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Abstract

With the proliferation of learning scenarios with
an abundance of instances, but limited amount of
high-quality labels, semi-supervised learning algo-
rithms came to prominence. Graph-based Semi-
Supervised Learning (G-SSL) algorithms, of which
Label Propagation (LP) is a prominent exam-
ple, are particularly well-suited for these prob-
lems. The premise of LP is the existence of ho-
mophily in the graph, but beyond that nothing
is known about the efficacy of LP. In particu-
lar, there is no characterisation that connects the
structural constraints, volume and quality of the
labels to the accuracy of LP. In this work, we
draw upon the notion of recovery from the liter-
ature on community detection, and provide guar-
antees on accuracy for partially-labelled graphs
generated from the Partially-Labelled Stochastic
Block Model (PLSBM). Extensive experiments
performed on synthetic data verify the theoretical
findings.

1 Introduction

In several practical learning scenarios — e.g., e-commerce,
genomics, image search, speech recognition and natural lan-
guage processing — out of the large number of available in-
stances, only a handful are typically labelled. The cost asso-
ciated with labelling necessitates employing semi-supervised
learning (SSL) in such cases. Graph-based SSL (G-SSL)
is an influential approach to SSL that seeks to exploit ho-
mophily [McPherson et al., 2001]), in order to estimate the
labels of the unlabelled instances. First introduced in [Zhu et
al., 2003], and subseauently popularised in [Zhu, 2005], La-
bel Propagation (LP), enjoyed widespread empirical success
in G-SSL and sparked a series of extensions: [Talukdar and
Crammer, 2009], [Chakrabarti et al., 2014], [Stretcu et al.,
20191.

Sadly, theoretical understanding of the efficacy of these
algorithms has been lacking. Till date, to the best of our
knowledge, only [Yamaguchi and Hayashi, 2017] attempts to

*Equal contribution
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characterise the performance of LP, by proving equivalence
with the problem of community recovery in PLSBM, an ex-
tension of the Stochastic Block Model (SBM) [Abbe et al.,
2015] to the case of partially-labelled graphs. However, be-
yond equivalence, [Yamaguchi and Hayashi, 2017] does not
quantify the efficacy in terms of well-understood notions of
predictive performance, such as accuracy. We address this
gap by noting an equivalence between the notion of accuracy
and that of community recovery [Abbe and Sandon, 2015;
Ke and Honorio, 2018]. Moreover, we characterise the con-
ditions on graph structure, volume and quality of available
labels that lead to upper- and lower-bounds on accuracy for
LP.

Our contributions are listed below (see Table 1 for a quick
reference):

* We extend the notion of success and failure beyond
equivalence ([Yamaguchi and Hayashi, 2017]) by con-
necting it to 100% accuracy, > 100(1 — ¢)% accuracy,
and < 100(1 — §)% accuracy, respectively, for arbitrary
9,0 € (0,1). See §3.2 for details.

* We characterise the condition on graph structure, label
volume and quality, that leads to < 100(1 — §)% accu-
racy by connecting it to the notion of failure of recovery
([Ke and Honorio, 2018]) (§4).

» We state similar necessary conditions that lead to 100%
accuracy by connecting it to the notion of exact recovery
([Saad and Nosratinia, 2018]) (§5).

e We state a well-positioned conjecture on similar nec-
essary conditions that lead to 100(1 — 9)% accuracy
by connecting it to the notion of partial recovery ([Yun
and Proutiere, 2014]), for the case of ¥ = $/n, where
s = o(n) (§6).

» We extend the failure of recovery result obtained in [Ke
and Honorio, 2018] to the case of partially-labelled SBM
with K > 2. See Theorem 2.

* We provide extensive experimental evidence support the
theory (including the conjecture) on synthetic partially-
labelled graphs. See §7 for details.

Proofs and additional experimental evidences are available
in the supplementary material !.

'See following URL: http://bit.ly/PLSBM_TJCAI20
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Domain Source  Equivalence Guarantee Failure Guarantee Success Guarantee
Xpir = Xaiar Acc. < 100(1 — 6)% Ace. > 100(1 — £)%  Acc. = 100%
Present Work I (§2.3: PLSBM (n,e1,---)) 0 (84: PLSBM, K >2) 7 (86: PLSBM) I (§5: PLSBM)
G-SSL [Yamaguchi and Hayashi, 2017] {Z (PLSBM (n,n,--+)) X X X
c . [Ke and Honorio, 20181 X E (SBM, K = 2) X X
ommunity
Detection [Yun and Proutiere, 2014] X X 4 sBmy X
[Saad and Nosratinia, 2018] X X X {ZT (m-ary SBM)

Table 1: A compendium of novel theoretical results presented in this work.

2 Background

We begin by recounting the equivalence theorem derived
in [Yamaguchi and Hayashi, 2017].

Let (A, X) denote a partially-labelled graph on n nodes,
[n], where the first n; nodes, [n;], carry a label in [K].
X € {0,1}™*¥ denotes the labels on nodes, when avail-
able. For nodes i € [ny], X; is the one-hot representation
of the corresponding label z; € [K|, whereas for the unla-
belled nodes, j € [n] \ [m], X; = 0 (0 denotes the K-
dimensional zero vector). A € {0,1}"*™ denotes the ad-
jacency matrix, where A; ; = 1 indicates the presence of
edge between nodes 7 and j (we assume that there are no self-
loops: A;; = 0,Vi € [n]). Graph-based semi-supervised
learning (G-SSL) attempts at recovering the label, X, of the
hitherto unlabelled nodes, [n] \ [n;].

2.1 Discrete Label Propagation
Definition 1 (DLP [Yamaguchi and Hayashi, 2017]). DLP

estimates the true labels of the nodes, Xprp € {0, 1}”XK R
as a solution to the following (combinatorial) optimisation
problem:

arg min EZ | X, — YZHE + %ZZA”

Y —YiII?
Ye{0,1}nxK 2 i £ ¥s =Yl
’ i=1 i=1 j=1

(D

A relaxation, Y € [0,1]"*% and a subsequent round-
ing leads to the original Label Propagation algorithm [Zhu,
2005]. Tt is worth noting that the solution to LP, X p €

{0,1}™*¥ is a worse optimiser of Equation 1 than Xpzp
because of the intermediate relaxation and rounding.

2.2 Partially-Labelled Stochastic Block Model

Definition 2 (PLSBM [Yamaguchi and Hayashi, 2017]).
PLSBM (n,n;,a, K, Q) posits a generative model over the
Samily of partially-labelled graphs, (A, X), defined as fol-
lows:

1. Each node i € [n] is assigned a label, x; € [K], (cor-
responding to its community membership) with uniform
probability 1/k, yielding a set of balanced communities
in expectation “.

2PLSBM is typically defined with z; ~ Mult(- | 7), i.i.d. How-
ever, the restricted notion with v = 1/k1 suffices for the present
work.
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2. The entries of the adjacency matrix, A, are generated
iid., with Pr(A;; = 1| 2,25) = Qqu, 2, where Q €
(0, 1)K*E is a symmetric matrix. In other words, A; ; |
X ~ Bern(-|Qq, o), i.id.

3. For the nodes in [n), (potentially noisy) labels, ' €
(K], are revealed i.i.d. as follows: Pr(z} = z;) =1 —«
and Pr(z; = j) = %5,Vj # ;. The rest of the nodes,
indexed {n; + 1,--- ,n} remain unlabelled.

In §4, §5, §6, we use another equivalent for-
mulation of PLSBM ([Saad and Nosratinia, 2018]),
PLSBM (n, €, o, K,Q), with the following modification:
instead of revealing the label of the nodes in [n;], we reveal
labels (with or without noise, as before) for each node in [n]
with probability ¢;. With ¢, = “*, in expectation, labels for
ny nodes are revealed under PLSBM (n, ¢, o, K, Q).

Given (A,X’) ~ PLSBM(n,n;,a,K,Q), we let
Xaap = arg max y Pr(X|A4, X’; ¢, o, Q) denote the MAP
estimate of the (latent) membership vector X (obtained
through an inference procedure such as variational EM [Ya-

maguchi and Hayashi, 2017]). Similarly, we let m =
arg maxy Pr(X, A, X’; ¢, @, Q) denote the corresponding
MLE estimate. Following [Abbe e al., 2015], we note that

—

XJ\,{AP = )(/JWTEH when Y= 1/K]_.

2.3 Equivalence of DLP and PLSBM

The following result builds a bridge between the two seem-
ingly disparate disciplines of graph-based semi-supervised
learning and graph generative models:

Theorem 1 ([Yamaguchi and Hayashi, 2017]). Given a re-
alisation (A, X') ~ PLSBM (n,n;,a, K, puI + v(117 —
I)), and number of nodes in each cluster, n;,Vk € [K],

)?D;:(/\) = m(a,u,u), if the following conditions
hold:

1. If X > 0, then u > v; else if A\ < 0, then p < v; else if
A =0, then u = v; and
a(K—-1) _ pn(l—v)
2. Aln——*=1In =)
Discussion. It is not hard to see that Theorem 1 holds for
PLSBM(n, €, a, K, Q) as well, since the log-likelihood is
identical to that of PLSBM (n,n;, o, K, @), barring a con-

T

stant. This extension of Theorem 1, with X ;4 p substituted
with X7 g, will be used in the subsequent sections (§4, §5,

§6).
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In what follows, we strengthen Theorem 1 by further con-
necting the notion of recovery in the context of community
detection (see §3.1) to that of accuracy in the graph-based
semi-supervised learning (see §3.2). §3.3 provides an outline
of the theoretical results we have obtained.

3 Preparation

We begin with a brief refresher of the relevant definitions
from the literature ([Abbe and Sandon, 2015] and [Saad and
Nosratinia, 2018]) on the recovery of communities.

3.1 Recovery of Communities in PLSBM

Exact Recovery

The correct community memberships for all the nodes must
be inferred with probability tending to 1 as n — oo in order
to attain exact recovery. In other words, lim,, ., Pr(X =

X ) = 1, where the probability is defined by the generative
model of PLSBM (n, ¢, a, K, Q).

[Saad and Nosratinia, 2018] furnishes exact recovery re-
sults under a more general generative model of partially-
labelled graphs (m-ary side information) for K = 2, which
we adapt in §5 to the case of PLSBM.

Partial Recovery

The correct community membership for at least s nodes
must be inferred with probability tending to 1 as n —
oo in order to attain partial recovery. In other words,
limy, oo Pr(01(X, X) < s/n) = 1, where (*1(X, X) =
% Zie[n] 1,22,y is the usual 0-1 loss counting the fraction
of errors. To the best of our knowledge, no result exists for the
partially-labelled graphs that we study. [Yun and Proutiere,
2014] furnishes a partial recovery result for the SBM with
K = 2, when s = o(n). We dwell upon this topic in §6,
where we put forth a well-reasoned conjecture based on this
result.

Failure of Recovery

The correct community membership of at least 100(1 — 6)%
of the nodes (in expectation) must be incorrectly inferred in
order to attain failure of recovery, for any given ¢ € [0, 1]. In
other words, for every node Pr(z; # x;) > 4. [Ke and Hon-
orio, 2018] studies failure of recovery from an information-
theoretic perspective and derives algorithm-agnostic results
for SBM with K = 2. In §4, we refine the result for partially-
labelled graphs (PLSBM) and extend it to the case of i > 2.
We refer the interested reader to [Abbe, 2017] for a compre-
hensive survey on this topic, in addition to the above works.

3.2 Success and Failure of G-SSL

We now connect the notion of accuracy in the G-SSL par-
lance to that of recovery in community detection, and lend
precise definitions to the notions of its success and failure:

Total success. It is easy to see that exact recovery leads to
100% accuracy - this is the strongest possible notion of suc-
cess for G-SSL. Note that this guarantee on accuracy only
holds with probability tending to 1 as n — oo.
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Partial success. Since partial recovery places an upper-
bound on the 0-1 loss, £ (X, X) < 5/n, it leads to a lower-
bound, 100(1 — )%, accuracy. Note that this guarantee on
accuracy only holds with probability tending to 1 as n — oo.

Failure. Failure to recover, guaranteeing Pr(z; # x;) >
8,Vi € [n], puts a lower-bound on the 0-1 loss, £} (X, X) >
4 in expectation. Therefore, it translates to an upper-bound of
100(1 — 6)% on accuracy. Note that this guarantee holds in
expectation, irrespective of the value of n.

3.3 Outline of the Theoretical Results

In what follows, we connect the three notions of recov-
ery (§3.1) to the corresponding notions of accuracy (§3.2).
§4 employs information-theoretic tools deployed in [Ke
and Honorio, 2018] to prove an algorithm-agnostic non-
asymptotic upper-bound on accuracy; however, it extends the
result presented therein to the case of PLSBM, and to the
case of K > 2 communities. §5 adapts the result presented
in [Saad and Nosratinia, 2018] to the case of PLSBM. §6 puts
forth a well-reasoned conjecture that proposes to extend the
result presented in [Yun and Proutiere, 2014] to the case of
PLSBM. At a high level, all the three results state one struc-
tural constraint (involving ) for each regime of the volume
and quality of labels (governed by ¢; and «, respectively) that
is either necessary for recovery (or, in some cases, sufficient
as well). The corresponding guarantee on accuracy of LP is
then made by invoking Theorem 1.

We refer the reader to Table 1 for a summary of the re-
sults presented in the remainder of this work, and a high-
light of our contributions both w.r.t. the literature on the suc-
cess/failure of G-SSL ([Yamaguchi and Hayashi, 2017]) in
the top two rows (shaded in gray ), as well as the literature

on community detection ([Ke and Honorio, 2018], [Saad and
Nosratinia, 2018], [Yun and Proutiere, 2014]) that we adapt
in the bottom two rows (below the rule). Inside the bracket,
we provide a pointer to the corresponding section, as well as
highlight the difference with the corresponding paper that we
adapt (marked with & in the same column).

4 Failure of Recovery & Up to 100(1 — 0)%
Accuracy

In this section, we aim to provide a sufficient condition for the
failure of recovery and, thus, furnish an upper-bound on the
accuracy. We choose to prove algorithm-agnostic and non-
asymptotic bounds and resort to information-theoretic tech-
niques employed in [Ke and Honorio, 2018]. Note that their
proof applies to SBM with no side-information and is limited
to the K = 2 setting — two limitations that we alleviate in
this work. Note that we do not consider bounds specific to
any inference technique such as MLE ([Saad and Nosratinia,
2018] and [Abbe et al., 2015]) or those that are asymptotic
([Abbe and Sandon, 2015]). We state the theorem below:

Theorem 2. Given (A,X') ~ PLSBM(n,¢,a, K, Q),
where () is a weakly assortative matrix as defined by
ming (Qr,r — maxy Qi) > 0, every algorithm fails to es-
timate the true membership, X, with Pr(X # X) > 0, for
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any given 6 € [0, 1] if:

2(1 =) log K + 4¢

Bern
Diax (@) < —

max

2¢ 1 log 2
_ n_ll <a(K—1)+ a(K—l)> - (n> 2)

2

Where Bern(:|p) is the Bernoulli distribution with param-
eter p € [0,1] (and support in {0,1}) and DES™(Q) =
max; je(x] KL(Bern(Q; ;)||Bern(Q; ;))

Sketch of Proof. We make use of Fano’s inequality,

Pr(X # X) > 1 - HAZS)Hos2

to lower-bound
Pr()A( # X). Next, we upper-bound the mutual infor-
mation, I(A, X’; X), relying on a combination of indepen-

dence/additivity, uniform bounding. O

Discussion. Theorem 2 characterises the parameter space
of PLSBM (n, e, «, K, Q) that leads to a failure of infer-
ence by furnishing a structural constraint (involving Q) for a
regime of labelling defined by the volume (¢;) and quality («)
of labels. Note that a(K — 1) + m increases with de-

crease in o (signifying gradual increase in the quality of the
labels). Hence with increasing ¢; > 0 (signifying a gradual
transition in the volume of labels from rare to abundant), the
product term ¢ (a(K — 1) + m) increases, thus reduc-

Bern

ing the RHS and destroying the inequality unless D¢ (Q)
is very low. In other words, abundance of high-quality (low
noise) labels helps community recovery, as expected.

Discussion. (A, X') ~ PLSBM(”,GZ,OZaQ,alOVgLnI+

bk’% (117 -T)), and the weak assortativity constraint, a > b,
allows us to simplify and bound the term DE¢™((Q) in Equa-

max

tion 2 using the inequality, logx < x — 1, to yield:

(a —b)?
nop(1-plen)

1 1 2log2
< 2(1 —6)log2 + 2¢,(2 — —)) —
< o (20- 0082+ 2002~ (@ + 1)) - 2252

n—1

3)

Note that in the limit n — oo, the RHS tends to 0, whereas the

LHS tends to @. Therefore, the only way to guarantee
failure is a = b, which turns the intra- and inter-community
connectivity identical making the communities completely
indistinguishable.

Discussion. Demanding a pronounced failure will require
us to set 1 — § low, so that the accuracy upper-bound is tight-
ened. This will lower the RHS and demand an increasing de-
gree of indistinguishability (by lowering D2'2(Q)) for fail-
ure of recovery.

Discussion. This information theoretic result holds regard-
less of the algorithm employed for exact recovery, one of
which is the MLE algorithm which has been shown by [Ya-
maguchi and Hayashi, 2017] to be the same as LP [Bengio et
al., 2006] since the MAP objective functions are equivalent.
This means that, under the condition presented in Theorem 2,
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LP will misclassify any given node on the graphs generated
by PLSBM with high probability, and therefore should not be
applied at all.

Corollary 1 (Up to 100(1 — 0)% accuracy of LP). By The-
orem 2, if the volume and the quality of labels (governed by
€; and «, respectively) fail to balance the structural separa-
tion (governed by DE™(Q)), every algorithm would fail to
infer X effectively (since Pr(X # X) > 1 —§). Therefore,
MLE will not succeed, as well: i.e. Pr(X/A-/[E; #+ X) >

"

1 — 6. By Theorem I and its extension, Xprp = XpyLE for
PLSBM (n,n;, o, K, ul +v(117 — 1)) with given commu-
nity sizes, {ny, | k € [K]}, for an appropriate choice of .
Together, it guarantees that in expectation, the labels inferred
by LP will have atmost 100(1 — §)% accuracy.

Corollary 1 strengthens the precision of Theorem 1 consid-
erably by lending a precise notion to the term failure, rather

than capturing it by a far weaker notion of )TDE: #* XpmLE
([Yamaguchi and Hayashi, 2017]).

5 Exact Recovery & 100% Accuracy

We now characterise the regime in which LP attains 100%
accuracy on partially-labelled networks generated from sym-
metric PLSBM with K = 2. To this end, we adapt the result
on exact recovery ([Saad and Nosratinia, 2018]) for a more
general model of partial labelling, m-ary side-information, to
the case of symmetric PLSBM.

We commence by formally defining the restricted PLSBM
setting i.e., PLSBM with two symmetric clusters.

Definition 3 (Symmetric PLSBM with K = 2). Symmetric
PLSBM is PLSBM (n, €/, c, 2, "2 T + 127 (117 — 1)),

n
where each of the two clusters are of size /2.

Definition 4 (m-ary SBM). Instead of just 2 symbols, as in
the case with symmetric PLSBM with K = 2, m-ary side-
information encodes x; with an alphabet of size m: [m)]. The
crossover, Pr(z} | x;) = My, ., is governed by a stochastic
matrix (each row sums to 1), M € R?*™,

It is easy to see that symmetric PLSBM with K = 2 can
be equivalently viewed as an m-ary side-information with
m = 3, where the alphabet is {—1,+1,0}. This enables us
to formulate the following theorem:

Theorem 3. Given (A, X') sampled from a symmetric
PLSBM, if MLE exactly recovers the true membership X,
then:

1. (ff\/g)2>2,if(el,a)€7?,1(el,a),

2. (f*\/g)2+2ﬂ > 2, with 8 > 0, if (e,a) €
Ra(er, a3 8),

3. n(a, b, |B1]) + 262 > 2, with 0 < |B1] < T—(“gb) and
B2 >0, if (e, ) € Ra(e, o B, B2),

Where T = log ¢, n(a, b, 3) = a+b+ﬂ—2%+% log (1%?3)

and v = /3% + abT?.
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Before we provide a sketch of the proof, we need to define
the regimes’ Rl (Gla Oé), R2(€l, Qg ﬂ) and R3(€l7 Qg ﬁl? 52)’ of
label volume and quality precisely. Intultlvely, a low value
of €, (equivalently, a low value of log ;—, since ¢; € [0,1])
signifies rarity in labels. Similarly, a too high (o« = 1) or
a too low (a0 =~ 0) value of o would be informative - since
it would either favour the incorrect label always, or would
favour the correct label. Since log 1 attains its maximum
at o« = 1/2, this term captures the lack of information. Since
Theorem 3 is inherently asymptotic, we need to bound these
quantities as n grows: e.g. between log 1%61 = o(logn)
and log 1%61 = f(logn), the former indicates a rare regime,
whereas the latter signifies (relative) abundance. We opera-
tionalise these intuitions as follows:

1. Rq(er, «): Either log(1 — ¢;) € o(logn), or, {log €;(1 —
a),log a, log (1570%)} C o(logn).

2. Rao(e, ,B) Either log(1 — ¢;) € —Blogn + o(logn),
or, log 725 € o(logn) and {loge;(1 — a),log g} C
—Blogn + o(logn).

3. Rs(e, a3 b1, B2): log ) € B1logn + o(logn), and,
if 51 > 0 then log ¢;(1 — a) € —fBalogn + o(logn) or
if #1 < O then log ;a0 € —B21logn + o(log n)

Sketch of Proof. In the case of symmetric PLSBM with
K = 2, the symbol y € [m] is informative * if f} =
log %*”‘ is O(logn), and is non-informative if f{ =

o(logn). By Theorem 5 of [Saad and Nosratinia, 2018],
this translates to the corresponding condition on log (=) a)
Similarly, the symbol y is rare if fj = log M4, or f3 =
log M_4 ,, is O(logn) (o(log n) leads to the abundance). By
Theorem 5 of [Saad and Nosratinia, 2018], this translates to
the corresponding conditions on log(1 — ¢;), loge; (1 — @),
log €.

Corollary 2 (100% accuracy of LP). By Theorem 3, if m
exactly recovers the true labels X, the necessary condi-
tions on the symmetric PLSBM parameters must hold and
align with the three regimes, Ri(e;, ), Ra(e, « ,B) and

Rs(er, ; B1, B2). By Theorem I and its extension, XDLp

Xa e for symmetric PLSBM, since ny = ng = %, for an
appropriate choice of A for each of the three regimes/(e\.g.,
A = w(logn) when (e, ) € Ri(er, a)). Therefore, if Xprp
recovers the true labels X with 100% accuracy, the sym-
metric PLSBM parameters have to lie in one of the three
regimes *.

Corollary 2 strengthens Theorem 1 by precisely defining

the notion of success beyond X/DE: = Xpye as found
in [Yamaguchi and Hayashi, 2017]. §6 further generalises
the notion of success.

30ur usage of the terms informative and rare follows [Saad and
Nosratinia, 2018]

“Note that this is not sufficient. However, the experimental evi-
dence presented in Figure 1 supports the characterisation.
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6 Partial Recovery & at Least 100(1 — /n)%
Accuracy

In this section, we present a well-reasoned conjecture for the
partial recovery of PLSBM, based on the results on partial re-
covery of SBM, without partial labelling, presented in [Yun
and Proutiere, 2014]. Figure 1 furnishes experimental evi-
dences in its support. We formulate the following corollary
based on Theorem 1 of [Yun and Proutiere, 2014]:

Corollary 3. For a symmetric SBM (n,2,pl + ¢(117 — 1))

with p = alofn and ¢ = blog’" where a > b, the number of
nodes with wrongly mferred community memberships under
a certain spectral algorithm does not exceed s (s = o(n))

with high probability in the asymptotic sense, if:

2a 2log n/s
VB
(Va bz log(alogn) logn
After scaling both sides with lcl)ogn’} , taking liminf,,

we recover the necessary condition, (va — vb)? > 2, of
Theorem 3, barring the scaling factor on the LHS (and the
strict inequality):

lim mf
n— oo Og /g

" (Va—Vb)? >

This, further, tempts us to extend this observation to the
case of a symmetric PLSBM with K = 2 in all the three
regimes of Theorem 3, as well as to the MLE estimator (in-
stead of the spectral algorithm that Corollary 3 relies upon),
and put forth the following conjecture (see Figure 1 for the
experimental evidence in its favour):

Conjecture 1. Given (A, X') sampled from a symmetric

PLSBM, if Xy makes at most s (s = o(n)) mistakes,
asymptotically, and with high probability, then:
1. liminf, 13)?& (vVa — vb)?
Rl (6l7 Oé),

2. liminf, . li‘;g,g ((\f— Vb)? —|—2B> > 2, with 3 >
0, if (e1, ) € Ra(er, ;3 B),

3. liminfnﬁoolé‘;%@(m@ |61]) + 252) > 2, with
0 < 4] < T@ and B2 > 0, if (e,a) €
Rs(er, a; B, B2),

Where T = log ¢, n(a,b,) = a +b+ 3 — 2% +

8 7 log (’Hﬁ) and v = +/ 32 + abT2.

Corollary 4 (At least 100(1 — ¢/n)% accuracy of LP). Mod-

ulo Conjecture 1, if Xypg recovers X barring at most s
(s = o(n); e.g. s = +/n) mistakes with high probability
as n — oo, then the necessary conditions on the symmet-
ric PLSBM parameters must hold and align with the three
regimes, Ri(e, ), Raler, o; 8) and Rs(er, o f1, B2). By
Theorem 1 and its extension, X/D;z = m for symmetric
PLSBM, since n1 = ny = 4, for an appropriate choice of

> 2, (6[,0[) €

A for each of the three regimes. Therefore, if Xprp recovers
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Figure 1: Variation of accuracy of LP, A1g1 and A1g2 with the MAC (see §7) for the three regimes of Theorem 3.

the true labels X with 100(1—$/n)% accuracy, the symmetric

PLSBM parameters have to lie in one of the three regimes .

Conjecture 1 helps us relax the definition of success pre-
sented in §5, and helps us bolster Theorem 1 with a precise

and widely applicable definition of success beyond X/DE: =
X g as presented in [Yamaguchi and Hayashi, 2017].

7 Empirical Results

We consider synthetic graphs generated by a symmetric 2-
cluster PLSBM for the three regimes of Theorem 3 with

an assortativity matrix Q@ = [§ 3], where p = alo%

and ¢ = bm%, with @ > b. We define a modi-
fied assortativity coefficient (MAC) as (va — Vb)?, (va —
Vb)2 + 283,n(a,b,|B1]) + 28- for the regimes, R (e, a),
Ra(er, o B) and R3(e, o; 1, B2), respectively. From The-
orem 3 we see that as we vary the MAC in each regime from
0 to 2, we expect the accuracy of LP to rise gradually from
50% (or less) to 100%, with the intermediate values governed
by Conjecture 1. The results shown in Figure 1 demonstrate
that this is indeed the case, where in addition to LP [Zhu,
2005], we consider two other algorithms adapted for exact
and partial recovery of PLSBM, for comparison: a) Algl
— exact recovery algorithm proposed in [Saad and Nosra-
tinia, 2018] which employs a weak recovery algorithm ([Mas-
soulié, 2014]) with a label flipping procedure to achieve exact
recovery; b) Alg2 — it is similar to Algl, but with the Spec-
tral Partition algorithm ([Yun and Proutiere, 2014]) swapped
with [Massoulié, 2014] instead.

For generating these graphs, we set n = 107, b = 1, and
varied a accordingly to get the desired values of the MAC.
For regime R 1, we set the number of partially labeled nodes,
n; = logn and for regimes R and Rg3, we set n; = y/n. For
the regime R, the label corruption probability, o was set to
0.1, whereas for the regime R 3 it was set to 1075,

7.1 Observations

We mark the regimes of failure (acc. < 100(1—6)%, 6 = 0.5)
and success (acc. = 100%) as predicted by the theory in Fig-
ure 1 in light red and light green, respectively. As per Theo-
rem 3, the success regime is the entire region where the MAC
is > 2. From Corollary 1, in the asymptotic case as n — 0o

>Note that this is not sufficient. However, the experimental evi-
dence presented in Figure 1 supports the characterisation.
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the failure regime becomes infinitesimally small. Since the
value of n is large (= 107), the failure regime becomes quite
narrow and Figure 1 shows that accuracy of our algorithms
drops below 50% even outside it. This illustrates the fact that
Corollary 1 only gives us a regime of guaranteed failure and
does not imply that failure will not occur outside the regime.
However this is probably due to the imperfection of the ex-
isting algorithms. Hence we can reasonably expect that as G-
SSL algorithms get more sophisticated, the empirical point of
failure will get pushed further and further towards the theo-
retical failure regime.

Following Conjecture 1, the values of the MAC for dif-
ferent lower bounds of guaranteed accuracy are obtained by

simply scaling by a factor of 10;0(%1 75)' That is, for an accu-

racy guarantee of 100(1 — $/n)%, the MAC must be above
9log(n/s) e delineate a few such values of the MAC as

logn

black (dotted) vertical lines on the graphs and find them to
be quite accurate lower bounds of accuracy of LP, thus fur-
nishing empirical evidence in its favour. We also observe that
99% accuracy is achieved long before the theoretical success
regime of exact recovery (acc. = 100%), which highlights
the importance of the partial recovery result. Since we get al-
most identical graphs for the three cases of Theorem 3, these
results corroborate the theory presented in the paper in the
realm of a symmetric 2-cluster PLSBM.

8 Conclusion

In this paper we have imparted new meaning and formalisa-
tion to the notions of success and failure of LP by relating
its accuracy to the notions of recovery in community detec-
tion. The novel theoretical results presented characterise the
efficacy of LP based on graph structure, label volume and
quality. Experiments on synthetic datasets generated from
PLSBM confirmed the theory, as well as furnished insights on
the regimes that the theory does not apply to. However, anal-
ysis of a broader family of G-SSL algorithms on real-world
graphs remains an interesting open problem.
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