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Abstract
Large volumes of urban statistical data with mul-
tiple views imply rich knowledge about the devel-
opment degree of cities. These data present cru-
cial statistics which play an irreplaceable role in
the regional analysis and urban computing. In re-
ality, however, the statistical data divided into fine-
grained regions usually suffer from missing data
problems. Those missing values hide the useful in-
formation that may result in a distorted data analy-
sis. Thus, in this paper, we propose a spatial miss-
ing data imputation method for multi-view urban
statistical data. To address this problem, we exploit
an improved spatial multi-kernel clustering method
to guide the imputation process cooperating with an
adaptive-weight non-negative matrix factorization
strategy. Intensive experiments are conducted with
other state-of-the-art approaches on six real-world
urban statistical datasets. The results not only show
the superiority of our method against other compar-
ative methods on different datasets, but also repre-
sent a strong generalizability of our model.

1 Introduction
Urban statistic data connect social sciences, urban comput-
ing, administrative management, transportation, and regional
planning that are significant for city development [Murgante
and Danese, 2011; Zheng et al., 2014; Gong et al., 2020].
These statistical data usually include multi-fold views (e.g.,
views of Population and Economy) to reveal the growth gaps
among different administrative regions from various perspec-
tives. For example, the economy view records the key eco-
nomic indicators for fine-grained regions, such as the number
of industries and employee statistics; and the population view
consists of detailed population information of all age groups
in each region.

The statistic data provide key statistics to governments,
business and the community on social science, for the ben-
efit of all aspects of human life.

However, in some places, statistical data are hard to be en-
tirely acquired due to document defacement, error recordings,
∗Corresponding Author

Figure 1: Regional similarity: the property of r1 is similar to the
‘Sydney centre’ because they are neighboring each other. Although
r2 is closer to the park in terms of the physical distance, the attributes
of r2 are more analogous to ‘Sydney centre’ than the park because
they have a similar functional property (business centre).

and statistician misplay. Such missing data hide useful infor-
mation which may cause distorted results for further analysis.
To the best of our knowledge, it is still a blank field con-
cerning this specific problem, but the real demand appears.
Hence, the missing value imputation for urban statistical data
is a vital task for reliable urban computing and government
services.

In this paper, we study the problem of missing-data impu-
tation for the Australian Bureau of Statistics (ABS), which
has some unique challenges:
• Missing temporal information. In the real-world data

from ABS, almost all the missing values in the current year
were also missing in the past years, which may be caused
by the region restriction and complicated human-made er-
rors. This violates the basic assumption of matrix comple-
tion [Candès and Recht, 2009] that the unobserved entries are
sampled uniformly at random. Thus matrix completion-based
approaches may not work in this case.
• Multi-view problem. The complicated underlying in-

teractions suggest that simply recovering the missing infor-
mation without considering the correlations among attributes
and multi-modes will end up with a poor performance. For
example, the economy view has strong correlations with the
income and population views, so that a high-quality economy
in a region usually goes along with a better income and a
larger population; and a low-level economy in a region has a
high probability of being connected with a lower income and
a smaller population.
• Spatial correlation mining problem. As illustrated in Fig-
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ure 1, the statistical data focusing on fine-grained regions may
change over locations significantly and non-linearly. There-
fore, to properly recover the missing information of statistical
data, we need to consider the regional similarities.

To date, a number of missing data imputation approaches
are applied in urban statistical data, e.g., mean-filling (MF),
k-nearest-neighbor (KNN) filling [Pan and Li, 2010], and
collaborative filtering based methods [Ranjbar et al., 2015].
Most of them, however, have been proposed to focus on the
single view problem. Besides, although several spatiotempo-
ral methods can infer the missing information based on the
knowledge from both spatial and temporal domains [Yi et al.,
2016; Cheng and Lu, 2017; Zhou and Huang, 2018], they
do not perform well when the missing temporal information
challenge appears. To address all challenges, our proposed
method is designed as a spatially related method which can
only use spatial information to achieve a strong performance.
In detail, the method integrates a spatial multi-kernel cluster-
ing method and an adaptive-weight non-negative matrix fac-
torization (NMF) for solving the multi-view spatially related
tasks. We summarize the main contributions and innovations
of this paper as follows:

• To handle the multi-view problem with spatial charac-
teristic, we propose a Spatially related Multi-Kernel K-
Means (S-MKKM) method to identify the underlying
relationships among multiple views and capture the re-
gional similarities.
• We propose an adaptive-weight non-negative matrix fac-

torization approach to leverage the information learned
above to tackle the multi-view missing data imputation
problem. Besides, the proposed method also takes the
guidance from the single-view and the real geographic
information with KNN strategy into consideration.
• A spatial multi-view missing data imputation method

for urban statistical data based on non-negative matrix
factorization is proposed, called SMV-NMF. SMV-NMF
does not rely on the temporal information but achieves a
great performance only using spatial information.
• Our experiments on six real-world datasets verify the

effectiveness of our method. All the empirical results
show that the proposed method SMV-NMF outperforms
all the other state-of-the-art approaches. Furthermore,
SMV-NMF shows strong generalizability and can trans-
fer the constructed model from one urban dataset to an-
other well.

2 Related Work
2.1 Spatial Missing Data Imputation
Missing data imputation is a significant task for data anal-
ysis [Van Buuren, 2018]. In the spatially related problem,
neighborhood and collaborative filtering [Su and Khoshgof-
taar, 2009; Yi et al., 2016] based methods are two kinds of
dominant approaches in missing data filling. Although some
classical methods (e.g., zero-filling, mean value filling, re-
gression models) can be applied to the spatial missing data
imputation, they have disadvantages in nature, i.e, they are
not designed for this spatial problem. [Chen and Liu, 2012]

used the inverse distance weighting (IDW) method to inter-
polate the spatial rainfall distribution. [Wu and Li, 2013] uti-
lized the spatial information as inputs in a residual kriging
method to estimate the average monthly temperature. Unlike
the spatial model, some successful spatio-temporal models
were proposed for use with time stream data [Yi et al., 2016;
Cheng and Lu, 2017; Zhou and Huang, 2018; Atluri et al.,
2018]. However, they focused on filling missing entries by
considering both spatial and temporal properties, and would
not perform well on the static spatial data without the tempo-
ral information. Furthermore, these discussed methods lever-
aged the spatial guidance but did not consider the problem on
multi-view datasets.

2.2 Multi-view Learning
Multi-view learning methods involved the diversity of differ-
ent views that can jointly optimize functions based on various
feature subsets [Singh and Gordon, 2008; Li et al., 2018].
[Xu et al., 2015] proposed a matrix co-factorization based
method (MVL-IV) to embed different views into a shared
subspace, such that the incomplete views can be estimated
by the information on observed views. To connect multi-
ple views, MVL-IV assumes that different views have dis-
tinct ‘feature’ matrices (i.e., {Hi}di=1), but correspond to the
same coefficient matrix (i.e., W ). However, it does not ex-
ploit the spatial correlations and may suffer from the imbal-
ance problem, i.e., if there is a substantial missing ratio gap
between views, the coefficient matrix W is mostly learned
from the dense view. In our method, we have addressed
this weakness by introducing guidance matrices. Another
widely used strategy for solving the multi-view problem is
tensor factorization [Rendle et al., 2009; Xiong et al., 2010],
but this restricts a regular tensor that requires the number
of dimensions per view to be the same. Moreover, multiple
kernel learning with incomplete views [Trivedi et al., 2010;
Liu et al., 2017] only focuses on completing missing kernels
instead of filling missing values. To the best of our knowl-
edge, none of the above studies considered both spatial and
multi-view problems. Hence, in this paper, we proposed an
effective missing value imputation model for multi-view ur-
ban statistical data.

3 The Proposed Method
3.1 Problem Description and Preliminary
As illustrate in Figure 2, this research focuses on completing
the missing values in the urban statistical data, where one ur-
ban dataset contains multiple views, e.g., Income, Population,
Economy views, etc. For a dataset with n regions (r1,...,rn)
and d views, the dimension of attributes in the p-th view is
mp (1 ≤ p ≤ d). Our method aims to impute the missing
values with a high accuracy.

Multi-view NMF
The multi-view NMF aims to learn a latent subspace W ∈
Rn×k

+ by multiple views {X1...Xd} through the multi-view
generation matrices Hp ∈ Rk×mp

+ . The basic missing data
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Figure 2: Problem Description.

imputation model can be described as the following optimiza-
tion objective:

arg min
W≥0,Hp≥0

J0 =

d∑
p=1

||Yp � (Xp −WHp)||2F , (1)

where Yp are indicator matrices whose entry Yp(i, j) is one
if Xp(i, j) has been recorded (for observed values) and zero
otherwise (for missing values); and � is the Hadamard prod-
uct operator.

Multiple Kernel K-means (MKKM)
Let {xi}ni=1 be a collection of n samples (region), xi repre-
sents the statistical features of the i-th region, and φp(·) be the
p-th view mapping that maps x onto the p-th reproducing ker-
nel Hilbert space. In this case, each sample has multiple fea-
ture representations defined by a group of feature mappings

φβ(xi) = [β1φ1(xi)
>
, · · · , βdφd(xi)

>
]
>

, where β consists
of the coefficients of the d base kernels. A kernel func-
tion can be expressed as κβ(xi,xj) = φβ(xi)

>φβ(xj) =∑d
p=1 β

2
pκp(xi,xj). And a kernel matrix Kβ is then cal-

culated by applying the kernel function κβ(·, ·) to {xi}ni=1.
Based on the kernel matrix Kβ, the objective of MKKM can
be written as:

min
V ,β

Tr(Kβ(In − V V >))

s.t. V ∈ Rn×l,V >V =Il,β
>1d = 1, βp ≥ 0, ∀p,

(2)

where V is the clustering matrix; 1d ∈ Rd is a column vector
with all 1 elements; In and Il are identity matrices with size
n and l; l is the number of clusters.

3.2 Multi-view Spatial Similarity Guidance
As discussed in Section 2.2, multi-view matrix factorization
based methods suffer from the imbalance problem. In this pa-
per, we build the similarity guidance Xmv

p for the p-th view
Xp to address this problem. Accordingly, we propose an ap-
proach to obtain regional similarities via the spatially related
MKKM model, called S-MKKM. The basic idea is that the
development of a city gradually fosters different functional
groups, such as educational and business districts, where the
regions belonging to the same group would have strong con-
nections with each other [Zheng et al., 2014]. S-MKKM
utilizes the MKKM clustering algorithm combined with a
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Figure 3: An example of building Xmv
p . Assume that regions x1

and x3 are falling into one cluster with the blue background, and
x2 and x4 belong to another cluster with gray background. x2 and
x3 are the centroid regions of two clusters, respectively. For a miss-
ing entry x12, its corresponding value x32 is used as an imputation
guide. Moreover, if the value in centroid region is missed, then a
greedy strategy is implemented to find the nearest observed value
(use x49 to fill x29).

graph Laplacian dynamics strategy (an effective smoothing
approach for finding spatial structure similarity [Deng et al.,
2016; Gong et al., 2018]) to cluster regions into the functional
groups. Specifically, we construct a graph Laplacian matrix
L, defined as L = D −M , where M is a graph proximity
matrix that is constructed from the regional physical topology
(i.e., M(i,j) = 1 if and only if the region xi is contiguous to
xj), and D is a diagonal matrix D(i,i) =

∑
j(M(i,j)). With

this constraint, the S-MKKM model is expressed as follows:

min
V ,β

Tr(Kβ(In − V V >)) + αTr(V >LV )

s.t. V ∈ Rn×l,V >V = Il,β
>1d = 1, βp ≥ 0, ∀p,

(3)

where α is the regularization parameter; V is the consensus
clustering matrix.

To get the complete kernels, we initially impute the miss-
ing data for each view by a simple method, such as KNN
or MF. After that, Eq. (3) can be solved by alternately up-
dating V and β: i) With the kernel coefficients β fixed, V
can be obtained by choosing the l smallest eigenvectors of
(−Kβ+αL). ii) With V fixed, β can be optimized via solv-
ing the quadratic programming with linear constraints [Liu et
al., 2017].

The objective of the S-MKKM is to discover the regions
with similar properties and build the guidance matricesXmv

p .
After having gotten V ,Xmv

p can be built. Figure 3 shows an
example of this process. The construction process of Xmv

p
is that i) for the unknown entry xij , and the region xi ∈ c-th
cluster, we use its corresponding value xc(i),j from the cen-
troid region to impute xij ; ii) if the corresponding value of
centroid region is also missed, a greedy strategy will be used
to find the nearest observed value for imputation.

3.3 Adaptive-Weight NMF
To learn the knowledge fromXmv

p more reliably, we propose
an adaptive weighting strategy in the NMF imputation pro-
cess. The adaptive-weight matrix of the p-th view is denoted
as Zp ∈ Rn×mp

+ , which is built by an exponential function as
shown in Eq. (4) and (5).

zp(i) = e−Dist(vi,vc(i)), (4)
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Zp = zp1
>
mp
, (5)

where Dist(·, ·) is the Euclidean distance calculating from
the geo-location (vi) and its corresponding centroid region
(vc(i)), here we use the latent embedding vi to represent the
geo-location of region i, and vc(i) represents the centroid of
the c-th cluster which contains region vi; zp ∈ Rn

+ is a col-
umn vector and 1mp is all-ones vector with size mp. It is not
a straight way for imputation, but the adaptive-weight matrix
Zp controls how much information can be extracted. Zp ad-
justs the penalty of each estimated entry. As emphasised in
the First Law of Geography [Tobler, 1970], the near things
have more spatial correlations than distant things. If the dis-
tance between xi and xc(i) is small, we want a high penalty
to guide the imputation process.

Combining the above strategy, our model can be described
as the following optimization function:

arg min
W≥0,Hp≥0

J1 =J0+λ1

d∑
p=1

||Ȳp�Zp�(Xmv
p −WHp)||2F ,

(6)
where Ȳp = 1 − Yp, 1 is an all one matrix that has the same
size as Yp; Xmv

p is a homomorphic matrix of Xp; and λ1
is the regularization parameter to control the learning rate of
Xmv

p .

3.4 Improved by Single-view and KNN Guidances
S-MKKM aims to find the regional groups by considering
multiple views simultaneously. However, it is obvious that
each view has its characteristics, and the relationships be-
tween regions in one specific view are also critical for imput-
ing missing entries. To consider the above knowledge, we ap-
ply the spatially related kernel k-means (S-KKM) to capture
the similarities among regions of each view. It is essentially
analogous to the learning process of S-MKKM as discussed
in section 3.2, but considering each view, respectively. For
one viewXp, the S-KKM model is expressed as follows:

min
Vp

Tr(Kp(In − VpVp
>)) + αTr(V >p LVp)

s.t. Vp ∈ Rn×l,Vp
>Vp = Il,

(7)

where Kp is one separate kernel and Vp represents the p-th
clustering matrix based onXp.

In fact, to reduce the complexity of our model, we assume
that the physical location affects the clustering performance
with the same degree and the number of clusters is the same
as that in S-MKKM, i.e., l and α are the same as used in Eq.
(3). The reason behind this assumption is that most cities have
the same functional regions, such as the residential region
and business region. Thus, it is reasonable that we choose
the same α and l in this practical task. Besides, α and l are
very stable due to the intrinsic property of the urban statistical
data, and we fixed them in the experiments. The single view
guidance matrix Xsv

p and adaptive-weight matrix Z
′

p can be
constructed by the same strategy of buildingXmv

p and Zp.

Furthermore, for each region, its k-nearest spatial neigh-
bors imply rich information that should be considered in our
model. Even though the regional physical topology is al-
ready involved in multi-view and single-view learning pro-
cesses, the KNN is a more flexible method. After structuring
Xknn

p which is an imputed matrix with the average value of
k-nearest neighbors, our final optimization function is shown
as follows:

arg min
W≥0,Hp≥0

J=J1+λ2

d∑
p=1

||Ȳp�Z
′

p�(Xsv
p −WHp)||2F

+ λ3

d∑
p=1

||Ȳp � (Xknn
p −WHp)||2F ,

(8)
where λ2 and λ3 are the regularization parameters to control
the learning rate ofXsv

p andXknn
p , respectively.

Given the estimated factor matrices W and Hp based on
the above update equations, the filled data are given by:

X̂p = Yp �Xp + Ȳp � (WHp) (9)

3.5 Learning Algorithm
As Eq. (8) is a non-convex problem, we use the multiplica-
tive update strategy [Lee and Seung, 2001] to ensure the con-
vergence under the following update rules. We first initial-
ize latent space matrices (W and Hp) by decomposing data
matrices {X1...Xd}. The update rules for W and Hp are
presented in Eq. (10) - (11).

W = W�
d∑

p=1

(Yp�Xp+Ȳp�(λ1Zp�Xmv
p +λ2Z

′
p�Xsv

p +λ3X
knn
p ))H>p

d∑
p=1

((Yp + Ȳp � (λ1Zp + λ2Z
′
p + λ31)) � (W>Hp)H>p )

(10)

Hp = Hp�

W (Yp �Xp+Ȳp � (λ1Zp �Xmv
p +λ2Z

′
p �Xsv

p +λ3X
knn
p ))

W (Yp + Ȳp � (λ1Zp + λ2Z
′
p + λ31)) � (W>Hp)

(11)

The above two multiplicative update rules guarantee to be
non-negative if the initialization is positive. Without this con-
straint, the matrices W and Hp could be negative, thus the
imputation results could be negative too, which is a contradic-
tion to the facts. The process of SMV-NMF is summarized in
Algorithm 1.

Time complexity and convergence. We discuss the time
complexity and convergence of SMV-NMF here. The time
complexity of guidance matrices Xmv

p and Xsv
p is mainly

affected by MKKM. Even though MKKM has a high compu-
tational complexity (O(n3)), it is not involved in update loop
of variables (W and Hp). Eq. (10) and Eq. (11) present that
the time complexity of our final function is governed by ma-
trix multiplication operations in each iteration. Therefore, the
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Algorithm 1: SMV-NMF
Input: original data {Xp }; graph Laplacian matrix

L.
Output: complete data {X̂p}.

1 ImputeXp by KNN for an initialization.
2 InitializeW andHp by decomposingXp.
3 ConstructXmv

p ,Xsv
p andXknn

p by S-MKKM,
S-KKM, and KNN respectively.

4 for t = 1 to T do
5 if |Jt − Jt+1| / Jt ≥ ε then
6 updateW By Eq. (10)
7 updateH By Eq. (11)
8 else
9 Break

10 Return X̂p By Eq. (9).

time complexity per iteration is dominated by O(nk2). Due
to the pursuing of pinpoint accuracy, we sacrifice efficiency
to some degree in this real-world problem. In terms of con-
vergence, Algorithm 1 is guaranteed to converge when W
or Hp is fixed, because the second-order derivatives regard-
ing W or Hp are positive semi-definite. Thus, the objective
function can achieve its optimal value by optimizing W and
Hp alternately.

4 Experiments
In this paper, we have conducted complete experiments to
demonstrate the effectiveness of our method1.

4.1 Datasets
There are six real-world urban statistical datasets (Sydney,
Melbourne, Brisbane, Perth, SYD-large, and MEL-large),
where -large datasets contain much more fine-grained re-
gions from Australian Bureau of Statistics (2017). Each
dataset contains four views, i.e., Economy, Family, Income,
and Population. The size of the six datasets are 174, 284, 220,
130, 2230, 1985 respectively. The designation of regions is
based on the Australian Statistical Geography Standard for
the best practical value. The scales of different views are nor-
malized into the same range [0,10] so that we can evaluate
the results together. The numbers of the dimension of the
four views are 43, 44, 50, 97, respectively. We choose Aus-
tralian cities mostly because the Australian Bureau of Statis-
tics provides enough data for our study, while such data from
other countries is inaccessible to us. However, our method is
general enough and can be applied to other cities with admin-
istrative areas and statistical census data. To guarantee the
diversity of testing, for each missing ratio, we randomly se-
lect the test columns and repeat the experiment 20 times and
report average results.

1The strict proof, resource code, and parameters used to
achieve the best performance on different datasets are shown in the
https://github.com/SMV-NMF/SMV-NMF.

4.2 Baselines & Measures
Baselines
We compare the proposed method SMV-NMF with the fol-
lowing 12 baselines. All parameters of the proposed method
and baselines are optimized by the grid search method.

sKNN: A classical method that uses the average values of
its k nearest spatial neighbors as an estimate (k=6).

MKKMIKa; MKKMIKb: A MKKM based method to
handle the incomplete views [Liu et al., 2017]. We modified
it to adapt to the spatially related data, then interpolated a
missing value by its k nearest spatial neighbors (k=6); Utilize
the mean value of each cluster to fill the missing data.

NMF: Fill the missing data by NMF.
IDW: A global spatial learning method compared in many

works [Chen and Liu, 2012; Cheng and Lu, 2017].
UCF: The Local spatial learning method based on collab-

orative filtering [Su and Khoshgoftaar, 2009; Yi et al., 2016].
IDW+UCF: The average result of IDW and UCF.
MVL-IV: A state-of-the-art multi-view learning method

based on matrix co-factorization, which learns a same coeffi-
cient matrix to connect multiple views [Xu et al., 2015].

ST-MVL: A state-of-the-art method to impute spatio-
temporal missing data [Yi et al., 2016]. We only use its spatial
part due to the problem of missing temporal information.

SMV-MF; MV-NMFa; MV-NMFb: Remove the non-
negativity constraint in SMV-NMF; Remove the graph Lapla-
cian dynamics strategy in SMV-NMF when building the
Xmv

p andXsv
p ; Remove the KNN guidance in SMV-NMF.

Measures. We utilized the most widely used evaluation
metrics in our paper, namely Mean Relative Error (MRE) and
Root Mean Square Error (RMSE).

MRE =

∑Q
i=1 |ui − ûi|∑Q

i=1 ui
, RMSE =

√∑Q
i=1(ui − ûi)2

Q
,

where ûi is a prediction for missing value, and ui is the
ground truth; Q is the number of prediction values.

4.3 Results on Urban Statistical Datasets
The first set of experiments is designed to assess performance
on each dataset. We pick up half of statistical fields (proper-
ties) in each urban dataset randomly as the validation set, and
the other half as the test set. In the test set, we randomly
select missing ratios from 10% to 70% to evaluate the impu-
tation accuracy.

Table 1 presents the average errors of all missing ratios
across different test methods. It is clear show that our ap-
proaches (SMV-MF, MV-NMFa, MV-NMFb, SMV-NMF)
perform much better than other baselines across different
missing ratios on six real-world datasets, where SMV-NMF
achieves the best results. Without the non-negativity con-
straint, SMV-MF performs worse than SMV-NMF, which
demonstrates the effectiveness of this constraint. MVL-IV
yields better results than ST-MVL, MKKMIKa, IDW+UCF,
and NMF becuase it considers the multi-view problem.

To represent our results more clearly, we pick the top
eight methods varying different missing ratios on the Sydney
dataset, which is shown in Figure 4. It is apparent that NMF
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Methods Sydney Melbourne Brisbane Perth SYD-large MEL-large
MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE

sKNN 0.3302 1.5319 0.3108 1.3181 0.3534 1.4787 0.3701 1.5754 0.2998 1.2543 0.2635 1.1155
MKKMIKb 0.3281 1.5507 0.3462 1.4635 0.3773 1.5934 0.3986 1.6992 0.3413 1.6112 0.3067 1.4552

IDW 0.3321 1.5183 0.3187 1.3188 0.3517 1.4663 0.3724 1.5574 0.3273 1.4992 0.3081 1.2587
UCF 0.3566 1.6631 0.3380 1.4635 0.3626 1.5928 0.3757 1.6554 0.3327 1.4230 0.3321 1.5093

IDW+UCF 0.3300 1.4604 0.3141 1.3048 0.3408 1.3967 0.3591 1.4924 0.3045 1.2236 0.2970 1.2111
MKKMIKa 0.3073 1.4393 0.2833 1.2264 0.3167 1.3479 0.3546 1.5066 0.2915 1.2808 0.3019 1.2300

NMF 0.2189 1.3841 0.1990 1.1557 0.2225 1.3048 0.2469 1.2866 0.2385 1.1996 0.2032 1.0660
ST-MVL 0.2948 1.3137 0.2833 1.1796 0.3117 1.2932 0.3325 1.3949 0.2948 1.0772 0.2829 1.1453
MVL-IV 0.1948 1.0603 0.1744 0.8185 0.1970 0.9698 0.2252 1.0676 0.1792 0.8959 0.1834 0.9223
SMV-MF 0.1911 0.9360 0.1851 0.8006 0.1832 0.8033 0.2199 0.9647 0.1777 0.8315 0.1922 0.9015

MV-NMFa 0.1806 0.9257 0.1816 0.8159 0.1640 0.7296 0.2170 0.9721 0.1714 0.8226 0.1858 0.8613
MV-NMFb 0.1829 0.9609 0.1738 0.8048 0.1647 0.7703 0.2239 1.0095 0.1681 0.8046 0.1763 0.8124
SMV-NMF 0.1773 0.9084 0.1687 0.7471 0.1574 0.7051 0.2097 0.9347 0.1620 0.7753 0.1692 0.7911

Table 1: The average MRE and RMSE of all missing ratios on four urban statistical datasets. Best results are bold.

10% 20% 30% 40% 50% 60% 70%
missing ratio

1

1.5

2

2.5

R
M

SE

IDW+UCF
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Figure 4: Average RMSE with the variation of missing ratios.

is sensitive to the missing ratio, which could get good results
under the lower level missing ratios, but performs worse when
the missing ratio increases. Our methods, (SMV-MF, MV-
NMFa, MV-NMFb, SMV-NMF) have significant improve-
ments compared with current baselines.

Overall, SMV-NMF outperforms the other baselines be-
cause it integrates both multi-view and spatial problems to ad-
dress the specified missing data imputation task. MV-NMFa

and MV-NMFb remove a part of the spatial guidance which
results in slightly worse performances than SMV-NMF.

4.4 Generalizability Test
We conduct experiments on testing the generalizability in this
section. In detail, we choose the dataset Sydney as the vali-
dation set and two urban datasets (Melbourne and Brisbane)
as the test sets. We report the experimental results on eight
available algorithms. SMV-NMF is the most outstanding ap-
proach, as shown in Figure 5.

Our method represents strong generalizability which can
transfer the constructed model from one urban dataset to an-
other. This is because there are high correlations among
cities. For example, the number of functional regions of each
city is mostly the same, resulting in the same amount of clus-
ters. The gap between SMV-NMF and MVL-IV narrows as
the missing ratio increases, but the former is more robust than
the latter because SMV-NMF achieves the best results across
all missing ratios. Table 2 reveals the average errors using
two evaluation metrics. The generality test demonstrates that
our model SMV-NMF is a universal model that performs well
crossing different urban statistical datasets.

10% 20% 30% 50% 60% 70%missing ratio
0.5
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40%

Figure 5: The average RMSE in generalizability tests.

Methods Dataset Melbourne Dataset Brisbane
MRE RMSE MRE RMSE

UCF 0.3311 1.4026 0.3656 1.5624
IDW 0.3324 1.3374 0.3697 1.4934

IDW+UCF 0.3182 1.3061 0.3518 1.4552
MKKMIKa 0.2827 1.2018 0.3137 1.3020

ST-MVL 0.2794 1.1391 0.3123 1.2698
NMF 0.1538 0.9067 0.1781 0.9196

MVL-IV 0.1510 0.7879 0.1636 0.8089
SMV-NMF 0.1506 0.7202 0.1493 0.6718

Table 2: Generalizability test. We report the average MRE and
RMSE of all missing ratios and best results are bold.

5 Conclusion
In this paper, we propose a spatial missing data imputation
method for multi-view urban statistical data, called SMV-
NMF. To address the multi-view problem, an improved spa-
tial multi-kernel method is designed to guide the imputation
process based on the NMF strategy. Moreover, the spatial cor-
relations among different regions are involved in our method
from two perspectives. Firstly, the latent similarities are dis-
covered by S-MKKN and S-KKM based on the idea of find-
ing functional regions, and secondly, KNN is used for captur-
ing the information of real geographical positions. We con-
duct intensive experiments on six real-world datasets to com-
pare the performance of our model and other state-of-the-art
approaches. The results not only show that our approach out-
performs all other methods, but also represent strong gener-
alizabilities crossing different urban datasets.
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