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Abstract

Discrete network embedding emerged recently as
a new direction of network representation learn-
ing. Compared with traditional network embedding
models, discrete network embedding aims to com-
press model size and accelerate model inference by
learning a set of short binary codes for network
vertices. However, existing discrete network em-
bedding methods usually assume that the network
structures (e.g., edge weights) are readily available.
In real-world scenarios such as social networks,
sometimes it is impossible to collect explicit net-
work structure information and it usually needs to
be inferred from implicit data such as information
cascades in the networks. To address this issue, we
present an end-to-end discrete network embedding
model for latent networks (DELN) that can learn bi-
nary representations from underlying information
cascades. The essential idea is to infer a latent
Weisfeiler-Lehman proximity matrix that captures
node dependence based on information cascades
and then to factorize the latent Weisfiler-Lehman
matrix under the binary node representation con-
straint. Since the learning problem is a mixed in-
teger optimization problem, an efficient maximal
likelihood estimation based cyclic coordinate de-
scent (MLE-CCD) algorithm is used as the solu-
tion. Experiments on real-world datasets show that
the proposed model outperforms the state-of-the-art
network embedding methods.

1 Introduction

An increasing interest in learning discrete representations
for large networks has been observed recently [Yang er al.,
2018]. Different from classical network embedding mod-
els that learn node representations in continuous Euclidean
spaces, discrete network representation learning aims to learn
compact representations for network nodes in discrete Ham-
ming spaces, so that both the storage and the computation
costs can be reduced.

The basic idea of learning discrete network embedding is
to enforce binary constraints on representation vectors so that
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all the learnt vectors are restricted to the domain of {+1, —1}.
To this end, the recent work in [Shen et al., 2018] pro-
poses a discrete matrix factorization model to learn short bi-
nary codes for network nodes based on binary code learn-
ing [Wang et al., 2017]. According to their experiment re-
sults [Shen et al., 2018], the proposed discrete matrix factor-
ization model can reduce the storage of embeddings as well
as the model size by 64 times, compared with conventional
embedding models. Encouraged by the promising results, a
sequence of efforts has been dedicated to learning discrete
network representations, such as learning binary representa-
tions from attributed networks [Yang er al., 2018] and low-bit
representations from attributed networks [Yang et al., 2019].
Although existing discrete network embedding models
have achieved great success in compressing model size and
accelerating model inference, they all assume that network
structures (e.g., edge weights) are explicitly observable and
are ready to be fed into the learning models. In real-world
applications such as social networks, network structures are
often hidden behind information cascades and need to be in-
ferred from such information. For example, in a blogger net-
work [Leskovec and Krevl, 2014], if a blog mentions a piece
of information without linking to the information source, it
is unknown where the blogger acquires the information and
whether there is a (weighted) linkage between the blogger and
the source node. However, a set of information cascades that
record information propagation traces can be observed and
collected, from which network structures can be inferred and
restored. We refer to such networks as latent networks and
focus on learning discrete embedding for latent networks.
Intuitively, discrete network embedding can be learned
from latent networks via two steps. Firstly, network struc-
tures are reconstructed from information cascades, which has
been widely studied in social network mining. For instance,
the method in [Rodriguez er al., 2011] infers network struc-
tures by formulating a generative probabilistic model of infor-
mation cascades. Secondly, existing discrete network embed-
ding models can be applied to the inferred network structures.
However, such a two-step solution separates parameter tuning
into two different models, which makes it hard to achieve sat-
isfactory representations. Therefore, we aim to build an end-
to-end model that learns discrete network embedding directly
from latent networks hidden behind information cascades.



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Compared to traditional network embedding learning for
explicit network structures, learning compact representations
from information cascades is confronted by the following two
new challenges: Challenge 1, how to formulate the learn-
ing function by jointly considering the problem of infer-
ring network structures from information propagation data
and learning representations under the discrete representation
constraint; Challenge 2, how to design an efficient algorithm
to optimize the new learning function where existing binary
code learning [Wang et al., 2017] is inapplicable.

In light of the new challenges, we present an end-to-end
learning model called discrete embedding from latent net-
works (DELN). To address Challenge 1, we formulate a la-
tent Weisfeiler-Lehman proximity matrix that captures node
dependence based on information cascades, which is then fac-
torized under the binary node representation constraint. To
tackle Challenge 2, we present an efficient maximal likeli-
hood estimation based cyclic coordinate descent (MLE-CCD)
algorithm to solve the mixed integer optimization problem.

The contributions of the paper are summarized as follows:

e This is the first effort to study the problem of learning
discrete representations from latent networks where net-
work structures are not explicitly observable.

e We present a DELN model to learn the discrete repre-
sentations of latent networks, where a latent Weisfeiler-
Lehman proximity matrix is defined to capture node de-
pendence in latent networks, and a binary constraint is
imposed on the latent Weisfeiler-Lehman matrix factor-
ization to obtain discrete network representations.

e We present an efficient maximal likelihood estimation
based cyclic coordinate descent (MLE-CCD) algorithm
to factorize the latent Weisfeiler-Lehman matrix under
the discrete representation constraint.

e We conduct experiments on real-world network data to
validate the performance of the DELN model. The re-
sults demonstrate the effectiveness of our model.

2 Related work

Discrete network embedding is a powerful tool to compress
network embedding models and accelerate model inference.
The pioneer work in [Shen er al., 2018] that uses binary code
learning to obtain discrete network representations reports a
64 times reduction of model size on the public datasets of
DBLP, YOUTUBE and FLICKER. Based on this work, the
edge study in [Yang et al., 2018] proposes a binarized em-
bedding for attributed networks which enables joint repre-
sentation learning from node links and node attributes. More-
over, motivated by the observation that although the binarized
embedding can reduce the network representation size, and
the strict binary constraint imposed on the learning function
may incur uncontrollable accuracy loss on test sets, the recent
work in [Yang er al., 2019] proposes a low-bit quantization
model for attributed network representation learning that can
learn compact node representations with low bit-width val-
ues while preserving high representation accuracy. All these
existing network embedding compression models are based
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on discrete matrix factorization which leads to a mixed inte-
ger programming problem. Hence, the idea of binary code
learning or hashing algorithms [Wang et al., 2017] can be
borrowed as the solution. In spite of the success achieved by
existing compressed models, they all assume that the input
network structures are known a priori, which limits their ap-
plications in implicit networks where network structures can-
not be explicitly observable.

Latent network inference refers to recovering network
structures from information cascades. An information cas-
cade refers to a special type of data that records an infor-
mation propagation trace in a network. Several studies [Ro-
driguez et al., 2011; Kalimeris et al., 2018; Panagopoulos
et al., 2019] have proposed recovering latent network struc-
tures from information cascades. The work in [Rodriguez et
al., 2011] uses a generative probabilistic model for inferring
diffusion networks by considering information propagation
processes as discrete networks of continuous temporal pro-
cesses. The work in [Gomez-Rodriguez er al., 2012] infers
network connectivity using submodular optimization and the
work in [Myers and Leskovec, 2010] infers not only the con-
nectivity but also a prior probability of infection for every
edge using a convex program. In contrast, the recent study in
[Kalimeris et al., 2018] describes diffusion probabilities as a
non-convex learning function.

Graph kernels. Graph kernels seek to learn the repre-
sentation of sub structures for graphs [Yanardag and Vish-
wanathan, 2015; Atwood and Towsley, 2016]. Compared
with the random walk graph kernels used in Node2Vec
[Grover and Leskovec, 2016] and DeepWalk [Perozzi et al.,
2014], the Weisfeiler-Lehman graph kernels [Shervashidze et
al., 2011] are capable of capturing the joint correlation be-
tween nodes by combining information from both node fea-
tures and network structures. Therefore, they are widely used
in graph neural networks (GNNs) [Hamilton et al., 2017].
However, the original Weisfeiler-Lehman graph kernels can
be only applied to networks that are explicitly observable. In
this work, we define the latent Weisfeiler-Lehman graph ker-
nels based on network propagation data.

3 Preliminaries

Consider a latent network G = (V,X, W) consisting of a
set of nodes V = {v;}_;, where n is the number of nodes,
a set of feature vectors X = {x;}!_,, where x; € R" is a
r-dimensional feature vector for node v;, and a set of edge
weights W = {w; ;}7',_,, where w; ; is the edge weight be-
tween nodes v; and v;. Different from traditional networks
where edge weights W are known a priori, edge weights of
the latent network G are not explicitly observable. Instead,
only a set of information cascades C = (cq,---,cx) €
REX" can be observed within a given time window [0, 77,
where each cascade ¢ € C is an n-dimensional vector
ci = (c},--+,c?) that records the earliest time of the mes-
sage arriving at the corresponding node, and T € R is the
time period we are allowed to observe the network.

The aim is to learn a discrete representation matrix B from
the propagation traces C. An intuitive idea is to use a two-
step approach that first learns the network weight matrix W
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through the propagation traces C. Next, based on the learnt
weight matrix W, a binarized representation learning can be
used to learn B. Unfortunately, such a two-step approach
does not have a unified optimization objective. It is very hard
to tune parameters for two separate models.

Before designing the representation learning model, the
key problem is to design a proximity matrix that can jointly
capture network structure W behind the information cas-
cades C and node features X. Based on the recent work
on GNNs such as GraphSAGE [Hamilton er al., 2017] and
its extensions [Xu er al., 2018], the Weisfeiler-Lehman graph
kernels [Shervashidze et al., 2011] are capable of encoding
both node features X and network structure W. However,
network structure W often cannot be observed directly and
we have the information cascades C instead. As a result, we
define a Latent Weisfeiler-Lehman matrix to capture both net-
work structure W, behind information cascades C, and node
features X as follows.

Definition 1. (Latent Weisfeiler-Lehman Matrix). Given
a hidden network G where only information cascades C and
node features X are observable, let the hidden network struc-
ture be W which depends on information cascades C. De-
note D(W, C) as a degree matrix of the hidden structure W

and L(W, C) = D—W. Then, the latent Weisfeiler-Lehman
matrix P is defined as
P(W,C) = (I-9D(W,C) 'L(W,C))*X, (1)

where I is an identity matrix, v € [0, 1] is a tradeoff parame-
ter, and k is the number of network layers.

According to the above definition, obtaining the latent
Weisfeiler-Lehman matrix P needs to infer the latent ad-
jacent matrix W based on cascades C, i.e., maximizing
the likelihood function f(C|W). Based on the previous
work [Gomez-Rodriguez et al., 2012], when using the expo-
nential distribution function to simulate the propagation dis-
tribution ¢(t;|t;, W) which denotes the probability of node
v; infecting v; at time %;, i.e.,

w;; - e~ wiilti—t;)

Ptilty, wji) = { 0.

the probability of observing a cascade c under the exponen-
tial propagation distribution can be represented as follows,

flew) =TT (Z PN TT (1= ot W)

t,<T \t;<t t<t;

><< I II (1¢<tm|ti,w>)>,
3)

ti >T t; <T

where the first partin (- - - ) denotes the probability of observ-
ing all the nodes that are activated by the already activated
nodes t;, and the second part denotes the probability of not
observing the nodes v,, that are not activated by the already
activated nodes t; in cascade cg.

Zf tj < t;,
otherwise,

2

4 The proposed model

In this part, we learn the discrete network representation B
by factorizing the latent Weisfeiler-Lehman matrix P given in
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Definition 1. Concretely, given a matrix of propagation cas-
cades C and node feature X, we infer the latent Weisfeiler-
Lehman matrix P based on a latent network structure W and
the given X, and then embed each node v; € V into a d-
dimensional vector b; € {—1, —|—1}d in a discrete Hamming
space, where b; is the z” * row of matrix B. The learning func-
tion can be formulated by factorizing the latent Weisfeiler-
Lehman matrix P under the constraints that the representa-
tions B are discrete and the best latent structure W can be
inferred from the cascades C as in Eq.(4),

nin [P = BZ{[} +alZ[} 5 log flew W),
creC
t.: W>0, Be{-1,+1}" Z e R/, 4)
where « and [ are regularization parameters.

Due to the discrete constraint with respect to matrix B,
Eq.(4) is NP-hard. We introduce an efficient algorithm to
solve the problem. In particular, we present an efficient al-
gorithm to iteratively optimize each variable to solve the op-
timization problem in Eq.(4). The algorithm updates one pa-
rameter at a time and converges rapidly.

4.1 W-step:

Given cascades C, estimate the network structure W and ac-
cordingly the latent Weisfeiler-Lehman matrix P. The prob-
lem reduces to solve the last item of the log likelihood func-
tion given in Eq.(4), i.e.,

oW =g X (XX gy
T ct€C  ;<T tj<t; ’]’ )
+ > > log[l — ®(W3 4,1)] )
£ <T tp<t;
+ Z Z log[1 —@(W;i,m)]).
tm>T t;<T

where ®(W;; j, 1) 1= ¢(t;|t;, W). Eq.(5) is concave. We let
9L  — () and obtain a closed-form solution,

w;, = 2 ¥ ecC Iq(%”j)ﬁv b <T,t; <t

I %ZCtGC ]Ct(vhvj)Titlw tz > T7 tj S T7
(6)
where I, (v;, v;) is an indicator which equals to 1 if cascade
c; satisfies the time constraint. z denotes a normalization of
the total number of node pairs that meet the constraint. If the
given time constraints are not met, the weight w;; is set to
1/T. Based on Eq.(6), it is easy to infer the latent Weisfeiler-

Lehman matrix P according to Eq.(1) in Defintion 1.

4.2 Z-step:

Given W and B are fixed, we solve the sub-problem with
respect to Z in Eq.(4). For simplicity, we use P to replace
P(W, C). Then, the loss function can be written as follows,

min [|P — BZ|[% + o Z|%, @)

= —tr(PTBZ) + tr(Z"B"BZ) + atr(Z" 7).
By calculating the derivative of Eq.(7), a closed form solution
can be derived as follows,

Z= (BB +al)"'B'P. 8)
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4.3 B-step:
Given Z and W fixed, rewrite the objective function in Eq.(4)
with respect to B as follows,

min [P — BZ|% ©)

=—tr(B"PZ") + tr(Z"B"BZ),
st Be{-1,+1}"

According to the observation that a closed-form solution
for one column of B can be achieved by fixing all of the other
columns, the algorithm iteratively learns one bit of B at a
time. Let b' be the [t column of B, and B’ the matrix of B
excluding b!. Then, b’ is the one bit for all the n samples.
Similarly, let ' be the {*" column of Q = PZ7T, Q' the
matrix of Q excluding q!, z' the I*" row of Z and Z’ the
matrix of Z excluding z!. Then, we obtain

tr(Z"BTBZ) = z'Z "B'Tb! + const. (10)
Following the same logic, we obtain
tr(BTQ) = (q)Tb! + const. (11)
Substituting Eqgs.(10) and (11) into Eq.(9), we obtain the
optimization problem with respect to b! as follows,

min ZZ "B b’ — (¢/)Tb! (12)
b
_ (ZZZ’TB'T _ (ql)T)bl7
s.t.:ble {1, +1}"xL,
Eq.(12) has a closed form solution as follows,
b' = sign(q' — B'Z'(z)7). (13)
Using this method, each bit b can be computed based on
the pre-learned d — 1 bits of B’. The convergence of the alter-
nating optimization is guaranteed theoretically, because every
iteration decreases the objective function value and the objec-

tive function has a lower bound. The details of the algorithm
are given in Algorithm 1.

S Experiments

The purpose of the experiments is to answer two questions:
first, whether DELN can capture node dependence in latent
networks by using the latent Weisfeiler-Lehman matrix; and
second, whether DELN performs better than the state-of-the-
art embedding models in terms of accuracy and model size?

Algorithm 1 Discrete Embedding Latent Networks (DELN)

Require: Cascades C, feature X, dimension d, # of itera-
tions 71 and 7o, parameters 7, «, 3,
Ensure: Discrete representation matrix B
1: Initialize W, Z, B randomly
W-Step: Calculate W using Eq.(6)
Calculate P using Eq.(1)
Repeat until converge or reach 7;
Z-Step: Calculate Z using Eq.(8)
B-Step: Repeat until converge or reach 7o
fori=1,---,ddo
update b' using Eq.(13)
end for
return matrix B

SYRIIUNRLR
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Datasets Nodes  Edges  Attributes Labels
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Wiki 2,405 17,981 4,973 19
BlogCatalog 5,196 171,743 8,189 6
Table 1: Dataset Description
Networks Cora  Citeseer Wiki  Blogcatalog
Visible links 5,429 4,732 17,981 171,743
Latent links 10,303 8,314 24,349 232,566

Table 2: Two Types of Network Structures

5.1 Experimental Setup

Datasets

Table 1 summarizes the datasets, where Wiki [Yang et al.,
2015] is a network of webpages, Citeseer [Lu and Getoor,
2003; Sen et al., 2008] is a scientific network where the nodes
represent papers and the edges are paper citations, Cora [Lu
and Getoor, 2003; Sen et al., 2008] is another citation net-
work which focuses on publications in the machine learning
area, and BlogCatalog [Huang et al., 2017] is a social network
which concerns blog users. All the networks have attributes
which describe node features.

Table 2 shows the latent structures of the four datasets in-
ferred from the information cascades by the diffusion sam-
pling algorithm similar to the recent work in [Shi ez al., 2019].
The information cascades are generated by simulating mes-
sage propagation sequences sampled by multi-trace random
walks, where time-interval sampling is used to generate the
transmission time between nodes [Rodriguez et al., 2011].

Baseline Methods

DeepWalk [Perozzi et al., 2014] maximizes node co-
occurrences in random walks.  Node2vec [Grover and
Leskovec, 2016] extends DeepWalk to a biased setting where
both DFS and BFS neighbors are explored. GraRep [Cao et
al., 2015] is based on matrix factorization which exploits high
order proximity in networks. Spectral Clustering (Spectral)
[Ng er al., 2002] explores the spectral features of adjacent
matrices. TADW [Yang et al., 2015] combines attributes and
structures for matrix tri-factorization. LANE [Huang et al.,
2017] is also an attribute network embedding model. The
structural embedding is based on spectral techniques. BANE
[Yang et al., 2018] learns embedding with attribute informa-
tion. The embeddings are binary vectors.

Settings and Metrics

For all of the models, we set the embedding dimension as
d = 128. The parameters of all baselines are set as the de-
fault values. To evaluate the generated embeddings through a
node classification task, the embedding vectors are fed into a
logistic regression classifier [Fan et al., 2008]. Following the
setups in Deepwalk, we randomly sample a portion of nodes
for training and the rest for testing. The ratio of training sam-
ples ranges from 10% to 90%. All of the compared models
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\ Micro-F1 (%)

\ Macro-F1(%)

Datasets Models | 10% 30% 50% 70% 90% | 10% 30% 50% 70% 90%
DeepWalk | 0.6651 0.7443 0.7836 0.8036 0.8258 | 0.6489 0.7328 0.7734 0.7928 0.8114
Node2vec | 0.7776 0.8131 0.8299 0.8392 0.8394 | 0.7644 0.8055 0.8236 0.8309 0.8327
GraRep 0.7605 0.7963 0.8168 0.8242 0.8330| 0.7445 0.7831 0.8034 0.8102 0.8184
Cora Spectral 0.7661 0.8250 0.8411 0.8533 0.8608| 0.7349 0.8107 0.8260 0.8397 0.8488
TADW 0.7872 0.8126 0.8366 0.8516 0.8532| 0.7648 0.7928 0.8083 0.8150 0.8175
LANE 0.6822 0.7264 0.7478 0.7621 0.8035| 0.6744 0.6918 0.7312 0.7590 0.7944
BANE 0.8015 0.8298 0.8519 0.8569 0.8763 | 0.7892 0.8187 0.8404 0.8462 0.8657
DELN 0.8076 0.8375 0.8619 0.8708 0.8892| 0.7928 0.8262 0.8489 0.8532 0.8829
DeepWalk | 0.4695 0.5928 0.6561 0.6890 0.7051| 0.4358 0.5542 0.6146 0.6485 0.6705
Node2vec | 0.5682 0.6596 0.6909 0.7100 0.7141| 0.5172 0.6042 0.6355 0.6589 0.6630
) GraRep 0.5993 0.6843 0.7029 0.7119 0.7194| 0.5326 0.6245 0.6456 0.6570 0.6653
Citeseer Spectral 0.5911 0.6852 0.7018 0.7088 0.7168| 0.5167 0.6223 0.6442 0.6574 0.6646
TADW 0.6279 0.6598 0.6714 0.6783 0.6826| 0.5673 0.6020 0.6204 0.6287 0.6351
LANE 0.5266 0.5809 0.5993 0.6272 0.6552| 0.4961 0.5580 0.5830 0.6124 0.6307
BANE 0.6451 0.6926 0.7288 0.7361 0.7503 | 0.6022 0.6521 0.6894 0.6946 0.7084
DELN 0.6554 0.7020 0.7349 0.7565 0.7650 | 0.6095 0.6634 0.6976 0.7236 0.7312
DeepWalk | 0.6187 0.7198 0.7577 0.7761 0.7911 | 0.4650 0.5804 0.6299 0.6392 0.6806
Node2vec | 0.6548 0.7373 0.7688 0.7882 0.8026 | 0.4799 0.5864 0.6370 0.6753 0.7202
o GraRep 0.6778 0.7634 0.7824 0.8105 0.8202| 0.4984 0.6063 0.6700 0.6858 0.7461
Wiki Spectral 0.7062 0.7724 0.7923 0.8013 0.8070| 0.5364 0.6325 0.6660 0.6727 0.7163
TADW 0.6714 0.7081 0.7246 0.7353 0.7462| 0.5702 0.6033 0.6257 0.6536 0.6589
LANE 0.6328 0.6845 0.7013 0.7334 0.7385| 0.5571 0.5858 0.6140 0.6471 0.6631
BANE 0.7126 0.7670 0.7819 0.7929 0.8088| 0.5619 0.6376 0.6550 0.6973 0.7537
DELN 0.7245 0.7747 0.7964 0.8114 0.8326 | 0.5874 0.6747 0.6819 0.7147 0.7752

Table 3: Node Classification Results (d=128)

run 10 times and the averaged results are reported. The per-
formance is evaluated in terms of Micro-F1 and Macro-F1.
The original attributes of all networks are reduced to vectors
of 128 dimensions with SVD.

5.2 Experiment Results

A Case Study on BlogCatalog

We conduct a case study on BlogCatalog to answer the first
question as to whether the proposed DELN model can cap-
ture node dependence in the latent networks recovered from
information cascades. Because Deepwalk can only work on
plain networks without attributes, we concatenate attributes
with the embedding vectors generated by Deepwalk for a
fair comparison. Different from Deepwalk and BANE that
can only make use of the explicitly observable links of size
171,743, DELN, built on 5,196 information cascades, obtains
the best Micro-F1 scores. This is because DELN can capture
a latent network structure of size 232,566 inferred from the
5,196 information cascades. As shown in Table 2, there are
only 171,743 links explicitly observable for building Deep-
walk and BANE. In contrast, DELN can infer a larger latent
structure of 232,566 links. More results are shown in Figure
1. From these results, we can conclude that, by recovering
the latent network structure, DELN achieves higher Micro-
F1 scores than both Deepwalk and BANE, and the perfor-
mance gain of DELN is significant. The results answer the
first question that DELN can capture node dependence in la-
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tent networks using the latent Weisfeiler-Lehman matrix.

Node Classification Task

In this part, we test the models on Cora, Wiki and Citeseer.
The aim is to answer the second question as to whether the
proposed model can learn embeddings that are both accurate
and efficient in terms of model size. Table 3 lists all the com-
parison results under different ratios of training data with re-
spect to Micro-F1 and Macro-F1 scores.

When compared with the local network embedding meth-
ods such as DeepWalk and node2vec, DELN obtains better
results under different ratios of training data. Moreover, the
improvement is significant when the training ratio is rela-
tively low. Even though we add attribute information on the
embedding vectors learned from DeepWalk and node2vec for
node classification, these local network embedding methods
are not as stable as DELN.

When compared with the global embedding methods such
as GraRep and Spectral Clustering, DELN also obtains better
results. By introducing the global information or high-order
network proximity information, GraRep and Spectral Cluster-
ing are also very competitive. For example, GraRep achieves
similar results to DELN on Wiki, especially when the train-
ing ratio is high. Spectral clustering is as stable as DELN on
Wiki. Compared with the BANE model, DELN obtains better
results, especially when the training ratio is relatively low.

We also compare the size of the models to evaluate the ef-
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Figure 1: Comparisons w.rt. the ratio of training data on BlogCata-
log. DELN outperforms Deepwalk and BANE because DELN, built
on 232,566 latent links inferred from 5,196 cascades, captures more

structure information than Deepwalk and BANE which are built on
the explicitly observable links of sizes 171 and 743.
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Figure 2: Comparisons w.r.t. embedding dimension on Cora. The
embedding dimension changes from 16 to 256. The Micro-F1 scores

under different training ratios (0.1, 0.3, 0.5, 0.7, 0.9) become stable
when the dimension reaches 64.

ficiency of memory consumption. Table 4 shows the sizes
of embedding vectors on Cora, Citeseer and Wiki. We se-
lect a global embedding model GraRep and a local embed-
ding model DeepWalk for comparisons. From the results in
Table 4, we can observe that the embedding sizes of DELN
are only 1/60 of DeepWalk and 1/30 of GraRep. The results
show that DELN, compared with the state-of-the-art methods,
is capable of learning more compact representations without
accuracy loss, which answers the second question.

5.3 Parameter Analysis

We test DELN with respect to different parameters to validate
its robustness. We test the Micro-F1 and Macro-F1 scores of
DELN with d varying from 16 to 256. The results of different
training ratios are plotted in Figure 2. From the results we can
observe that the performance under different training ratios
becomes stable when d reaches 64. The changing dimension
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Figure 3: Embedding size w.r.t. embedding dimension on Cora.
DELN takes smaller memory space than Deepwalk.

Datasets DeepWalk GraRep DELN
Cora 3,815KB(57.8%) 2,366KB(35.8x) 66KB
Citeseer 4,673KB(59.9x) 2,083KB(26.7x) 78KB
Wiki 3,181KB(60.0x) 2,122KB(40.0x) 53KB

Table 4: Comparisons of Model Sizes

only has an impact when the training ratio is low, such as
0.1. The model size with respect to the dimensions is also
compared and the results are listed in Figure 3. We observe
that the model size of DELN is consistently smaller than that
of DeepWalk, which demonstrates that DELN performs more
stably and better than Deepwalk in terms of model size.

6 Conclusions

In this paper we study the challenging problem of learn-
ing discrete representations from latent networks where net-
work structures (e.g., edge weights) are not explicitly observ-
able. We present a new DELN model to learn discrete rep-
resentations from latent networks, where a latent Weisfeiler-
Lehman matrix is defined to capture node dependence in the
latent networks, and a binary constraint is imposed on the
latent Weisfeiler-Lehman matrix factorization to obtain dis-
crete representations. An efficient maximal likelihood es-
timation based cyclic coordinate descent (MLE-CCD) algo-
rithm is used as the solution. The experiment results validate
that DELN not only captures node dependence in latent net-
works by using the latent Weisfeiler-Lehman matrix, it also
performs better than the state-of-the-art network embedding
models in terms of accuracy and model size.
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