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Abstract

Network embedding, mapping nodes in a network
to a low-dimensional space, achieves powerful per-
formance. An increasing number of works focus
on static network embedding, however, seldom at-
tention has been paid to temporal network embed-
ding, especially without considering the effect of
mesoscopic dynamics when the network evolves.
In light of this, we concentrate on a particular motif
— triad — and its temporal dynamics, to study the
temporal network embedding. Specifically, we pro-
pose MTNE, anovel embedding model for temporal
networks. MTNE not only integrates the Hawkes
process to stimulate the triad evolution process
that preserves motif-aware high-order proximities,
but also combines attention mechanism to distin-
guish the importance of different types of triads
better. Experiments on various real-world tempo-
ral networks demonstrate that, compared with sev-
eral state-of-the-art methods, our model achieves
the best performance in both static and dynamic
tasks, including node classification, link prediction,
and link recommendation.

1 Introduction

Recently academic and industry have both witnessed rapid
development of network embedding, which maps the nodes
into a low-dimensional space while preserving certain prox-
imities among nodes, features, or structures. Due to its pow-
erful performance, network representation learning, namely
network embedding, has been widely applied to various
network-related tasks, such as link prediction, node cluster-
ing, and node classification.

Inspired by word embedding [Mikolov et al., 2013]
in language processing, Deepwalk [Perozzi et al., 2014]
is proposed to embed nodes in the networks. Further-
more, LINE [Tang er al., 2015] preserves first- and second-
proximities, GraRep [Cao et al., 2015] preserves k-order
proximities, Node2vec [Grover and Leskovec, 2016] pre-
serves neighborhood proximity, and MNMF [Wang et al.,
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Figure 1: A toy example of network evolution

2017] preserves communities. All these methods achieve
good performance in various network-related tasks.

However, the methods mentioned above are all proposed to
deal with static networks, while most networks exhibit com-
plex temporal properties, which means nodes and edges al-
ways evolve over the time. For example, in an information
diffusion network, information interactions between users
shape the typology of temporal network and influence the net-
work evolution. As shown in Figure 1, there are a group of
three users in an information diffusion network. At time ¢1,
when B receives A’s information, an edge from A to B estab-
lishes. An edge forms once there is an action associated with
information diffusion happens. If we consider a static net-
work at time ¢4, we only know that there is a closed triad in
which A and B send messages mutually, and C receives from
B and A, respectively. However, if we capture its temporal
properties, more information will be preserved that B first
receives from A, which indicates that A has a higher social
power according to the social status theory [Waters, 2015].
Therefore, evolution dynamics and properties need to be well
examined and preserved for temporal networks.

In literature, there are only a few works focus on tempo-
ral network embedding. For instance, HTNE [Zuo et al.,
2018] considers the temporal network embedding via neigh-
borhood formation process. M?2DNE [Lu et al., 2019] stud-
ies micro- and macro-dynamics by taking edge dynamics and
network evolution patterns into account. The former method
only considers the influence of one node’s neighbor forma-
tion sequence on the current neighbor. Nevertheless the es-
tablishment of a relationship between two nodes is an inter-
acted process, and the neighbor formation sequence cannot
reflect the law of network evolution very well. Besides from
edge level, the latter takes the whole network’s evolution into
account. However, except the consideration of micro- and
macro-dynamics, the influence from a mesoscopic view for
temporal networks has been ignored.

Meso-dynamics has been widely used in mining complex
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networks, as well as social networks. It is crucial to un-
derstand the network structure and function of social sys-
tems [Huang er al., 2018]. Unlike micro-dynamics focus-
ing on node and edge level, meso-dynamics considers the
coupling effects of a small group of nodes and edges. Be-
sides, it exhibits group properties with only a few nodes
and edges, thus preserving group-aware high-order proxim-
ity. Usually, meso-dynamics is in the form of subgraph evolu-
tion, where subgraph patterns are also called network motifs.
Since network motifs have been well studied, meso-dynamics
can make full use of their correlations.

In this paper, we propose a novel temporal network em-
bedding method with the consideration of meso-dynamics,
named MTNE. In view of meso-dynamics, we focus on the
simplest and fundamental motif — triad — in the networks.
Specially, we first incorporate the triad dynamics into the
Hawkes process. So that, our model can well capture the ef-
fects of past events of users inside a triad. Moreover, we adopt
attention mechanism to specify the importance of different
types of triads. Note that our method can be easily applied
to model other motifs due to the generality of the Hawkes
process. We test our model on several real-world datasets.
The experimental results show that our proposed MTNE out-
performs state-of-the-art baselines in both static and dynamic
tasks.

The major contributions of our work are as follows:

e To our knowledge, we are the first to concentrate on tem-
poral network embedding with meso-dynamics that pre-
serves motif-aware high-order proximity.

e We propose a novel model (MTNE), which leverages
Hawkes process to model motif evolution and design an
attention mechanism to model the importance of motif
structures.

e Experiment results on five real-world datasets show that
our MTNE has better performance than several state-of-
the-art baselines in both static and dynamic tasks.

2 Preliminaries

In a temporal network, each edge indicates an event that hap-
pens between two nodes at a time point. Formally, given a
temporal network G = (V,&,T), where V and £ indicate
nodes and edges of the temporal network and 7 is the set of
timestamps. A temporal edge egj € & represents an event that
is initiated by node v; together with node v; at time ¢.

Note that since node v; and node v; may arise multiple
events at different time ¢, temporal edge e’;j represents dis-
tinct events while edge e;; is only a static edge between node
v; and node v;, and can be either directed or undirected. For
example, in one mobile communication network, we can con-
struct a static network based on the relationship among users.
On the other hand, we can also build a temporal network to
describe the interactions among users. In the temporal net-
work, each temporal edge means a phone call between two
users at a certain time. Once user v; calls user v; at time t,
then a temporal edge eﬁj establishes.

In this paper, we start with the simplest and fundamental
motif — triad, and introduce the definition of temporal triad.

1238

Definition 1: Temporal Triad. Given three nodes A =
(vs,v4,vk), if there are at least two temporal edges that in-
volve the three nodes, —e.g., Heﬁ;- , eﬁ € £ — then we call
A a temporal triad. Specially, if there exists at least one tem-
poral edge for any two nodes in a temporal triad, we call A a
temporal closed triad. If there exist two nodes in a temporal
triad without any temporal edges, then we call A a temporal
open triad.

Network evolution is, in some sense, driven by the triadic
closure process [Huang ef al., 2015]. From a microscopic
view, the triadic closure process describes how an open triad
forms a closed triad. Given an open triad (v;,v;, vy) at time
t1, where v; and v; do not know each other but they have a
common friend v;. Now, if v decides to introduce v; and
v; and lets them know each other, there will be a connection
between v; and v; and the open triad (v;, v;, v)) will become
closed at time t5. Nevertheless, there is a problem that if there
are multiple open triads which consist of v; and v; before time
t1, we cannot accurately infer from the dataset which open
triad determines the connection between v; and v;. We call
all these temporal open triads as candidate temporal triads.

In this paper, we aim to represent the nodes in the temporal
networks incorporating the influence of all candidate tempo-
ral triads. We formally define our problem as below.

Problem. Motif-Preserving Temporal Network Embed-
ding. Given a temporal network G = (V,&,7T), during
network evolution, we generate all candidate temporal tri-
ads for every node pair in V. Then, motif-preserving tem-
poral network embedding aims to learn a mapping function
f:V > R%, where d is a positive integer indicating the num-
ber of embedding dimensions and d < |V|. The objective of
the function f is to not only preserve the feature of the net-
work structure but also capture the influence of motif-based
network evolution.

3 The Proposed Model

3.1 Model Overview

In this section, we propose MTNE, a novel model that is ca-
pable of learning desirable representations for nodes in tem-
poral networks and simultaneously preserve the character-
istics of motifs in the network. As illustrated in Figure 2,
node pairs (4,7) and (p, ¢) belong to different open triads,
respectively. Considered their different past temporal infor-
mation, even if they have the same property, the generated
embeddings for them in the new dimension would be differ-
ent. Our proposed MTNE would capture such precise and di-
verse structural information — triad motif evolution property.
Specifically, MTNE leverages Hawkes process to model mo-
tif evolution process. Then we can learn it using optimization
techniques like stochastic gradient descent (SGD).

3.2 Triad Motif Evolution Modeling

As we know, the triad motif evolution process is influenced by
the historical triad evolution events. Therefore, the Hawkes
process [Hawkes, 1971] can be used to model triad motif evo-
lution. We define the conditional intensity function as

;\w,y(t) = Hzx,y + Z OAL (t)7 (1)

th<t
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Figure 2: Illustration of MTNE

where A, ,(t) is the intensity of the new emerged temporal
edge e, at time ¢, which also means the formation of certain
triad that contains v, and v, at time t; y, , denotes the base
rate of establishing a connection between v, and v,, while
Ay, is the candidate open triads that contains node v, and v,
prior to time t. o, () is the kernel function that represents
the influence of history, which will decay over time. Accord-
ing to Eq. (1), we model the triad evolution process by mod-
eling the base rate and past influence, respectively.

Base rate. Suppose the base rate between nodes will be
high if they are similar to each other. So we can model the
base rate as a function that measures the similarity between
nodes. For brevity, we calculate the similarity using negative
squared Euclidean distance. Specifically, suppose the node
embeddings of node v, and v, are u, and u, respectively,
then the base rate can be defined as

ey = similarity(ve, vy,) = —||uz — uy || )

Influence of open triads. Likely, similarity function can
also help us to model the influence of historical open triad

motifs, say > oa, (t).
th<t

Specifically, we define the influence of one open triad
(Vg Um, Uy) as

OA, (t) = Nz,m + Ty,m» 3)

where v, is the middle node of the open triad, 7, ,, and
7y,m represent the strength of the internal relationship of the
two connected node pairs in the open triad respectively. Note
that the relationship between nodes can be established repeat-
edly in some temporary networks (e.g., mobile communica-
tion network, co-author network, etc.), 1 ,, is calculated as
the sum of a series of connection effects between v, and v,,,
ie.,

Nem = f(umvum) X Z H(t - tz,m)a “

te,m <t

where f(uy,u,,) is the similarity function between node v,
and vy, i.e., f(Ug, Um) = — ||tz — Um||?. £(-) is the memory
kernel function, which denotes the time decay effect. Here we
have ki (t — ty ) = e(7%({—tem)) where § is a discount rate
that controls time decay effects. Note that J is a node depen-
dent parameter, which means that for each node, the history
open triad can influence the current closure with different in-
tensity. It can be learned during training.
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Then we can get the influence of one open triad as

OAy (t) :f(uafyum) X Z H(t - tl,m)

te,m <t

+f (ty, U)X Z K(t —tym).
ty,m<t
The value of the influence obtained in the above calculations
are all negative values since the similarity is measured by
negative Euclidean distance. However, the conditional inten-
sity function should return a positive value. So we transfer

Az,y (%) to a positive real number by an exponential function,

i.e, Ay y(t) = exp(Agy(t)), and its value range is between 0
and 1, which accords with the range of the motif formation
probability.

(&)

Influence of triad motifs. The influence of historical
events is defined as the sum of historical open triad mo-
tifs’ effects. Intuitively, different types of open triad would
have different closing probabilities. Then, as shown in Fig-
ure 3, there exist nine types of open triad motifs considered
its edge direction. According to [Huang et al., 2015], among
all types of open triads, the open triad motif No.9 has the
highest probability to become closed, of which both edges
are bi-directional. Besides, the closure probability of No.2
is the lowest due to the phenomenon of assembled fans in
social networks. Therefore, it is necessary to consider the
motif evolution dynamics, especially the closure process of
the open triad motifs when modeling oa,, which makes up
conditional intensity function.

Inspired by attention mechanism that used in neural ma-
chine translation [Bahdanau et al., 2015], we define the
weight of the n-th open triad motif using a softmax function

as follows:
esn

R ST (6)
where s,, indicates the influence of n-th type of triad mo-
tif in Figure 3. It will be also learned and updated during
training. Therefore, the conditional intensity function can be
re-formulated as,

Awﬂ/(t) = /’[/IJ/ + Z WALTA,, (t>7 (7)

tp<t

where wa,, calculates the influence of the type of triad motif
that Ay, belongs to.

Loss function. By modeling triad evolution with Hawkes
process, we can infer the edge evolution with the considera-
tion of candidate temporal triads. That is, given a node pair
(vg, vy) before time ¢, considering candidate temporal triads
H (t), the probability of forming connection between v,, and
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datasets | nodes  static edges temporal edges time steps labels
school 178 9,846 18,648 331 3
digg | 1.832 16,538 45,727 79 0
mobile | 11,569 211,759 406,802 67 0
weibo | 76,408 335,970 726,670 23 4
dblp 28,085 162,451 236,894 27 10
Table 1: Dataset description
v, can be inferred by the conditional intensity as,
Aoy ()
p('Uwa’UylHA(t)) = = 3

2y Awy (1)
where 1’ represents all nodes except v,, in the network.
After taking a log function, the likelihood of edge forma-
tion for all node pairs in the network can be written as,

Z logp(vg, vy|HA(L)). )
(va,vy)EE

Since we have transferred the conditional intensity to a
positive number by an exponential function, p(v,, vy|Ha (%))
is actually a softmax unit. Besides, in order to avoid to sum-
marize the entire set of nodes when calculating Eq. (9), we
use negative sampling techniques as in [Zuo et al., 2018].
Then the loss function of the connection between a node pair
(vg, vy) at time ¢ can be computed as follows,

K

—logo(Aey(t) = Y B, (wllogo(—Aex(t)], (10)

k=1
where K is the number of negative nodes sampled accord-

logL =

ing to the degree distribution P, (v) df’,/ 4 where d, is the
degree of node v, and o(z) = 1/(1 4+ e~?) is the sigmoid
function.

In experiments, the number of candidate temporal triads
will affect computational cost. Thus we fix the maximum
number of candidate temporal triads in this paper and discuss
its influence in section 4.3.

Finally, we use Stochastic Gradient Descent (SGD) to op-
timize the loss function. After converging, we can get the
learned node embeddings.

4 Experiments and Discussions

4.1 Experimental Setup

Datasets. We test MTNE on five different real-world
datasets, say School [Fournet and Barrat, 2014], DBLP [Ley,
2009], Digg [Hogg and Lerman, 2012], Mobile [Huang et
al., 2018], and Weibo [Zhang et al., 2013]. Their statistics is
listed in Table 1.

Baselines. We compare the performance of MTNE against
the following seven network embedding methods, including
four static network embedding methods and four temporal
network embedding methods, shown in Table 2.

Parameter settings. For all methods, the embedding di-
mension d is set as 64. For our proposed MTNE, the batch
size, the learning rate of the SGD, the number of candidate
temporal triads, and the number of negative samples are set
to be 1000, 0.003, 5, 5, respectively, while for other baselines,
we use the default parameters settings. For each experiment,
we repeat 10 times and report the average value as the final
results.
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Methods | Temporal ~ Remark
Deepwalk [Perozzi et al., 2014] X -
LINE [Tang et al., 2015] X 2-order
GraRep [Cao et al., 2015] X k-order
Noe2Vec [Grover and Leskovec, 2016] X -
TNE [Zhu et al., 2016] v Snapshot
DynamicTriad [Zhou et al., 2018] v Snapshot
HTNE [Zuo et al., 2018] v Evolution
M?2DNE [Lu et al., 2019] v Evolution

Table 2: Baselines
4.2 Experiment Performance

We validate our proposed model from two aspects: tasks for
static networks and temporal networks. For the former, we
first learn node embeddings and then treat them as features.
We test two traditional tasks here: node classification and link
prediction, and use precision, recall, and F1 as the measures.
For the latter, we perform a temporal recommendation task
and use precision and recall as measures.

Node classification. We train a logistic regression classifier
using the learned node embeddings as features to predict node
labels. We use School, Weibo, and DBLP datasets, and report
the results in Table 3.

From the results, we can see that our method MTNE per-
forms better than all baselines. Specifically, compared
with methods for static network embedding (i.e., DeepWalk,
LINE, GraRep, and Node2vec), the better performance of
MTNE suggests that the evolutionary dynamics are of great
importance for node classification. On the other hand, com-
pared with methods for temporal network embedding (i.e.,
TNE, DynamicTriad, HTNE, and M?2DNE), our method cap-
tures motif-aware high-order proximity by modeling motif
evolution process, which increases the semantic meaning of
the embeddings. Specifically, MTNE encodes motif features
in the latent space and the nodes in the same motif are more
likely to be in the same class, which further improves the per-
formance of classification.

Link prediction. For the task of link prediction, we aim to
predict whether there is an edge between the given node pair
(vz,vy). We utilize |u, —u,| as the feature to train a Logistic
Regression classifier, where u, and u,, are embeddings of v,
and v, respectively. In each dataset, we randomly choose
10,000 edges as positive samples and 10,000 unconnected
node pairs as negative samples. The experiment results are
shown in Table 4.

From the table, we can see that our method performs the
best on all datasets, which again proves the effectiveness of
our method. We believe the significant improvement is be-
cause that our method captures network structure features
more accurately by modeling the motif evolution process,
which is an essential feature for real network evolution, as
discussed in [Huang et al., 2015].

Temporal recommendation. We study the effectiveness of
MTNE for capturing temporal information in networks with
the task of temporal recommendation. Specifically, given a
testing timestamp ¢, we obtain the node embeddings in the
network before time ¢ and recommend possible new connec-
tions for the testing node after time {. We conduct experi-
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Datasets | Metrics | DeepWalk ~ LINE ~ GraRep Node2vec ~ TNE  DynamicTriad HTNE M?DNE MTNE
precision | 92.40%  47.17% 86.58%  88.25%  89.95% 93.29% 95.59% 95.11%  96.53%
school recall 89.44%  40.37% 77.32%  79.50%  87.23% 92.35% 93.78% 93.66%  94.59%
f1 91.30%  42.10% 7947%  80.99%  89.45% 92.61% 94.43% 94.10%  95.36%
precision | 44.39%  40.77% 43.19%  44.80%  42.14% 44.93% 44.65% 4497%  45.20%
weibo recall 4773%  47.24% 47.46%  4737%  47.28% 47.29% 4723% 47.38% 48.17%
f1 38.82%  34.68% 37.38%  37.95%  35.32% 37.26% 33.22% 3527%  39.38%
precision | 53.80%  35.00% 54.41%  5523%  45.57% 54.88% 55.67% 52.85% 57.65%
dblp recall 54.12%  33.74% 53.15%  53.49%  44.63% 53.92% 54.15% 50.09%  55.83%
fl 53.34%  30.19% 52.52%  52.01%  44.28% 53.50% 5248% 48.41% 53.96%
Table 3: Performance on node classification
Methods | School | Digg | Mobile | weibo
| precision  recall fl | precision  recall fl | precision  recall fl | precision  recall f1
Deepwalk 81.60% 81.18% 81.21% | 69.01%  68.75% 68.65% | 72.35%  72.17% 72.03% | 71.66% 71.40% 71.31%
LINE 7029%  69.72% 69.64% | 7249%  72.29% 72.23% | 67.83% 67.78% 67.76% | 80.96% 8091% 80.90%
GraRep 71.82%  69.77% 69.93% | 72.28%  72.15% 72.04% | 69.19%  6893% 68.44% | 80.31% 80.42% 80.11%
Node2vec 80.38%  80.03% 80.06% | 70.37%  70.34% 70.32% | 71.00%  70.96% 7095% | 76.21%  76.09%  76.08%
TNE 7823%  77.96% 78.01% | 70.15%  69.24% 69.18% | 69.47%  69.10% 68.89% | 81.38%  81.02% 80.97%
DynamicTriad | 79.23%  79.15% 79.17% | 70.55%  70.37% 7031% | 70.52%  69.71% 69.59% | 83.82% 83.57% 83.45%
HTNE 80.35%  80.21% 80.25% | 65.58%  65.05% 65.00% | 67.18%  66.85% 66.69% | 84.64%  84.39% 84.36%
M?2DNE 81.64% 81.20% 81.25% | 72.92%  72.78% 72.75% | 72.45%  72.25% 72.18% 83.88% 83.40% 83.34%
MTNE 82.37% 82.12% 82.16% | 75.36% 74.73% 75.00% | 74.56% 74.26% 74.18% | 85.75% 85.66% 85.42%
Table 4: Performance on link prediction
the temporal information with network snapshots and do not
0.55 08 consider the entire evolution process. Although HTNE and
' 0.6 MZ2DNE consider the evolution process, they ignore the mo-
0.54 tif evolution process in the temporal network, which is one of
0.53 //\’" 0.4 the critical characteristics of network evolution.
0.2
0.52 4.3 Parameter Analysis
s 5 7 9 %1 3 s 7 o We then study the influence of some important parameters,
(a) (b) that is, the number of candidate temporal triads, the number

Figure 4: Impacts of candidate temporal triads and negative samples
on dblp. The X-axis represents the number of of candidate temporal
triads (a) and negative samples (b), and the Y-axis represents the
Macro-F1 of node classification.

ments on School, Digg, and Mobile, and use data from the
first 80% of the period as a training set the rest as a testing
set.

For each test node v; in the network, we predict the top-10
possible new connections for v; after . We use the negative
squared Euclidean distance between node embeddings as the
ranking score, and obtain the top-10 nodes with the highest
score as our predicted nodes. The experimental results are
reported in Table 5 with respect to recall and precision.

From the results, we can see that MTNE outperforms all
the baselines. The improvement confirms that the triad motif
evolution process proposed in MTNE captures the evolution
patterns of the temporal network to some extent. Also, the dy-
namic methods (i.e., TNE, DynamicTriad, HTNE, MZ2DNE,
and MTNE) perform better than the static methods (i.e.,
DeepWalk, LINE, GraRep, and Node2vec), which demon-
strates the importance of temporal information in the net-
work. In the dynamic methods, TNE and DynamicTriad per-
form relatively worse, which might because they only model

of negative samples, and the number of recommended nodes.

The number of candidate temporal triads. The number
of candidate temporal triads is designed to preserve the time
effects of triads and reduce computational cost. From Fig-
ure 4 (a), we can see that the Macro-F1 first increases along
with the number of candidate temporal triads h when h < 5.
Then, the Macro-F1 begins to drop. Therefore, for a balance
between effectiveness and efficiency, we set the number to 5
in our default experiment settings.

The number of negative sample. We then test how the
number of negative samples influences the performance. The
results are shown in Figure 4 (b). From the figure, we can
see that Macro-F1 is very low when the number of negative
sample is less than 5, and then increases slowly after 5.

The number of recommended nodes. We now test the in-
fluence of the number of recommended nodes in the task of
temporal recommendation. Take Mobile data as an example,
and we test the results with top-5, 10, 15, 20 nodes, respec-
tively. The results are shown in Table 6.

5 Related Work

We discuss related work from two parts: static network em-
bedding and temporal network embedding.
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Methods | School | Digg | Mobile | dblp
| precision  recall | precision recall | precision  recall | precision  recall
Deepwalk 8.35% 10.3% 4.54% 392% | 15.88%  13.38% 7.07% 15.36%
LINE 7.24% 8.94% 4.78% 3.67% 6.07% 5.17% 3.74% 8.11%
GraRep 8.29% 10.21% 4.74% 3.57% | 10.77% 8.92% 5.13% 11.28%
Node2vec 10.16%  12.54% 3.66% 3.16% | 13.22%  11.26% 6.25% 13.56%
TNE 13.19%  15.84% 4.32% 3.6% 1457%  12.41% 6.84% 14.86%
DynamicTriad | 12.58%  15.37% 431% 3.54% | 1431%  12.25% 6.49% 14.16%
HTNE 1448%  18.57% 3.93% 339% | 1336% 11.38% 7.49% 16.25%
M2DNE 1527%  18.85% 4.35% 3.76% 15.34% 13.06% 6.67% 14.47%
MTNE 16.06% 19.82% 5.66% 437% | 16.23% 13.83% 8.12% 17.17%
Table 5: Performance on temporal recommendation
Methods | top@5 | top@10 | top@15 | top@20
\ precision  recall \ precision recall \ precision recall precision recall
Deepwalk 20.3% 8.5% 1588%  1338% | 11.69%  15.49% 9.54% 16.66%
LINE 7.81% 3.32% 6.07% 5.17% 5.06% 6.47% 4.36% 7.43%
GraRep 11.26%  4.58% | 10.77% 8.92% 8.10% 11.25% 5.93% 10.51%
Node2vec 19.36%  825% | 13.22%  11.26% | 10.35%  13.22% 8.56% 14.58%
TNE 20.2% 824% | 1457%  1241% | 10.65%  13.73% 8.39% 13.96%
DynamicTriad | 20.45%  8.87% | 14.31%  12.25% | 10.46% 13.91% 8.47% 14.5%
HTNE 19.07%  8.12% | 1336%  11.38% | 10.52%  13.44% 8.74% 14.88%
M?DNE 21.97%  9.35% | 1534%  13.06% | 12.05% 15.39% | 10.02%  17.07%
MTNE 23.23% 9.89% | 16.23% 13.83% | 12.67% 162% | 10.52% 17.92%

Table 6: The influence of number of recommended nodes on Mobile

Static network embedding. Since Deepwalk [Perozzi et
al., 2014] first represents the nodes in networks, a significant
amount of progress have been made in network representation
learning. In order to represent static networks, researchers
focus on various network information, aiming to preserve the
proximity of neighbor nodes or high-order proximities among
nodes. For example, Node2vec [Grover and Leskovec, 2016]
preserves neighbor nodes, Line [Tang et al., 2015] preserves
first- and second-order proximities, MNMF [Wang et al.,
2017] preserves communities, and GraRep [Cao et al., 2015]
preserves k-order proximities, RUM [Yu er al., 2019] pre-
serves motifs. More related work can refer to [Cui et al.,
2018].

Temporal network embedding. There are also several at-
tempts towards dynamic network embedding, especially tem-
poral network embedding. In dealing with temporal infor-
mation, two solutions are usually used. The first is to di-
vide the time into several snapshots [Du er al., 2018]. For
example, [Zhu et al., 2016] proposes a matrix factorization
based method for representing dynamic network snapshots.
DANE [Li et al., 2017] and DHPE [Zhu et al., 2018] solve
the dynamic network embedding problem with matrix pertur-
bation theory. DynamicTriad [Zhou et al., 2018] models the
dynamics via triadic closure process and obtains node embed-
dings at each snapshot.

On the other hand, in order to consider the full dynam-
ics over time, the second line of works try to consider the
whole evolution process [Nguyen et al., 2018]. For instance,
HTNE [Zuo et al., 2018] represents temporal networks with
integrating the Hawkes process with consideration of neigh-
borhood formation. Netwalk [Yu ef al., 2018] proposes a

deep neural network and reservoir sampling-based network
representation learning framework for real-time anomaly de-
tection. M2DNE [Lu et al., 2019] captures both micro- and
macro-dynamics of networks during evolution.

However, all the methods mentioned above either repre-
sent nodes on each snapshot or only consider limited dynam-
ics and structures for temporal network embedding. None of
them capture motif proximities in temporal network embed-
ding from a mesoscopic view.

6 Conclusion

In this paper, we investigate the problem of representing
nodes in temporal networks by incorporating the influence
of meso-dynamics, in terms of the triad. In detail, we pro-
pose MTNE, a novel embedding model that leverages the
Hawkes process to stimulate the triad formation process, and
combines attention mechanism to distinguish the importance
of different types of triads better. Experiments on differ-
ent real-world networks demonstrate that MTNE achieves
the best performance, compared with several state-of-the-art
techniques in both static and dynamic tasks, including link
prediction, node classification, and link recommendation. In
the future, we will perform our model with other motifs, say
four-node motif or above in real network applications.
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