable by scp(e). If E is not empty, we use
the maximum edges in F to partition some constraint scopes
(Lines 2-3), otherwise we use a basic partitioning—for each
constraint ¢; in cur, we select the last variable x in scp(c;)
and partition scp(c;) (between Lines 4 and 5).

A constraint ¢y, is size_splittable by a variable subset S; C
sep(eg) or S5 = sep(c) \ S; if the size of the bit repre-
sentation (see data structures used in HTAC [Wang and Yap,
2019]) of ¢, is greater than or equal to that of the correspond-
ing constraints in the BE encoding, namely, the sum of the
sizes of the binary constraints ¢} and {¢f € C*|scp(fuv;) €

2 a1 Ju
l$1$2$5$6}—{$1$2$31‘4] l.%‘1$2$3

[T129T3T5 |——T109T3%¢]
C3 C4

Jve

(b) Partitions

(a) Dual graph

Figure 2: Maximum edge partition

{S:,S;}, 2 € sep(fu)}.! We propose to evaluate the size
of the original and bipartite instance as follows. We use
Irel(ce)| (X esep(en) IP(@)]) to evaluate the size of the bit
representation of cj. For each binary constraint in the BE en-
coding, we use |D(fuy,)| x |D(fvi,)| to estimate the size of
the constraint, where { fv;,, fvy, } is the constraint scope.
Algorithm 3 gives our maximum edges generation algo-
rithm. The data structure size[Sy] records the domain size of
the factor variable fvy on Sy, (at Line 1). At Line 2, N[Sy] is
a set of constraints where the constraint scopes may be par-
titioned by Si. At Lines 3 and 4, we first select a variable
subset Sy, from S with maximum cardinality, and further se-

lect those with minimum %5[:23“] Lines 5-6 evaluate which

constraints in N[Sy] are size_splittable by Sj, recording the
corresponding maximum edges in E,. We remark that we
also delete some invalid tuples when calculating the domain
size of a factor variable.

Example 2. Let P be a CSP with constraints {c1,- -+ ,ca},
variables {x1,--- ,x¢} and domains {0,1}. ¢y, ca, c3 and
cq are the linear equations: r1+xo+x3+x4=1, x1+22+T5+
T6=2, T1+To+x3+x5=2and r1+x2+x3+x5=1. Figure 2ais
the dual graph of P. Figure 2b gives the partitions generated
by our algorithm. There are 5 maximum edges, the scopes
are S1={x1, X9, x3}, So={x1, T2, 5} and S3={x1, 2, x6}
with N[Sl]={61, Cs3, 04}, N[52]={02, Cg} and N[S3}={Cg,
cq}. We generate the factor variables on Sy, Sy and Ss, and
then record the corresponding domain sizes. At Line 4 in Al-
gorithm 3, S1 is selected. c1, c3 and cy are size_splittable
by S, thus, {c1,cs}, {c1,ca} and {c3, c4} are the maximum
edges selected. Then {S1,{z4}}, {S1, {5} } and {S1,{z6}}
are the partitions of scp(c1), sep(cs) and scp(ca). After par-
titioning c1, c3 and cy, there are no more maximum edges,
so we select x¢ from scp(ca), with partition of scp(ce) being
{{z1, 22,25}, {x6}}. Thenwe construct a BE instance (X*U
XT, C* UCT) such that X*={fv1, fva}, X*:{x{, xg, zg,
ol ol al}, Ccr={c, ¢ ¢ ¢, and CT={c%Y, 32, ¢, ¢,
52, ¢5° }, where scp(fv1)=51, sep(fva)=95s, scp(xf):{xl}
for 1< i < 6, sep(ch)={fvr, @}, sep(es)={fua, af},
sep(cl)={fvy, xg} and scp(cy)={fv1, xg}

"We remark that experiments show HTAC on the HVE encoding
is competitive with CT on the original CSP, and as the experiments
show, we want to improve on both. This means that attention is also
needed on the size of the bit representations of the constraints.

1187

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

SN
BN

i ot Cy? o’
(a) Component 1 (b) Component 2

(c) Component 1 (primal graph)

f f f f
Ty T Ty T
;L'l LL‘Q LL'{ E3

CQK\ /62’ (&)

Jvs

(d) Component 2 (primal graph)

Figure 3: Graphs of components

S AC on Bipartite Encoding Instances

HTAC is a state-of-the-art specialized AC algorithm for non-
binary CSPs encoded by HVE. It exploits the structure of the
binary CSP arising from the encoding— the set of binary con-
straints from encoding a non-binary constraint is regarded as
a special subset of the constraints in HVE instance. Corre-
spondingly, a specialized propagator AC-H is used for each
subset with a star structure in the constraint graph. HTAC
only needs to search on the original variables.

A BE instance is a binary CSP so any AC algorithm can
be applied. However, in the same way that HTAC uses a
specialized propagator, our AC-BE algorithm is a special-
ized propagator exploiting the structure of a BE instance
(XT U X*, CT UC*) extending the framework of HTAC. We
partition binary constraints in the BE instance into a set of
connected components in an undirected graph (Cy, E), and
employ special propagators for the components, where C; =
CtUC* and E = {{c;, ¢;} C Cy|sep(ci)Nsep(c;)NX* # 0},
and every component is treated as a set of constraints. Mean-
while, we also only search on the original factor variables in
X+, Due to lack of space, we refer readers to [Wang and Yap,
2019] for details on algorithms and data structures in HTAC.

Example 3. There are 2 connected components for the BE
instance given in Example 2. Figure 3a is the first compo-
nent {ci*, ci?, ¢*, ¢, ¢, ci}. The constraint scopes of all
constraints in the first component include the factor variable
fv1. Figure 3b shows the second component {c5*, c5?, ¢5°,
ci}. The compound factor variable fuvs is included in the
constraint scopes of all constraints in the second component.
Note that the constraints in different components only share
some original factor variables.

Algorithm 4: AC-BE(C)
V +— U{sep(c)lc € C};

1 T+ 0,U <+ C;

while 3z € V s.t. [{c € U|z € scp(c)}| = 1 do

T+ TU{ceUlzescwpl)}

L U<+ U\{ceUlzxescp(c)};

3 if —propagationUp(T) then return false ;

4 if ~AC(U) then return false ;

5 if —propagationDown(T) then return false ;
forz € VN XT s.t. D(z) is changed do

6 L Add z to the propagation queue;

return true;

1188

Every connected component C in the graph (Cy, F) is re-
garded as a single “special constraint”. Algorithm 4 presents
a specialized propagation function for this component which
enforces AC on all binary constraints in the component as fol-
lows. We first partition the binary constraints in C' into two
subsets T" and U (between Lines 1 and 2) such that: (i) the
primal graph of T is acyclic and (ii) every node in the primal
graph of U is included in at least one cycle and (iii) every
connected component in the primal graph of 7" has at most
one node which is also included in the primal graph of U,
where the primal graph of a set of binary constraints C’ is a
undirected graph (..o scp(c), {scp(c)lc € C'}). I U is
empty, then the primal graph of C' is acyclic, otherwise we
have a special “star structure” such that the primal graph of
U is the “root” and the trees included in the primal graph of
T are the “leaves”.

While an AC propagator can be used on the entire compo-
nent C, we use a more efficient approach recognizing the tree
structure in 7". For the binary constraints in 7', we call the
revise functions to update the variable domains from leaves
to the roots (the propagationUp function at Line 3), and then
from roots to leaves (in the propagationDown function at Line
5), where for each connected component in the primal graph
of T', a node is set as the root of the component, such that
the nodes included in both the primal graphs of U and 7" are
root nodes. For the binary constraints in U, we use a queue
to record the variables which may cause reductions of other
variable domains (same as the queue used in AC3%), and
then iteratively propagate the variables in the queue (in the
AC function at Line 4 which is a normal AC propagator). The
propagationUp, propagationDown and AC functions employ
some revise functions to update variable domains, and return
false if there is a wipe-out of a domain, otherwise return true.
At Line 6, if the domain of a variable z € X7 is changed,
then x is added to a propagation queue shared by all con-
nected components of the graph (C, E), thus propagating to
other constraints in C; .

Comparing to the normal AC propagators liking AC3%%,
the specialized AC propagator for BE instances has a different
propagation ordering which iteratively uses Algorithm 4 to
enforce AC on a connected component of the graph (Cy, E)
until all connected components of (Cy, E) are AC, where a
connected component is AC if all binary constraints in the
connected component are AC.

Example 4. Figure 3c and 3d shows the primal graph of the
component given in Figure 3a and 3b respectively. Every
edge in the primal graphs corresponds to a binary constraint

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

in the BE instance. The primal graph of each component
is acyclic and only includes one compound factor variable
node. We set the compound factor variables as roots in the
primal graphs. Correspondingly the propagationUp function
updates the domains of compound factor variables (roots)
based on the domains of original factor variables (leaves)
and the propagationDown function updates the domains of
leaves based on the domain of roots.

In our implementation, as common with the implementa-
tion of AC propagators, some revise functions are used. Our
revise functions are based on those from HTAC which use the
following functions to update a variable domain D(z) based
on another variable domain D(y): (i) seekSupport scans all
values in the domain D(z), removing values which do not
have any valid support on y; (ii) reset updates D(x) by us-
ing the union of all supports on z of the values in D(y); and
(iii) delete removes all supports on x of the values which are
removed from D(y). For a binary constraint with scp(c) =
{z, y}, our implementation uses the revise operations as fol-
lows. The seekSupport operation is used when z € X+ or
|D(x)] < |D(y)|. Otherwise, reset or delete operations are
used to update the domain D(z). We use the delete oper-
ation as an optimization when the values in D(z) have at
most 1 support in D(y). We adapt data structures employ-
ing sparse sets [Briggs and Torczon, 1993], sparse bit sets
[Demeulenaere et al., 2016; Wang and Yap, 2019] and “or-
dered link” data structures [Lecoutre and Szymanek, 2006;
Wang and Yap, 2019].

6 Experiments

Experiments presented in recent GAC algorithms (compact-
MDD, smart MDD and PW-CT (enforces FPWC)) show CT
to be state-of-the-art. HTAC is also shown to be compa-
rable to CT, and better than STRbit. We compare our al-
gorithm BE (AC on BE instances) with CT, STRbit and
HTAC (AC on HVE instances). The experiments were run
on a 3.20GHz Intel i7-8700 machine. All algorithms are im-
plemented in the Abscon solver (https://www.cril.univ-artois.fr/
~lecoutre/#/softwares). We tested with the 3 well known vari-
able search heuristics Wdeg/Dom (Wdeg) [Boussemart et al.,
2004], Activity [Michel and Van Hentenryck, 2012] and Im-
pact [Refalo, 2004] with the binary branching MAC and ge-
ometric restart strategy.” The value heuristic used is lexi-
cal value order. We measure CPU timings as: (i) solving
time: time for solving the CSP; (ii) total time: initialization
time (includes I/O, binary encoding, data structures) + solv-
ing time. Total CPU time is limited to 10 minutes per in-
stance and memory to 8GB. We tested all 2559 non-binary
instances,> which only employ table constraints, from the
XCSP3 website (http://xcsp.org).

2The initial cutoff = 10 and p = 1.1. For each restart, cutof f
is the allowed number of failed assignments and cutof f increases
by (cutof f x p) after restart.

343 CSP series: MaxCSP-{cnf-3-40, cnf-3-80, pedigree, spot5},
Kakuro-{easy, medium, hard}, Dubois, PigeonsPlus, Renault, Aim-
{50, 100, 200}, Jnh, Cril, Tsp-{20, 25, 4-20}, Various, Nonogram,
Bdd-{15, 18}-21, mdd-7-25-{5, 5-p7, 5-p9}, Reg2ext, Rand-3-24-
{24, 24f}, Rand-3-28-{28, 28f}, Rand-5-12-{12, 12t}, Rand-5-{2,

1189

[STRbit [CT [HTAC | BE

AvgR | 3.50 2.68 1.99 -

MaxR | 91.46 | 80.98 19.2 -

Wdeg #F 3 37 89 553
(682) #TO 45 36 38 3
#BF 0 0 0 148

AvgR | 3.58 2.76 2.80 -

MaxR | 90.54 | 80.01 | 77.83 -

Activity #F 4 87 41 539
(655) #TO 51 47 48 3
AvgR | 4.73 3.52 3.64 -

MaxR | 149.78 | 129.44 | 138.61 -

Impact #F 0 89 33 569
(691) #TO 59 44 43 9
#BF 0 0 0 175

Initial Time (s) [139 [137 [138 [1.65

Table 1: Relative comparison with Total Times

We first evaluate the relative performance of the GAC/AC
algorithmic on each variable heuristic. To avoid timeout and
small timings, for each variable heuristic, the trivial instances
where all algorithms timeout or the solving time of the slow-
est algorithm is less than 2 seconds are ignored. Thus, differ-
ent search heuristics have a different number of non-trivial in-
stances. Table 1 gives a relative comparison between BE and
other algorithms per search heuristic using fotal time: 682
instances for Wdeg; 655 for Activity; and 691 for Impact.
AvgR is the average ratio of the total time of an algorithm
to BE, and MaxR is the maximum total time ratio. The av-
erage speedup of BE is between 1.99 to 4.7X and maximum
speedup between 19 to 149X. The Initial Time row gives the
average initialization time on all 2559 instances, and BE is
higher due to the time needed for encoding. #F (fastest) is the
number of instances on which an algorithm has the smallest
total time. The number of instances on which an algorithm is
backtrack free is #BF and timeout is #TO. Overall BE solves
more instances than CT, HTAC and STRbit. We highlight that
BE is backtrack free on many instances showing that a higher
consistency level is effective since GAC has #BF=0 on these
instances.

Figure 4a shows the runtime distribution of the fotal time
for all 2559 instances. It shows BE solves more instances than
CT/HTAC with Wdeg and better than Impact and Activity,
e.g. BE solves 116 more instances than CT with Wdeg for a
time limit of 30 seconds/instance. Figure 4b, 4c and 4d show
the differences more clearly with performance profiles [Dolan
and Moré, 2002] comparing the algorithms for each search
heuristic on the corresponding non-trivial instances. The y-
axis is the percentage of instances and x-axis is the ratio of
the CPU time of an algorithm to the virtual best algorithm.
BE dominates CT, HTAC and STRbit for all heuristics tested.

Figure 5 gives scatter plots comparing solving times. The
solving time of BE is less than that of CT and HTAC on most
instances, except instances where BE has the same or more

4, 8}X, Rand-10-20-10, Rand-10-20-60, Rand-15-23-3, Rand-5-10-
10, Rand-7-40-8t, Rand-8-20-5, Rand-3-20-{20, 20f}.

https://www.cril.univ-artois.fr/~lecoutre/#/softwares
https://www.cril.univ-artois.fr/~lecoutre/#/softwares
http://xcsp.org

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

600 F : : : — 100 — w T 100 ‘ T 100 ——— —
BE+Wdeg —— ? g 90/_'—;—_-;-— === 907// T 90]
BE-+Activi R e LS
500 H BEiIrfwtggZ 80 g . 80 - A 1 80 Z//_/:-'j, ’ d
@ CT+Wdeg —e— 70 b 'l i 70 | L 4 | . |
§4OO [CTehctivty —o— S 6ol II / 1 GEJ 6o} 18 Zg 2
mpac ' / c <,]
§300 HTAC+Wdeg —+— ‘E 50 ‘ 1 % 50 |- ;'I’ 1 & sof ..,, |
\‘D/ 3 40 - ! /l 13 40 -'l’ i % 40 - ./'l 7
g200 < 30/ ge——1 ~ 30/ BE—1 ° 30[/s BE — ||
100 20/ HTAC — -+ | 20 i" HTAC — -+ 1 20 L¢ HTAC — - -
10}, a4 10h SO H 1wf cr— -\
0 m_—) 0 ‘ ‘ STRbut - = 0 ‘ ‘ ‘ SI'Rblt - - 0 \ s‘rRmt - -
2000 2100 2200 2300 2400 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 128
#Instance Time Ratio Time Ratio Time Ratio
(a) all instances (b) Wdeg (c) Activity (d) Impact
Figure 4: Overall total time comparison
29 S T T T VA 29 29 A
28 L a J 28 28 %
7 AT 1 2 27 ;
26% ><X 4 26 26 +%
'625 i y X K] g25 5 25]
L 1 e 24]
238 i 23 23¢ 1
22 . 22 BE<HTAC x H 22 H
1 BE<CT 1 BE=HTAC & || 1K |
2° 21 22 23 24 25 26 27 28 9 20 21 22 23 24 25 26 27 28 29 2 20 21 22 23 24 25 26 27 28 29 z 20 21 22 23 24 25 26 27 28 29
BE BE BE BE
(a) DDeg+0O (b) Wdeg (c) Activity (d) Impact

Figure 5: Solving time comparison: Each dot denotes an instance, the time on the x-axis and y-axis is (1 + solving time) to enable logarithmic
scales, “A=B” (“A>B” and “A<B”) means the number of search nodes of Algorithm A is within 2% (greater than 1.02X and less than 1.02X)
than that of B. The 10X (and 2X) line means BE is 10X (and 2X) faster than CT or HTAC.

search nodes. A few instances are slower—it turns out that
the higher consistency level change the search tree, i.e. filter-
ing impacts the search. To explore this effect, we tested the
DDeg/Dom (DDeg) heuristic [Smith and Grant, 1998]. Fig-
ure 5Sa compares BE with CT using the DDeg+O heuristic (for
DDeg+O the BE algorithm uses the structure of the original
instances to calculate the value of DDeg). With DDeg+O, the
number of search nodes of BE is less than or equal to that of
CT on all instances tested. The solving time of BE is less than
that of CT on all but 10 “BE=CT” instances. For the DDeg
heuristic, the solving time of BE is 10X (2X) less than that
of CT on 23% (71%) instances. Figures 5b, 5c and 5d give
the results of Wdeg, Activity and Impact. For the heuristic
Wdeg, Activity and Impact, the solving time of BE is 10X
(2X) less than that of HTAC and CT on 27%, 31% and 35%
(68%, 69% and 71%) instances, respectively. We see that the
Impact heuristic is more affected by consistency levels. We
remark that the backtrack free instances with BE can be seen
as the points which are on the y-axis.

7 Conclusion

GAC algorithms have been the mainstay of CSP solvers for
non-binary CSPs. Recently, the well known hidden variable
encoding was shown through the HTAC algorithm to be com-
petitive with state-of-the-art GAC algorithms such as CT on

the original non-binary CSP. This is surprising since encod-
ing a non-binary CSP into a binary CSP allowing the use of
AC algorithm has been thought to be inferior to GAC on the
original non-binary CSP. We show how to further improve the
performance of binary encoding with a new binary encoding,
the bipartite encoding based on partitioning constraint scopes.
Ensuring AC on BE encoded instances not only gives GAC on
the original non-binary CSP but may also have higher consis-
tency than GAC. We present an algorithm to construct BE
instances with heuristics to keep the representation of the bi-
nary constraints compact while encouraging the possibility of
higher consistency. We also give a new AC propagator, AC-
BE, which exploits the structure of BE instances working on
connected components of the encoded constraint graph. Ex-
tensive experiments comparing solving CSPs with BE versus
state-of-the-art GAC algorithms (CT, HTAC and STRbit) on
the well known variable search heuristics (Wdeg, Activity,
Impact) demonstrate the superiority of solving the CSP with
BE. Furthermore, the higher consistency which is achieved
also contributes to faster solving and in some cases makes the
CSP backtrack free.

Acknowledgments

We acknowledge the support from grant R-726-000-006-646.

1190

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

References

[Bessiere et al., 2008] Christian Bessiere, Kostas Stergiou,
and Toby Walsh. Domain filtering consistencies for non-
binary constraints. Artificial Intelligence, 172(6-7):800—
822, 2008.

[Boussemart et al., 2004] Frédéric Boussemart, Fred
Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. In
European Conference on Artificial Intelligence, 2004.

[Briggs and Torczon, 1993] Preston Briggs and Linda Torc-
zon. An efficient representation for sparse sets. ACM Let-
ters on Programming Languages and Systems (LOPLAS),
2(1-4):59-69, 1993.

[Dechter and Pearl, 1989] Rina Dechter and Judea Pearl.
Tree clustering for constraint networks. Artificial Intel-
ligence, 38(3):353-366, 1989.

[Demeulenaere et al., 2016] Jordan Demeulenaere, Renaud
Hartert, Christophe Lecoutre, Guillaume Perez, Laurent
Perron, Jean-Charles Régin, and Pierre Schaus. Compact-
Table: efficiently filtering table constraints with reversible
sparse bit-sets. In International Conference on Principles
and Practice of Constraint Programming, 2016.

[Dolan and Moré, 2002] Elizabeth D Dolan and Jorge J
Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical programming, 91(2):201—
213, 2002.

[Janssen et al., 1989] Philippe Janssen, Philippe Jégou,
Bernard Nouguier, and Marie-Catherine Vilarem. A fil-
tering process for general constraint-satisfaction problems:
achieving pairwise-consistency using an associated binary
representation. In IEEE International Workshop on Tools
for Artificial Intelligence, 1989.

[Lecoutre and Szymanek, 2006] Christophe Lecoutre and
Radoslaw Szymanek. Generalized arc consistency for pos-
itive table constraints. In International Conference on
Principles and Practice of Constraint Programming, 2006.

[Lecoutre and Vion, 2008] Christophe Lecoutre and Julien
Vion. Enforcing arc consistency using bitwise operations.
Constraint Programming Letters, 2:21-35, 2008.

[Lecoutre er al., 2012] Christophe Lecoutre, Chavalit Likit-
vivatanavong, and Roland H.C. Yap. A path-optimal GAC
algorithm for table constraints. In European Conference
on Artificial Intelligence, 2012.

[Lecoutre ef al., 2013] Christophe Lecoutre, Anastasia Pa-
parrizou, and Kostas Stergiou. Extending STR to a higher-
order consistency. In AAAI Conference on Artificial Intel-
ligence, 2013.

[Lecoutre, 2011] Christophe Lecoutre. STR2: optimized
simple tabular reduction for table constraints. Constraints,
16(4):341-371, 2011.

[Likitvivatanavong et al., 2014] Chavalit Likitvivatanavong,
Wei Xia, and Roland H.C. Yap. Higher-order consisten-
cies through GAC on factor variables. In International
Conference on Principles and Practice of Constraint Pro-
gramming, 2014.

1191

[Michel and Van Hentenryck, 2012] Laurent Michel and
Pascal Van Hentenryck. Activity-based search for black-
box constraint programming solvers. In International
Conference on Integration of Artificial Intelligence
and Operations Research Techniques in Constraint
Programming, 2012.

[Refalo, 2004] Philippe Refalo. Impact-based search strate-
gies for constraint programming. In International Confer-

ence on Principles and Practice of Constraint Program-
ming, 2004.

[Rossi et al., 1990] Francesca Rossi, Charles J Petrie, and
Vasant Dhar. On the equivalence of constraint satisfaction
problems. In European Conference on Artificial Intelli-
gence, 1990.

[Samaras and Stergiou, 2005] Nikolaos Samaras and Kostas
Stergiou. Binary encodings of non-binary constraint sat-
isfaction problems: Algorithms and experimental results.
Journal of Artificial Intelligence Research, 24:641-684,
2005.

[Schneider and Choueiry, 2018] Anthony Schneider and
Berthe Y Choueiry. PW-CT: extending Compact-Table
to enforce pairwise consistency on table constraints. In
International Conference on Principles and Practice of
Constraint Programming, 2018.

[Smith and Grant, 1998] Barbara M Smith and Stuart A
Grant. Trying harder to fail first. In European Conference
on Artificial Intelligence, 1998.

[Stergiou and Walsh, 1999] Kostas Stergiou and Toby
Walsh. Encodings of non-binary constraint satisfac-
tion problems. In National Conference on Artificial
Intelligence, 1999.

[Verhaeghe er al., 2018] Hélene Verhaeghe, Christophe
Lecoutre, and Pierre Schaus. Compact-MDD: Efficiently
filtering (s)MDD constraints with reversible sparse
bit-sets. In International Joint Conference on Artificial
Intelligence, 2018.

[Verhaeghe er al., 2019] Hélene Verhaeghe, Christophe
Lecoutre, and Pierre Schaus. Extending Compact-
Diagram to basic smart multi-valued variable diagrams.
In International Conference on Integration of Constraint

Programming, Artificial Intelligence, and Operations
Research, 2019.

[Wang and Yap, 2019] Ruiwei Wang and Roland H.C. Yap.
Arc consistency revisited. In International Conference on
Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research, 2019.

[Wang et al., 2016] Ruiwei Wang, Wei Xia, Roland H.C.
Yap, and Zhanshan Li. Optimizing simple tabular reduc-
tion with a bitwise representation. In International Joint
Conference on Artificial Intelligence, 2016.

[Yap et al., 2020] Roland H.C. Yap, Wei Xia, and Ruiwei
Wang. Generalized arc consistency algorithms for table
constraints: A summary of algorithmic ideas. In AAAI
Conference on Artificial Intelligence, 2020.

	Introduction
	Preliminaries
	Bipartite Encoding
	A Bipartite Encoding Algorithm
	Maximum Edge Partition

	AC on Bipartite Encoding Instances
	Experiments
	Conclusion

