Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Simultaneous Arrival Matching for New Spatial Crowdsourcing Platforms

Boyang Li!, Yurong Cheng?, Ye Yuan', Guoren Wang?* and Lei Chen?
1School of Computer Science and Engineering, Northeastern University, China
2School of Computer Science and Technology, Beijing Institute of Technology, China
3The Hong Kong University of Science and Technology, Hong Kong SAR, China

liboyang @stumail.neu.edu.cn, yrcheng @bit.edu.cn, yuanye @mail.neu.edu.cn,
wanggr@bit.edu.cn, leichen @cse.ust.hk

Abstract

In recent years, 3D spatial crowdsourcing platforms
become popular, in which users and workers travel
together to their assigned workplaces for services,
such as InterestingSport! and Nanguache?. A typ-
ical problem over 3D spatial crowdsourcing plat-
forms is to match users with suitable workers and
workplaces. Existing studies all ignored that the
workers and users assigned to the same workplace
should arrive almost at the same time, which is very
practical in the real world. Thus, in this paper,
we propose a new Simultaneous Arrival Matching
(SAM), which enables workers and users to arrive
at their assigned workplace within a given tolerant
time. We find that the new considered arriving time
constraint breaks the monotonic additivity of the re-
sult set. Thus, it brings a large challenge in design-
ing effective and efficient algorithms for the SAM.
We design Sliding Window algorithm and Thresh-
old Scanning algorithm to solve the SAM. We con-
duct the experiments on real and synthetic datasets,
experimental results show the effectiveness and ef-
ficiency of our algorithms.

1 Introduction

In recent years, with the development of Internet and mo-
bile service, spatial crowdsourcing platforms show their pop-
ularity in people’s daily life and attract much attention of
researchers. In spatial crowdsourcing platforms, assigning
tasks to suitable workers is one of the core issues [Chen et
al., 2019][Cheng et al., 2015][Cheng et al., 2017a] [Cheng
et al., 2018][Song et al., 2018][Bei and Zhang, 2018] [Tran
et al., 2018][Tong et al., 2018a][Tao et al., 2018] and have
achieved good results in 2D platforms. However, the emerg-
ing of 3D platforms, such as sport-training platforms' and
customer-makeup platforms?, bring new challenges. On 3D
platforms, users and workers are required to travel together
to their assigned workplace for services. For example, on the

*Contact Author
Uhttp://www.quyundong.com/.
*http://www.nanguache.cony.

1279

Nanguache platform?, a customer and his/er assigned hair-
dresser would go together to an arranged barbershop for a
haircut. The 2D matching methods cannot solve the match-
ing requests for 3D platforms, and thus Song et al. [Song et
al., 2017] proposed a 3D matching as a consequence, calcu-
lating the online matching of users, workers and workplaces.
However, such 3D matching failed to consider the service
preference of users and workers. Thus, Li et al. [Li ef al.,
2019] proposed a 3D stable matching. It can make sure that
no matched workers and users both prefer a second workplace
to the matched one.

Unfortunately, all the above existing studies ignored an im-
portant factor that the workers and users matched to the same
workplace should arrive almost at the same time. For exam-
ple, Fig. 1 shows 3 workers (wi-w3), 7 users (ui-uy) and
3 workplaces (p1-p3) on a platform. The capacity of each
worker is {3, 3,1} respectively, which shows the maximum
number of users s/he can serve. The matching result obtained
from [Li ef al., 2019] is shown in Fig. 1(a). However, in the
real world, each user and worker has a departure time, which
means the time they wish to leave their current location for
their workplace. And it will take them some time to travel to
the target workplaces. Suppose the departure time is shown
in Table 1 and the travel speed of each user and worker is 0.5.
Then us departs at 9:05 and reaches py at 9:12. According to
the result in Fig. 1(a), ws reaches po at 9:24, which means
that us should wait w3 for 12 minutes. Similarly, w4 reaches
p3 at 9:08 and he needs to wait for w7 until 9:30. Neither uy
nor us will be happy.

Motivated by the above example, we propose a new model
which ensures that the workers and users reach their matched
workplace within a given tolerant time. We call such match-
ing as a Simultaneous Arrival Matching (SAM) problem. N-
evertheless, in the matching of the existing work [Song er al.,
20171, there also exists an arriving time and a leaving time for
each worker and user. In their work, the arriving time means
when each user and worker is available, and they should be
matched (i.e., responded by the platform) before their leav-
ing time. The period between each arriving time and leaving

9:01 9:02 9:03 9:04 9:05 9:06 9:07 9:08 9:09 9:10

Table 1: Departure Time of Users and Workers

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

»
»

u;(5,10) u,(13,11)
uéﬁ) 2 Mm@
N /
® pGy wa

7'\ E—— psa107)
joy wz(s,sf{)7

u3(4,6)
’;9 U4(8,4)
P2(6,4)\

153
us(7,1) g

W;(13,2)
1 234567 8 910111213

S m N WAL ®o DD

(a) Spatial stable matching

A
11 u;(5,10) u;(13,11)
10[U22,9) 8 &
o & o
8 BLEY ua
) e\/ —— ,{Q p3(10,7)
6 ® Q9 &
W1(2,6) .
5 WEON W2(8,6)
4 e
3 p2(694) u6(8,4)
2 &
1 us(7,) Q w3(13,2)
. >

1 234567 8 91011 1213

(b) Simultaneous arrival matching

Figure 1: Example of Matching Strategies

time is the maximum response time of each worker’s or user’s
request. Their arriving time and leaving time have differen-
t meanings compared with ours, and they did not consider
when each matched user and worker would arrive at their
assigned workplace. Since considering such constraint on
arriving time breaks the monotonic additivity of the match-
ing results (detailed in Theorem 3 in Section 2), it brings a
large challenge of existing approaches to solve SAM effec-
tively and efficiently. We prove that the SAM problem is NP-
hard and the monotonic additivity of the matching results. We
present two approximate algorithms to solve it. In summary,
we make the following contributions.

* We propose a new stable matching problem called
Simultaneous Arrival Matching (SAM) enabling users
and workers arriving at their assigned workplace nearly
at the same time. We prove that the matching results of
SAM have no monotonic additivity.

We devise a greedy algorithm, named Sliding Window.
It greedily matches workers according to their capacity,
and utilizes the arriving order of users and the waiting
time constraint to prune the number of candidate users.

In order to improve the effectiveness and make the al-
gorithm as efficient as possible, we propose a threshold-
based algorithm, named Threshold Scanning. We dy-
namically adjust the results and randomly select a
threshold value according to the capacity of workers to
further reduce the scanning space, which shows a better
performance than Sliding Window.

L]

Experiments are conducted on real and synthetic dataset-
s. We compare our algorithms with existing approaches
and verify the effectiveness and efficiency.

2 Problem Statement

We firstly introduce some basic concepts, and then formally
define our Simultaneous Arrival Matching.

Given k workplaces, m users and n workers, we de-
note P as the workplace set, U as the user set and W
as the worker set. Each workplace p € P is associat-
ed with a location 1,. Each user v € U is described as

1280

w < ly,tu, O, Tuy Vuy fu(+) >, where 1, is the location
of u, t, is the departure time when u leaves the location
1,, 6, is the maximum waiting time of w, r, is the radius
of the circular range that « can reach, and v, is the travel
speed of u. fy,(-) is a function to calculate preference be-
tween v and the workplaces. f,(p1) > fu(p2) denotes that
u prefers p; to ps. Each worker w € W is described as
w < Ly, Cus by Owy Tawy Vany fu(+) >, where 1, is the loca-
tion, t,, is the departure time, c,, is the capacity which means
the maximal number of users that s/he can serve, §,, is the
maximum waiting time of w, r, is the radius of the circular
range that w can reach and v,, is the travel speed of w. fy, ()
is the preference function of w. Users and workers may have
the same preference for different workplaces. Distance be-
tween two locations is the Euclidean distance and we use the
distance to calculate the preference order. It is equivalent to
replace the distance preference by other kinds of preference.

A triple (w, p, Us) is a matching result which means that p
is a workplace for worker w and users in Uj to finish the ser-
vice. Note that one user can match only one worker and one
workplace. A worker can match several users but only one
workplace. A workplace can accommodate only one worker
and his/er assigned users. As stated in [Li et al., 2019], for
each match (w, p, Us), if there exists another workplace p’
that w and any user in Uy both prefer p’ to p, w and the us-
er would feel unsatisfied. This involves the concept of stable
triple as follows.

Definition 1 (Stable Triple). (Adapted from [Li et al., 2019])
For a worker w, a workplace p, a user set Us, (w,p,Uy) is a
stable triple if and only if no other locations p’ € P satisfies
that w prefers p’ to p and any u € Uy also prefers p’ to p, no
matter whether p' is matched or not.

According to the illustration in Section 1, if a user/worker
waits a long time until all the other matched persons arrive,
s/he will feel unhappy. This needs that the waiting time of
all users and worker matched to the same workplace should
not larger than an upper bound. Specifically, our problem
definition is as follows.

Definition 2 (SAM Problem). Given a set of workers W, a
set of users U, a set of workplaces P, the SAM problem is

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

to find a matching result M which can serve the maximum
number of users if the following constraints are satisfied:

* Stable Constraint: Each triple (w,p,Us) € M should
be stable.

* Capacity Constraint: For each triple (w,p,Us) € M,
the size of Ug is no more than the capacity of w.

 Temporal Constraint: For each triple (w,p,U;) € M,
the waiting time of w and his/er assigned users should
not be larger than their maximum waiting time.

e Unique Constraint: Each worker and user can match
one workplace, each workplace can be matched with one
worker.

In the rest of our paper, we call a stable triple that satisfies
all constraints valid triple.

Example 1. Back to the example in Fig 1. Suppose that
the departure time is shown in Table 1, the travel speed
is 0.5, the maximum waiting time of workers is {5,4,10},
the radius of workers is {5,3,8}, the maximum waiting
time of users is {3,4,2,2,3,1,5} and the radius of users is
{3,3,4,5,5,3,6}. The results shown in Fig. 1(a) is not a
SAM result due to none of the triples is valid. On the con-
trary, results in Fig. 1(b) is a SAM result. No one needs to
wait the others for more than their maximum waiting time.

Theorem 1. The SAM problem is NP-hard.

Proof. Let us consider a special case of the SAM problem,
where the leaving time of all workers and users is the same,
at 0:00, and the maximum waiting time is infinity. This spe-
cial case is essentially the 3D-SSM problem [Li et al., 2019].
Since the decision problem of the 3D-SSM problem is NP-
complete [Li et al., 2019], our SAM problem is NP-hard. [

Compared with the 3D-SSM problem, the largest differ-
ence is that the stable triples have monotonic additivity, while
the valid triples do not have. We will illustrate this in detail
using the following theorems.

Theorem 2. (Adapted from [Li et al., 2019]) The stable
triples have monotonic additivity, i.e., if (wy,p1,{u1}) and
(w1, p1,{us}) are stable triples, then (w1, p1,{ui,uz}) is
also a stable triple.

Theorem 3. The valid triples do not have monotonic additiv-

ity, i.e., if (w1, p1, {u1}) and (w1, p1,{us}) are valid triples,
but (w1, p1, {u1,uz}) may be invalid.

Proof. Suppose that w; (resp. u; and wug) reach-
es p1 at T(wi,p1) (resp. T(ui,p1) and T(uz,p2)),
T(u1,p1) — T(w1,p1) = min{Su,, 0w, }» and T(w1,p1) —
T'(uz,p1) = min{du,, 6w, }. Then, T'(u1, p1) — T'(uz,p1) =
main{du,, Ow, b + Min{0uy, 0w, } > min{du,, Ow, ;s du, }»
which breaks the temporal constraint. U

According to Theorem 3, the non-monotonic-additivity of
valid triples greatly increases the difficulty of solving our
SAM. Thus, the existing method in [Li ef al., 2019] cannot
solve our SAM. In the next sections, we describe the efficient
algorithms to solve SAM.

1281

3 Sliding Window Algorithm

In this section, we devise our first algorithm, named Sliding
Window, to solve SAM in a greedy manner.

3.1 Basic Idea

In order to maximize the number of matched users, we prefer-
entially assign users for workers who have a larger capacity.
However, finding the maximum number of matched triples
needs to enumerate all possible combinations of users, work-
ers and places, which is impractical. We find that utilizing
the arriving order of users and the waiting time constraint
can prune a large number of candidate triples of each worker.
Thus, before illustrating our Sliding Window algorithm, we
introduce the definition of timeline and window as follows.

Definition 3 (Timeline). The timeline L shows all arriving
time of users and workers from their location to each work-
place. The origin of the timeline is the time when the first
worker/user departs, while the termination is the time when
the last worker/user arrives at the farthest workplace. If a us-
er u (or worker w) arrives at workplace p at time t, we mark
a pair (u,p) (or (w,p)) at time t on the timeline.

Definition 4 (Window). The window Wisa fixed time inter-
val sliding on the timeline. We call a pair (u,p) (or (w,p))

on time t is covered by the sliding window W if[t,t+ 6y] (or
[t,t + d,]) overlaps with the interval of W.

For example, Fig. 2 shows a timeline from 9:00 to 9:25
of Example 1. (ug,p1) is a pair denoting us arrives at p; at
9:06. (u4, p3) denotes uy arrives at p3 at 9:07. Wisa sliding
window with the length of 5 minutes. W begins at 9:05 and
ends at 9:10. (uga,p1), (U4,£\3), (u1,p1), (ug,p2), (w1,p1)
and (ug4, p1) are covered by W.

We slide a window on the timeline || rounds. In each
round, we only focus on one worker w and find valid triples

for him/her. While sliding the window ﬁ/\ with length §,, on
the timeline, the valid triples can be calculated by combining

these pairs covered by W. Suppose a pair (w, p) at time ¢ and

W is [t,t + &), for each time ¢’ in W, we save users who
can reach p and meet the temporal constraints at time ¢’ in the
covered pairs. Next, users who do not meet the preference
stability are removed. The remaining users can form a valid
triple with w and p. There are at most d,, + 1 valid triples, we
choose the triple with the maximum number of users. The al-
gorithm terminates until the number of matched users reaches
Cw, or the sliding window reaches the end of the timeline.

3.2 Algorithm Description

The details of Sliding Window are illustrated in Algorithm 1.
We initialize a heap A to store all the workers ordered by their
capacity (Line 1) and build a timeline L to show all arriving
time (Line 2). For each worker, we initialize an empty triple
tri to store the matching result of w (Lines 3-5). We slide
the window W from the origin of the timeline L, and each
time slides one scale of the timeline (Lines 6-7). We find
a valid triple with the maximum number of users for a pair
(w, p) that is at the beginning of L (Lines 8-14). We repeat
the above process |W| times to match all workers.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

~

\%Y%
[\ W2,p2

WLP1 W,p3 [Wi,p2
5 vy1oyyy s 20 25

(i T 1)
ug,p3 u3,p1 u7,p3

Uz,p1 uppr u4pi Ue,P3
Ug,P2 us,p2 Uz,p2
Ue,P2

Figure 2: Example of Sliding Window Algorithm

Example 2. Back to Example 1, Fig. 2 shows how to find
the valid triple for w1 using Algorithm 1. In the window W,
a valid triple (w1, p1, {u1,us, us}) is found by checking the
covered pairs. The number of matched users reaches w1’s
capacity and the process of wy terminates. Then, pairs re-
lated to uq, uo, ug and p1 are removed while updating the
timeline. After this, we construct new windows and repeat the
above steps for ws and ws. Valid triples of wo and ws are
(w27p27 {Ug, Us, UG}) and (w3)p37 {U7})

3.3 Algorithm Analysis

Complexity analysis. The complexity of building the time-
line is O(|W| x |P| + |U| x | P|). The complexity of finding
results for workers in W is O(0, x |U]), where U is the set
of users in the covered pairs in W Thus, the worst time com-
plexity is O(|W| x |P| x |U| x |L|). The space complexity

Algorithm 1: Sliding Window
Input: W, U, P
Output: M
1 Make a heap A to store each w € W ordered by their
capacity
2 Construct a time line L
3 while A is not empty do

4 Pop w from A
5 Initialize an empty triple tr¢
6 Construct slide window W with length 4.,
7 while exists next W on L do
8 Find a valid triple ¢74’ with the maximum
number of users for (w, p) that is at the
beginning of W
9 if [tri’.Ug| > |tri.Us| then
10 | tri < trif
11 if |tri.Us| == ¢, then
12 | break
13 if tri is not empty then
14 L Put tri into M and update L

15 return M

1282

is O(|W| x |P| + |U| x |P| +|L|).

4 Threshold Scanning Algorithm

Recall that the Sliding Window greedily assigns users to
workers ordered by their capacity. However, the number of
users that a worker actually serves also depends on the loca-
tions and the departure time. Only focusing on capacity can-
not achieve good results in many cases. To solve the problem
more effectively, we further present a threshold-based algo-
rithm, named Threshold Scanning.

4.1 Basic Idea

To improve the effectiveness, Threshold Scanning use a tem-
porary storage. At the same time, we use a random thresh-
old value to guarantee the efficiency. We divide the whole
timeline into a set of intervals. In each interval, we greedi-
ly sort workers according to their capacity. Workers with a
large capacity are matched preferentially. We randomly se-
lect a threshold value 6 € [1, ¢nq.] based on the capacity of
workers. For a triple (w, p, Us), if |Us| > 6, it is the match-
ing result of w and users in Us. If not, it is temporarily stored.
These triples will be replaced if we can find a triple that can
match more users.

4.2 Algorithm Description

We initialize the result set M, the temporary storage C'ache
and randomly choose a threshold 8 € [1, ¢pqz] (Lines 1-2).
Then, the timeline is divided into a set of intervals (Lines 3-4).
In each interval I;, all the pairs of workers are sorted in a heap
A and are popped one by one (Lines 5-7). If w and p have not
been processed before and |tri.Ug| > 0, tri is put into M as
a matching result (Lines 8-11). If |tri.Us| < 0, tri is stored
into C'ache (Lines 12-13). If w or p has been processed, we
remove the triples related to w and p from Cache and find a
new triple (Lines 14-16). If |¢ri.U,| meets the threshold, tri
will be put into M (Lines 17-18). If |tri.Us| is less than 6 but
larger than the triples that are removed before, {7 is put into
Cache (Lines 19-20). If there is no a better triple, we recover
Cache (Lines 21-22). When the first scan finishes, triples in
M and Cache are merged. In the second scan, we repeat the
above steps with § = 1 (Line 25).

Example 3. Back to Example 2. Suppose 0 = 2 and we
divide the whole timeline into 5 time intervals, each time

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Algorithm 2: Threshold Scanning

Input: W, U, P
Output: M
1 M=0,Cache=1
2 6 = randomly choosing an integer from {1, - , ¢;naz
3 Construct a time line L
4 Divide L into a set of intervals I
5 foreach I; € I do
6 Store (w, p) into A ordered by the capacity of w
7 foreach (w,p) € A do
8 if w ¢ Cache and p ¢ Cache then
9 Find a valid triple ¢ri for (w, p) with the
maximum number of users
10 if |tri.Ug| > 0 then
11 | M = MU {tri}
12 else
13 | Cache = Cache U {tri}
14 else if w € Cache or p € Cache then
15 Remove the triple related to w and p from
Cache
16 Find a valid triple ¢ri for (w, p) with the
maximum number of users
17 if |tri.Ug| > 0 then
18 | M = MU {tri}
19 else if |tri.Ug| is larger than the realted
triple in C'ache then
20 | Cache = Cache U {tri}
21 else
22 | Recovery Cache
23 L

24 M= MU Cache, Cache = ()
25 Repeat Lines 5-23 with 6§ = 1
26 return M

interval is 5 minutes. We skip 1, because it is empty. In
I, there is only one worker, the matching result of wy is
(w1, p1, {u1,us,us}) which the number of users is larger
than 0. In I3, A = {(wa,p3), (w2, p2)}. The matching result
of (wa,p3) is (wa,p3, {ue}) and it is stored in Cache. The
matching result of (wa,p2) is (wa, P2, {us, us,ueg}) which
meets the threshold. (w2, ps3, {ug}) is removed from Cache.
In I, the matching result of (ws,ps3) is (ws, ps, {ur}). It is
stored in Clache. As all the workers are matched, the algo-
rithm terminates. The final results are (w1, p1, {u1,uz,us}),

(w2, p2, {us, us, ue}) and (w3, p3, {ur}).

4.3 Algorithm Analysis

Complexity analysis. The complexity of building the time-
line is O(|W| x |P| + |U| x |P]). The complexity of finding
valid triples in a time interval is O(J]A| x |U| x d,,), where
|Al is the size of pairs stored in each interval. The worst time

complexity is O(|W|x |P| x |U|x |L|). The space complexity

~

is O(|W| x |P| 4+ |U| x |P| + |L|).

1283

Data |W| |P] U] Capacity ~ Waiting Time
A 5 6 20

B 857 1027 4578

C 647 s987 3a972 [LIO1 13100

Table 2: Statistics on Real Dataset

Factor Setting

W] 2000, 4000, 6000, 10000, 20000

|P| 2000, 4000, 6000, 10000, 20000

U] 10000, 20000, 30000, 50000, 100000

120, 140, 160, 180, 200
60, 70, 80, 90, 100
1,4,10

o of locations (Normal Distribution)
o of arriving time (Normal Distribution)

Table 3: Statistics on Synthetic Dataset

S Experiment

In this section, we report the experimental results and corre-
sponding analyses. We use both real and synthetic datasets
in our experiments to verify the effectiveness, efficiency and
scalability of our algorithms.

5.1 Experiment Setup

We conduct our algorithms over gMission [Chen et al., 2014].
In the dataset, each user who posts a task and each worker has
a location, a departure time, a radius and a speed. Each work-
place has a location. We generate the capacity of workers
from 1 to 10, and the maximum waiting time is from 3 to 10
minutes. We extract 3 datasets according to the size of the
regions. We also generate a synthetic dataset to test the algo-
rithms. We generate the location and departure time of users,
workers and workplaces following the uniform distribution.
All users, workers and workplaces are located in a coordinate
system of 800 x 800. The departure time is in 5 hours. To ver-
ify the impact of data distribution, we also generate another
dataset following the normal distribution. In the datasets, the
capacity of each worker varies from 1 to 10. The waiting time
of workers varies from 5 to 10 minutes, and the waiting time
of users varies from 1 to 5 minutes. The maximum radius of
workers as 80, and the maximum radius of users as 40. We set
the travel speed of workers is 8 and the travel speed of users
is 4. The details of real and synthetic datasets are illustrated
in Table 2 and 3 and the default settings are bold.

Compared algorithms. We evaluate our Sliding Window
algorithm (shorted as "WIN”’) and Threshold Scanning algo-
rithm (shorted as ”TS”) with approaches in [Li et al., 2019],
MWIS, GSM, DSM and PATH. We add the temporal con-
strain in MWIS while constructing the graph such that it still
can find the optimal solution in SAM. We remove the invalid
triples from the matching results of GSM, DSM and PATH.
We execute the algorithms 10 times and report the average
results. To further analyze the impact of 6 of TS, we select
three different 6 in the synthetic datasets (shorted as "TS-17,
”TS-4 and " TS-10"). We evaluate the effectiveness of the al-
gorithms using the metric of the matching size. We evaluate
the efficiency of the algorithms by reporting the running time
and memory cost. We conduct the experiments in a machine
with Intel Xeon Silver 4110 and 512GB main memory.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

MWIS
GSM EEEES PATH

DSM mmmm WIN
TS

MWIS E

DSM mmmm WIN
TS

GSM EEEE PATH XY

MWIS
GSM E=EEE PATH

DSM mmmm WIN
TS

15
0.8 Z
50.6 E10
=04 g
= £ s
0.2 2
0 0

Dataset
(a) Matching size of real datasets

B
Dataset
(b) Running time of real datasets

200

Memory(MB)

"B
Dataset
(c) Memory cost of real datasets

Figure 3: Experimental results on real datasets

5.2 Results on Real Datasets

In this section, the experiments are conducted over the real
datasets of gMission and we verify the effectiveness and effi-
ciency of the algorithms, shown in Fig. 3.

Effectiveness w.r.t matching size. From Fig. 3(a), MWIS
can output a best matching result in dataset A, but it cannot
output the result within an acceptable time in larger datasets
because the complexity is too high. GSM is the worst of all
the cases. The performance of PATH and DSM is a bit bet-
ter than GSM in the datasets. The matching size of TS and
WIN are larger than GSM, DSM and PATH. The matching
size of TS is larger than WIN. TS improves the effectiveness
by 5% — 15%. This means that our algorithms are better than
the existing approaches which verifies the effectiveness.

Efficiency w.r.t time and memory cost. The running time
and memory cost are shown in Fig. 3(b) and 3(c). The running
time of MWIS is longer than the others and it cannot out put
a result in dataset B and C before we terminate it. WIN runs
faster than TS. The running time of GSM is less than other
algorithms and PATH is a little more efficient than DSM. The
memory cost of MWIS is the largest in dataset A. Due to
it does not output a result, we do not record its memory in
dataset B and C. Except MWIS, the memory cost by TS and
WIN is the largest in dataset B and C. The memory cost of
GSM and DSM is similar in all the datasets. The memory
cost of PATH is larger than GSM and DSM.

5.3 Results on Synthetic Dataset

We test the scalability by comparing the algorithms on the
synthetic datasets. The results are shown in Fig. 4.

Matching size w.r.t 6. According to the results in the first
column of Fig. 4, we can observe that the matching size of
TS gets larger as 6 increases. The matching size of TS-4 and
TS-10 are larger than WIN at most cases. TS-10 improves the
effectiveness by about 10% — 20%. The matching size of TS-
1 is the smallest because a triple will be saved if the worker
can match at least one user regardless of whether there is a
better triple. It leads to a waste of the capacity. With the
increase of 6, TS replace these triples by better results.

Matching size w.r.t ||, |P| and |U|. Fig. 4(a), 4(d) and
4(g) report the results of matching size w.r.t |W|, | P| and |U|.

1284

With the increase of |W/|, |P| and |U|, we can observe that
the matching size of all the algorithms increases. When |W|
gets larger, the matching size of WIN becomes much smaller
than TS-4. The reason is that TS can retain those workers
who match more users by adjusting the triples so that it can
match more users when the number of workplace is much
smaller than the number of workers. When |P| = 20000,
the matching size of WIN is larger than TS-4. The reason is
that workers have more alternative workplaces to serve users,
and workers are likely to match more users. Similarly, the
increase of |U| also improves the number of users that each
worker could match.

Matching size w.r.t 0. Fig. 4(j) and 4(m) report the results
of matching size w.r.t o of locations and arriving time. We can
observe that the matching size decreases with the increase of
o; and o;. When o increases, the locations become decen-
tralized. The number of workplaces that workers and user-
s can reach decreases gradually, leading to the decrease of
matching size. When o; increases, the number of workplaces
that workers and users can reach stays the same, but the ar-
riving time gets decentralized. Some valid triples will be re-
moved since they does not satisfy the temporal constraint. We
also observe that WIN could get a better result than TS-4 if
the distribution is centralized enough.

Running time w.r.t §. According to the results in the sec-
ond column of Fig. 4, TS-1 runs the fastest. The reason is
that it stores all the valid triples without other operations. The
running time of TS increases with the increase of 6. When 6
equals to 10, TS-10 costs more time than WIN and TS-4. The
reason is that most triples are stored in the cache, and TS-10
has to constantly search whether there are better triples. The
running time of TS-4 is similar to WIN.

Running time w.r.t |WW|, |P| and |U|. Fig. 4(b), 4(e) and
4(h) show the results of running time w.r.t |[W|, |P| and |U]|.
With the increase of |W|, | P| and |U|, all the algorithms cost
more time to find the solution. GSM, DSM and PATH run
much faster. The reason is that they only consider the stable
constrain and ignore the temporal constraint.

Running time w.r.t 0. Fig. 4(k) and 4(n) report the results
of running time w.r.t o of locations and arriving time. The
increase of o; and o; has opposite effects on running time.
With the increase of oy, all the algorithms run faster. The

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

GSM PATH = TS-1 -+ TS-10 -e-
DSM -+ WIN TS-4 =
& !
320
815
m b
210,
S 5
S 5
=9
% 6 8 10 12 14 16 18 20

|W](x10°)
(a) Matching size of varying |V |

GSM PATH = TS-1 -+ TS-10 -e-

DSM -+ WIN TS-4 =
o]
225
x
@ 20
N
v 15 \
£ 10 —
£
= G‘

4 6 8 10 12314161840

[P[(x10°)
(d) Matching size of varying | P|

GSM PATH -= TS-1 -+ TS-10 -e-
DSM -+ WIN TS-4 =

1

0 20 30 40 50 60 70 80 90 100
|U](x10%)

(g) Matching size of varying |W|

GSM PATH -= TS-1 -+ TS-10 -e-
DSM -+ WIN 1S4 =

25

20 %:3:
1

1

5
o

)
(32}
o
v—i
u)
N
m
E
=
@]
2
]
=

5
0
120

140 160

Y]

180 200

(j) Matching size of varying o;

GSM PATH = TS-1 -+ TS-10 -e-
DSM -+ WIN TS-4 =
q

d\\ex‘
20 E————a—
15

A—

0 |

Matching Size(x103)

70

(m) Matching size of varying o

GSM PATH -= TS-1 -~ TS-10 -e-
DSM -+ WIN TS-4 =
300
@250
9]
£200f :
'—
150}
c
c 1001
5
& 50 -
0% % 8 I01214161840
IW|[(x10%)
(b) Running time of varying |W |
GSM PATH = TS-1 -~ TS-10 -e-
DSM -+ WIN TS-4 =
800
@ D
© 6001
£]
'—
4001
£
c
€200
&
§ 10 12 14 16 18 20
PI(x10%)
(e) Running time of varying | P
GSM PATH = TS-1 -~ TS-10 -e-
DSM = WIN TS-4 &
250 —
D500l
ngOO
=150
2100}
g
2 50 |
20 30 4(? 50 603)70 80 90 100
(h) Running time of varying |U]|
GSM PATH -= TS-1 -~ TS-10 -e-
DSM -+ WIN TS-4 =
600
@500
9]
E 4001
8,300
= 200:&\6\5\‘_—'
c
3 100} f
05%
120 140 1060 180 200
|
(k) Running time of varying o;
GSM PATH = TS-1 -~ TS-10 -e-
DSM -+ WIN 1S4 =
400
O ,
'—
@200’ 1]
£ ”_ﬁ/a——‘/
c
< 100y
= R |
OY
60 70 80 90 100
Ot

(n) Running time of varying o

1285

GSM PATH = TS-1 =

DSM == WIN TS-4 =
800

TS-10 -e-

So00
5400
£

5
£200

026 8§81 14 16 18 20
Swikios -

(c) Memory cost of varying |W|

GSM PATH = TS-1 -+ TS-10 -e-
DSM -+ WIN 1S4 &
1000 !
@ 800
=
= 600
9]
£ 400 !
IS
= 200,
4
02356 8101%14161840
[P](x10°)
(f) Memory cost of varying | P|
GSM PATH = TS-1 -+ TS-10 -e-
DSM -« WIN TS-4 &
00
i'ZiGOO
§ 400 .

€
o
8 2005%

010 20 30 4? T? 6% 70 80 90100

(i) Memory cost of varying |U]|

GSM PATH -# TS-1 -~ TS-10 -e-
DSM -+ WIN TS-4 =
1000
L
= 800
=
= 600
) 8
£ 400y = p
2 '\-\.‘.\'
£200 v
0
120 140 1060 180 200
|
() Memory cost of varying o;
GSM PATH -= TS-1 -+ TS-10 -e-
DSM - WIN TS-4 &=
800
—~]
g 600 /
§ 400
£ - -
8 200)
0
60 70 80 90 100
Ot

(o) Memory cost of varying o

Figure 4: Experimental results on synthetic dataset

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

reason is that the number of workplaces that each worker and
user can reach decreases, the time of enumerating triples goes
down. On the contrary, the running time increases with the
increase of o;. The reason is that the timeline gets longer
when the arriving time is more decentralized. It costs more
time to find triples in the timeline. The changing of o; does
not affect the running time of GSM, DSM and PATH as they
do not consider the temporal constrain.

Memory cost w.r.t . According to the results in the last
column of Fig. 4, the memory cost of TS and WIN are similar.
The change of 8 has a slight impact on memory cost.

Memory cost w.r.t [W|, |P|and |U|. Fig. 4(c), 4(f) and 4(i)
show the memory cost of running time w.r.t |WW|, | P| and |U]|.
With the increase of ||, | P| and |U|, the memory cost of all
the algorithms increase. The memory cost of TS and WIN in-
crease rapidly, because they need to build the timeline which
cost much memory. GSM and DSM only store the basic in-
formation, therefore the memory cost of them are similar and
are less than others. PATH needs to build the index, therefore
it costs more memory than GSM and DSM.

Memory cost w.r.t 0. Fig. 4(1) and 4(o) report the results
of memory cost w.r.t o of locations and arriving time. The
distributions of locations and arriving time still show oppo-
site effects. The memory cost decreases with the increase of
07. On the one hand, the decrease of matching size saves
some memory. On the other hand, the number of pairs of the
timeline decreases a lot which is the main reason. When o;
increases, the timeline gets longer, TS and WIN need cost
more memory to store the timeline. The changing of o still
does not affect the memory of GSM, DSM and PATH.

6 Related Work

In this section, we review related work in spatial crowdsourc-
ing from three categories, offline task assignment, online task
assignment and preference-aware task assignment.

Offline task assignment. In the offline scenario, studies
[Kazemi and Shahabi, 2012][To et al., 2015][Gao et al.,
2016] know the global spatial and temporal information. Xi-
a et al. [Xia et al., 2019] formulated a PTA problem which
aimed to maximize the profit of the spatial crowdsourcing
platform. Tong et al. [Tong et al., 2018b] gave a unified
formulation of ride sharing problem and proposed insertion-
based algorithms to solve it. Studies of EBSN [Cheng er al.,
2017bl[She et al., 20171[She et al., 2015] focused on how to
make plans to participate in events.

Online task assignment. In the online scenario, workers
and users dynamically appear on the platform, the global s-
patial and temporal information cannot be known in advance.
Competitive ratio [Karp et al., 1990] is usually used to eval-
uate the performance of the algorithms. Tong et al. [Tong et
al., 2016] analyzed the performance of existing algorithms
through experimental results. Tong et al. [Tong et al., 2017]
tried to predict the taxi demand and guided the drivers based
on the result of prediction methods. With the rise of new spa-
tial crowdsourcing platforms, Song et al. [Song et al., 2017]
proposed a 3D matching as a consequence, calculating the
online matching. The aforementioned studies have achieved

1286

good results in 2D and 3D problems. However, they fail to
consider the services preference of users and workers. Thus,
the algorithms cannot be applied to our problem.

Preference-aware matching. The individual preference is
an important factor to improve the satisfaction of the assign-
ment. Stable marriage [Gale and Shapley, 2013] is a typical
matching problem which considers the preference between
men and women. In recent studies, researchers combine the
individual preference with the spatial and temporal informa-
tion. Zhao et al. [Zhao et al., 2019a] proposed two match-
ing approaches to find a stable assignment in the taxi-calling
platform. The preferences between users and drives were dis-
tance and profit. Zhao et al. [Zhao er al., 2019b] presented
a method to learn the preference in historical data and used
three approaches to get a task assignment. These studies only
focused on 2D matching problem, which cannot be extend-
ed to our problem. Li et al. [Li et al., 2019] proposed a
3D stable matching. In that matching result, for each pair of
match worker and user, there is no place that is closer to both
the matched worker and user. They can make sure that no
matched workers and users both prefer a second workplace to
the matched one. Unfortunately, it ignored an important fac-
tor that the workers and users matched to the same workplace
should arrive almost at the same time. Thus, the algorithms
cannot achieve a good result in SAM.

7 Conclusion

In this paper, we propose a new stable matching problem
called the Simultaneous Arrival Matching (SAM). We prove
that the SAM is NP-hard and the monotonic additivity of the
matching results. To solve the problem effectively and effi-
ciently, we devise Sliding Window and Threshold Scanning.
We compare our algorithms with existing approaches and the
experimental results show the effectiveness and efficiency.
In summary, Threshold Scanning could achieve a better re-
sult than Sliding Window at most cases. Threshold Scan-
ning can solve the problem effectively and efficiently when
a suitable threshold is selected. As for the future work, we
will study distributed and parallel algorithms in larger real-
world datasets, and explore the preference between workers
and users to improve the satisfaction.

Acknowledgements

Yurong Cheng is supposed by the NSFC (Grant No.
61902023, U1811262). Ye Yuan is supported by the NSFC
(Grant No. 61932004, 61572119 and 61622202) and the Fun-
damental Research Funds for the Central Universities (Grant
No. N181605012). Guoren Wang is supported by the NS-
FC (Grant No. 61672145 and 61732003). Lei Chen’s work
is partially supported by the Hong Kong RGC GRF Project
16207617, CRF Project C6030-18GF, AOE Project AoE/E-
603/18, China NSFC No. 61729201, Guangdong Basic and
Applied Basic Research Foundation 2019B151530001, Hong
Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX,
Didi-HKUST joint research lab project, Microsoft Research
Asia Collaborative Research Grant and Wechat and Webank
Research Grant. Guoren Wang is the corresponding author of
this work.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

References

[Bei and Zhang, 2018] Xiaohui Bei and Shengyu Zhang. Al-
gorithms for trip-vehicle assignment in ride-sharing. In
AAAI pages 3-9, 2018.

[Chen et al., 2014] Zhao Chen, Rui Fu, Ziyuan Zhao, Zheng
Liu, Leihao Xia, Lei Chen, Peng Cheng, Caleb Chen Cao,
Yongxin Tong, and Chen Jason Zhang. gmission: A gen-
eral spatial crowdsourcing platform. PVLDB, 7(13):1629-
1632, 2014.

[Chen et al., 2019] Zhao Chen, Peng Cheng, Yuxiang Zeng,
and Lei Chen. Minimizing maximum delay of task as-
signment in spatial crowdsourcing. In ICDE, pages 1454—
1465, 2019.

[Cheng et al., 2015] Peng Cheng, Xiang Lian, Zhao Chen,
Rui Fu, Lei Chen, Jinsong Han, and Jizhong Zhao. Re-
liable diversity-based spatial crowdsourcing by moving
workers. PVLDB, 8(10):1022-1033, 2015.

[Cheng et al., 2017a]l Peng Cheng, Xiang Lian, Lei Chen,
and Cyrus Shahabi. Prediction-based task assignment in
spatial crowdsourcing. In ICDE, pages 997-1008, 2017.

[Cheng et al., 2017b] Yurong Cheng, Ye Yuan, Lei Chen,
Christophe G. Giraud-Carrier, and Guoren Wang. Com-
plex event-participant planning and its incremental variant.
In ICDE, pages 859-870, 2017.

[Cheng et al., 2018] Peng Cheng, Xun Jian, and Lei Chen.
An experimental evaluation of task assignment in spatial
crowdsourcing. PVLDB, 11(11):1428-1440, 2018.

[Gale and Shapley, 2013] D. Gale and L. S. Shapley. College
admissions and the stability of marriage. The American
Mathematical Monthly, 120(5):386-391, 2013.

[Gao er al., 2016] Dawei Gao, Yongxin Tong, Jieying She,
Tianshu Song, Lei Chen, and Ke Xu. Top-k team rec-
ommendation in spatial crowdsourcing. In WAIM, pages
191-204, 2016.

[Karp ef al., 1990] Richard M. Karp, Umesh V. Vazirani, and
Vijay V. Vazirani. An optimal algorithm for on-line bipar-
tite matching. In STOC, pages 352-358, 1990.

[Kazemi and Shahabi, 2012] Leyla Kazemi and Cyrus Sha-
habi. Geocrowd: enabling query answering with spatial
crowdsourcing. In SIGSPATIAL, pages 189—-198, 2012.

[Lieral,2019] Boyang Li, Yurong Cheng, Ye Yuan,
Guoren Wang, and Lei Chen. Three-dimensional stable
matching problem for spatial crowdsourcing platforms. In
KDD, pages 1643-1653, 2019.

[She er al., 2015] Jieying She, Yongxin Tong, and Lei Chen.
Utility-aware social event-participant planning. In SIG-
MOD, pages 1629-1643, 2015.

[She er al., 2017] Jieying She, Yongxin Tong, Lei Chen, and
Tianshu Song. Feedback-aware social event-participant ar-
rangement. In SIGMOD, pages 851-865, 2017.

[Song er al., 2017] Tianshu Song, Yongxin Tong, Libin
Wang, Jieying She, Bin Yao, Lei Chen, and Ke Xu.
Trichromatic online matching in real-time spatial crowd-
sourcing. In ICDE, pages 1009-1020, 2017.

1287

[Song er al., 2018] Tianshu Song, Feng Zhu, and Ke Xu.
Specialty-aware task assignment in spatial crowdsourcing.
In AISC, pages 243-254, 2018.

[Tao et al., 2018] Qian Tao, Yuxiang Zeng, Zimu Zhou, Y-
ongxin Tong, Lei Chen, and Ke Xu. Multi-worker-aware
task planning in real-time spatial crowdsourcing. In DAS-
FAA, pages 301-317, 2018.

[To et al., 2015] Hien To, Cyrus Shahabi, and Leyla Kaze-
mi. A server-assigned spatial crowdsourcing framework.
TSAS, 1(1):2:1-2:28, 2015.

[Tong et al., 2016] Yongxin Tong, Jieying She, Bolin Ding,
Lei Chen, Tianyu Wo, and Ke Xu. Online minimum
matching in real-time spatial data: Experiments and anal-
ysis. PVLDB, 9(12):1053-1064, 2016.

[Tong et al., 2017] Yongxin Tong, Libin Wang, Zimu Zhou,
Bolin Ding, Lei Chen, Jieping Ye, and Ke Xu. Flexible
online task assignment in real-time spatial data. PVLDB,
10(11):1334-1345, 2017.

[Tong er al., 2018a] Yongxin Tong, Libin Wang, Zimu Zhou,
Lei Chen, Bowen Du, and Jieping Ye. Dynamic pricing in
spatial crowdsourcing: A matching-based approach. In
SIGMOD, pages 773-788, 2018.

[Tong er al., 2018b] Yongxin Tong, Yuxiang Zeng, Zimu
Zhou, Lei Chen, Jieping Ye, and Ke Xu. A unified ap-
proach to route planning for shared mobility. PVLDB,
11(11):1633-1646, 2018.

[Tran et al., 2018] Luan Tran, Hien To, Liyue Fan, and
Cyrus Shahabi. A real-time framework for task as-
signment in hyperlocal spatial crowdsourcing. TIST,
9(3):37:1-37:26, 2018.

[Xia et al., 2019] Jinfu Xia, Yan Zhao, Guanfeng Liu, Jia-
jie Xu, Min Zhang, and Kai Zheng. Profit-driven task as-
signment in spatial crowdsourcing. In IJCAI, pages 1914—
1920, 2019.

[Zhao er al., 2019a] Boming Zhao, Pan Xu, Yexuan Shi, Y-
ongxin Tong, Zimu Zhou, and Yuxiang Zeng. Preference-
aware task assignment in on-demand taxi dispatching: An
online stable matching approach. In AAAI, pages 2245—
2252, 2019.

[Zhao et al., 2019b] Yan Zhao, Jinfu Xia, Guanfeng Li-
u, Han Su, Defu Lian, Shuo Shang, and Kai Zheng.
Preference-aware task assignment in spatial crowdsourc-
ing. In AAAI, pages 2629-2636, 2019.

	Introduction
	Problem Statement
	Sliding Window Algorithm
	Basic Idea
	Algorithm Description
	Algorithm Analysis

	Threshold Scanning Algorithm
	Basic Idea
	Algorithm Description
	Algorithm Analysis

	Experiment
	Experiment Setup
	Results on Real Datasets
	Results on Synthetic Dataset

	Related Work
	Conclusion

