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Abstract
The classification of graph-structured data has be-
come increasingly crucial in many disciplines. It
has been observed that the implicit or explicit hi-
erarchical community structures preserved in real-
world graphs could be useful for downstream clas-
sification applications. A straightforward way to
leverage the hierarchical structures is to make use
of pooling algorithm to cluster nodes into fixed
groups, and shrink the input graph layer by layer
to learn the pooled graphs. However, the pool
shrinking discards graph details to make it hard
to distinguish two non-isomorphic graphs, and the
fixed clustering ignores the inherent multiple char-
acteristics of nodes. To compensate the shrink-
ing loss and learn the various nodes’ characteris-
tics, we propose the multi-channel graph neural
networks (MuchGNN). Motivated by the underly-
ing mechanisms developed in convolutional neu-
ral networks, we define the tailored graph convo-
lutions to learn a series of graph channels at each
layer, and shrink the graphs hierarchically to en-
code the pooled structures. Experimental results on
real-world datasets demonstrate the superiority of
MuchGNN over the state-of-the-art methods.

1 Introduction
Classifying the graph-structured data has become an impor-
tant problem in various domains, such as the biological graph
and chemical molecule analysis [Aynaz Taheri, 2018]. In pre-
dicting the associated label of a graph structure, one of the
most effective information is the pooled structures present in-
herently in real-world graph. For example, the pooled struc-
tures defined by the nodes’ communities and their correlation
determines the outline relationship in social media [Aditya
and Jure, 2016]. The local molecular structures would signif-
icantly influence the properties of a molecule.

To take advantage of the implicit or explicit pooled struc-
tures, a straightforward way is to shrink and learn the input
graph hierarchically [Ying et al., 2018; Gao and Ji, 2019].
The hierarchical graph neural networks (GNN) are set up
based on two main components: pooling algorithm and GNN.
The pooling algorithm is used to cluster nodes of the input

graph and then formulate pooled graphs layer by layer. It
is comparable with the pooling layer in convolutional neu-
ral networks (CNN) [Krizhevsky et al., 2012], which coarsen
image resolution to extract the hierarchically global knowl-
edge. Given the pooled graph at each layer, GNN model is
applied to learn embedding representations of the node com-
munities [Bruna et al., 2013; Velickovic et al., 2017; Vaswani
et al., 2017; Zhou et al., 2019]. The core idea is to update
a node via aggregating the representations of itself and its
neighbors to learn the neighborhood structure. To classify the
input graph, its latent representation could be generated by
summarizing all the representations of node communities at
the last layer of hierarchical GNN [Shervashidze et al., 2011;
Duvenaud et al., 2015; Dai et al., 2016].

However, the direct applications of hierarchical GNN are
still problematic for classifying graphs because of the follow-
ing two reasons. First, the pooling algorithm discards edge
details to shrink the input graph. Given two non-isomorphic
graphs, they may be pooled into the same ones at the higher
layers, and possess the similar and indistinguishable graph
representations. Second, the pooling algorithm only cap-
tures the partial characteristics of nodes, and clusters them
fixedly to learn a single pooled structure at each layer. Gener-
ally, nodes in the real-world graphs could play various roles
and belong to different communities simultaneously. In other
words, they could be naturally clustered from multiple views
to formulate the distinct pooled graphs. Thus, the single
pooled graph in the existing work may fail to preserve the
multiple nodes’ characteristics.

To tackle the above problems, we propose the multi-
channel GNN framework which encodes a series of pooled
graphs layer by layer. The graph series at each layer learns
the various characteristics of nodes to compensate the graph
shrinking, and improve the capability to distinguish the non-
isomorphic graphs. Via clustering the nodes learned with
various characteristics, the graph series keeps the multi-view
pooled structures of the input graph. The proposed frame-
work is motivated by CNN from the image domain, where
both the convolutional filter and pooling layer work together
to operate on image channels hierarchically. The grid-like
image could be regarded as a special type of graph-structured
data, at which the pixel is represented by a node. Each
pixel has 8 directly adjacent pixels located from the upper
left to the lower right. However, there are two challenges
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Figure 1: An illustration of the MuchGNN framework consisted of 2 layers. For each layer, the graph convolutions updates the node
embedding, and then the feature learning prepares a series of graph channels encoded with different node characteristics. Between the
successive two layers, the pooling module is applied to obtain the pooled graphs. Graph embeddings learned at each layer are concatenated
to represent the entire graph. It is fed into the differentiable classifier to predict the corresponding label.

in building up such a deep neural network for the general
graph-structured data. First, across each graph, the nodes
have various numbers and uncertain orders of their neighbors.
The local convolutions in CNN cannot be directly applied to
learn the nodes’ characteristics to formulate the graph series,
since it is predefined with the shape of local neighbors. Sev-
eral attempts [Abu-El-Haija et al., 2018; Geng et al., 2019;
Zhang et al., 2018b] have been made to handle this challenge
by manually predefining the adjacency matrix, which is not
generalizable. Second, considering the pooled graph series as
shown by (X1, A1) and (X2, A2) in Figure 1, they have the
pooled structures with different physical meaning. The nodes
of one channel cannot be mapped to those of the other, since
they are clustered from the different patches. The edges also
cannot be mapped because they connect the different node
clusters. That prevents us from using the channel-wise con-
volutional filters in CNN to aggregate these graph series to
generate the new pooled graphs at the next layer. The filters
could only sum up the grid-like image channels with the same
physical meaning in the pixels.

We address the above challenges by developing the multi-
channel graph neural networks (MuchGNN) as shown in Fig-
ure 1. To be specific, it could be separated as the following
two research questions. (i) How to define the convolutional
filters to learn the various nodes’ characteristics to formulate
the pooled graph series? (ii) How to define the graph convo-
lutions to aggregate the distinct pooled graphs? In summary,
our major contributions are described below.

• We propose a multi-channel GNN framework, at which
a series of pooled graphs are encoded hierarchically.

• We design the convolutional filter to learn the node char-
acteristics without reliance on the neighborhood shape.

• We define the inter-channel graph convolutions to aggre-
gate the graph channels via message passing.

2 Preliminaries
The goal of graph classification is to map graphs into a set
of labels. Let G = (A,X) denote the directed or undirected
graph consisting of n nodes, where A ∈ {0, 1}n×n denotes
the adjacency matrix, and X ∈ Rn×d denotes the feature
matrix in which each row represents a d-dimensional feature
vector of a node. Given a set of graphs {G1, . . . , GN} ⊂ G
and the corresponding labels {y1, . . . , yN} ⊂ Y , the chal-
lenge is to learn the graph representations to facilitate the fol-
lowing graph classification: f : G → Y .

2.1 Graph Neural Networks
GNN uses the adjacency structure and node features to learn
the node embeddings. A general ”message-passing” based
GNN could be expressed by [Xu et al., 2018]:

Hk = σ((Hk−1 +AHk−1)Wk) ∈ Rn×d, (1)

where Hk denotes the hidden node embedding after k steps
of graph convolutions, Wk ∈ Rd×d denotes the trainable
transformation matrix, and σ denotes the ReLU activation
function. We initialize H0 by input feature X . Node em-
bedding is updated by aggregating the representations of its
neighbors and itself. After K steps of message passing, we
could reach out to the neighbors that are at maximumK hops
away from the central node. For the ease of presentation, we
denote GNN associated with K steps of message passing as
Z = GNN(A,X) ∈ Rn×d. The representation of a graph is
generated by aggregating the n node embeddings in matrix Z
for classification purpose.

2.2 Differentiable Pooling
A major limitation of Equation (1) is that it only encodes the
superficial structure of input graph. Recently, the differen-
tiable pooling [Ying et al., 2018] (DIFFPOOL) is proposed
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to cluster nodes from the input graph gradually, and gener-
ates the pooled graphs layer by layer. Formally, let nl and
nl+1 denote the node numbers of pooled graphs at layers l
and l + 1, respectively. Generally we have nl+1 < nl < n in
order to obtain the more abstract graphs at the higher layers
of model. Let S(l) ∈ Rnl×nl+1 and Z(l) ∈ Rnl×d denote
the cluster assignment matrix and node embedding learned at
layer l, respectively. The DIFFPOOL module pools a graph
from layer l to l + 1 as follows:

X(l+1) = S(l)TZ(l) ∈ Rnl+1×d,

A(l+1) = S(l)TA(l)S(l) ∈ Rnl+1×nl+1 .
(2)

A(l+1) and X(l+1) denote the adjacency and node feature
matrices of the graph at layer l + 1, respectively. To pre-
pare the cluster matrix S(l) and node embedding Z(l), two
GNN modules are used: Z(l) = GNNl,embed(A

(l), X(l)) and
S(l) = softmax(GNNl,pool(A

(l), X(l))). The softmax func-
tion is applied in row-wise fashion to determine the probabil-
ities of assigning each node at layer l to the clusters at layer
l+1. Given the pooled graphs at all layers, GNNs are applied
hierarchically to obtain their representations by aggregating
the embeddings of the corresponding node clusters.

3 Multi-channel Graph Convolutional
Networks

The pooling algorithm has its own bottlenecks in graph rep-
resentation learning. The input graph is pooled and distorted
gradually, which makes it hard to distinguish heterogeneous
graphs at higher layers. The single pooled graph at each
layer cannot preserve the inherent multi-view pooled struc-
tures. To tackle these issues, we propose MuchGNN to learn
the graph-structured data comparable with CNN learning the
image data. As shown in Figure 1, a series of convolutional
filters is applied to study the various characteristics of nodes
before pooling, and compensates the clustering distortion.
Given the graphs learned with the series of convolutional fil-
ters, the pooling algorithm clusters nodes in different ways to
encode the multi-view pooled structures at the next layer.

Compared with CNN, the challenges of building up
MuchGNN lie in the following two facts. First, nodes across
the graph have different numbers of direct neighbors. For ex-
ample, the upper-left node in graph {X0, A0} has only one
neighbor as shown in Figure 1, while the others have at least
two. There is also none related orders for all the neighbors
of one node. The non-determined neighborhood shape pre-
cludes us from directly applying the filter in CNN to learn the
nodes’ characteristics, such as filter 3× 3× 128 pre-defining
the neighborhood shape of heights, widths and channels. Sec-
ond, such channel-wise convolutional filter cannot combine
the pooled graphs at one layer together to aggregate their fea-
tures, and then generate the new one at the next layer. That is
because the nodes and edges of one pooled graph are hard to
be mapped to those of the another. We cannot combine two
pooled graphs in the node-wise and edge-wise fashions.

MuchGNN addresses the above challenges with two key
components: (i) the convolutional filter defined based on the

message passing steps in GNN, instead of the direct neigh-
bors; (ii) the specific graph convolutions passing messages
among the pooled graphs to aggregate their features. For the
consistency of presentation, we first define two key concepts.
Definition 1: layer. A layer is composed of operations of
graph convolutions and feature learning as shown in Figure 1.
Let l denote the index of layer. The input to layer l is a set
of graphs (e.g., [{X1, A1}, {X2, A2}] at layer 1), while the
output is a series of graphs associated with the learned node
embeddings (e.g., [Z(1,1), · · · , Z(1,4)] at layer 1).
Definition 2: channel. Given a specific layer, a channel
represents the input graph denoted by Gi = {Xi, Ai}, where
i denotes the channel index. As shown in Figure 1, layer 0
consists of one channel: [G0 = {X0, A0}], and layer 1 con-
sists of two channels [G1 = {X1, A1}, G2 = {X2, A2}].

3.1 Proposed Methods
As shown in Figure 1, we first describe how MuchGNN
learns the various nodes’ characteristics in the single chan-
nel at layer 0 by defining the graph convolutional filters. Fol-
lowing this, we describe how MuchGNN operates the graph
convolutions to pass message among the multiple channels at
layer 1. Without loss of generality, we explain the main ideas
of MuchGNN upon the structure of message-passing GNN
and differentiable pooling. The proposed framework could
be easily applied on other GNNs and pooling algorithms.

Single-channel Learning Process
Considering channel i = 0 at layer l = 0, graph G0 =
{X0, A0} is initialized by the input graph G = {X,A}. The
single-channel learning process includes two states: graph
convolutions and feature learning. The graph convolutions
stage applies GNN model to obtain node embeddings via K
steps of message passing. Node embedding of the k-th step,

Hi
k = σ([Hi

k−1 +Ai ·Hi
k−1] ·W

(l)
k ). (3)

W
(l)
k denotes the trainable parameter for the k-th message

passing for all channels at layer l. Based on Weisfeiler-Leman
(WL) algorithm [Xu et al., 2018], the two non-isomorphic
graphs could only be distinguished if their node embeddings
Hi

k are different at any step k. To learn the nodes’ character-
istics informative for classifying graphs, we make use of mul-
tisetHi = [Xi, Hi

k] that contains the input feature and all the
intermediate node embeddings, where k = 1, · · · ,K. The
feature learning stage then generates the series of new graphs,
each of which is associated with a node embedding matrix
learned from a corresponding trainable filter. Formally, fil-
ter θ(l,j) ∈ R1×(K+1) learns the new graph associated with
embedding Z(l,j) as follows:

Z(l,j) = φ(sum(Hi � θ(l,j)) + b) ∈ Rnl×d. (4)

Index tuple (l, j) denotes the j-th newly generated graphs at
layer l, and b is a trainable scalar. We have (l, j) = (0, 1)
and (0, 2) at layer 0 as shown in Figure 1. φ, sum and � de-
note the non-linear function of multilayer perceptron (MLP),
the summation function and the element-wise multiplication,
respectively. Note that filter θ(l,j) learns the nodes’ charac-
teristic by taking into account the different steps of message
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passing, rather than relying on the direct neighbors of nodes.
Following the same process of graph convolution and feature
learning, we obtain cluster matrices S(l,j) for the two new
graphs through another GNN model and convolutional filters.

Given embeddings Z(l,j) and S(l,j) at the j-th graph, the
clustering algorithm defined in Equation (2) is applied to
formulate channel j at the next layer. We have channels
G1 = {X1, A1} and G2 = {X2, A2} at layer 1, which en-
code the diverse pooled structures of input graph.

Multi-channel Learning Process
Unlike layer 0, the input to layer 1 is given by a series of
channels. The graph convolutions stage requires feature ag-
gregation from this series of channels to generate the more
abstract representation at the higher layer of model. Recalling
the graph convolutions at layer 0, it is an intra-channel graph
convolutions that pass message only within the current chan-
nel. In this section, we augment the graph convolutions by
further defining an inter-channel graph convolutions to aggre-
gate features from neighboring channels to the current one.

To unify the following expression, we denote the current
and neighboring channels with indices i and c, respectively.
Considering the graph convolutions operated on graph G1 =
{X1, A1} of current channel i = 1, it includes both intra-
channel and inter-channel components to receive information
from current channel i = 1 and neighboring channel c = 2,
respectively. The intra-channel graph convolutions is given
by Equation (3), where the indices of channel and layer are
i = 1 and l = 1. Following the message-passing GNN, we
define the inter-channel graph convolutions as follows:

Hi,c
k = σ([Hi,c

k−1 +Ai,c ·Hc
k−1] ·W

(l)
k ). (5)

Hi,c
k denotes the node embedding of channel i, after k steps

of feature aggregations from neighboring channel c. At step
0, embedding Hi,c

0 is given by Xi of current channel i. Ai,c

denotes the inter-channel adjacency matrix between channels
i and c, at which i = 1 and c = 2 at layer 1. Following the
pooling algorithms in Equation (2), the inter-channel adja-
cency matrix is easy to obtain by: A1,2 = S(0,1)TA0S(0,2) ∈
Rn1×n1 . The row and column of A1,2 represent the nodes
at channels 1 and 2, respectively. Compared with the intra-
channel convolutions, we replace the adjacency matrix with
Ai,c. In this way, the messages of neighboring channels c
could be passed to update the embedding at channel i despite
the different shapes of their graph structures.

Following the graph convolutions, the feature learning
stage learns the nodes’ characteristics based on Equation (4).
Different from multisetH0 in the single-channel scenario, the
one at channel i is given byHi = [Xi, Hi

k, H
i,c
k ] at the higher

layer of model. It includes embeddingsHi,c
k to aggregate fea-

tures from all the neighbor channels c. Specifically, we have
H1 = [X1, H1

k , H
1,2
k ] at channel 1. Given a set of filters

θ(l,j), Equation (4) encodes the various characteristics and
obtains a series of graphs from channel 1. As shown in Fig-
ure 1, they are denoted by Z(1,1) and Z(1,2), respectively. By
repeating the previous process for channel 2, we obtain the
graphs associated with embeddings Z(1,3) and Z(1,4).

Multi-channel Graph Convolutional Networks
We stack L layers of graph convolutions and feature learning
in MuchGNN, at which L = 2 in Figure 1. Let nl and Cl

denote the node number of a graph and the channel number at
layer l, respectively. We define rl ,

nl+1

nl
named assign ratio,

and define Tl ,
Cl+1

Cl
named channel expansion. Generally,

cluster algorithm requires 0 < rl ≤ 1 to generate pooled
graph structures, and our feature learning applies Tl > 1 to
learn the various characteristics of nodes. For each layer l,
we generate a series of graphs whose node embeddings are
Z(l,j), j = 1, · · · , ClTl. As shown in Figure 1, we have
C1T1 = 2 × 2 at layer 1. The graph representation Y (l)

learned at layer l is obtained by combining graphs as follows:

Y (l) =

ClTl∑
j=1

(GlobalPool(Z(l,j))) ∈ Rd×1, (6)

where GlobalPool denotes the global pooling function to
read out the graph representation. The entire graph repre-
sentation Y is generated by concatenating Y (l) from all the
layers: Y = ⊕lY

(l) ∈ Rd·L×1. It encodes both the input
graph and its multi-view pooled structures. Given the input
of Y , the downstream differentiable classifier, like MLP, is
applied to predict the corresponding graph label.

3.2 Complexity Analysis
Considering channel i at layer l, we analyze the time com-
plexity to learn the node’s characteristics based on Equa-
tion (4). First, node embeddings Hi

k and Hi,c
k within mul-

tiset Hi need to be prepared according to Equations (3)
and (5), respectively. Let m denote the maximum num-
ber of edges within channel i or between channels i and j.
The complexities of Equations (3) and (5) are O(md2) and
O(nld

2 + md2), respectively. There are total K steps of
message passing and Cl − 1 neighboring channels waited
to be aggregated. Therefore, the time cost to obtain mul-
tiset Hi is O(K[Clmd

2 + (Cl − 1)nld
2]). Second, the

element-wise multiplication in Equation (4) takes the com-
putation cost of O((KCl + 1)nld). Based on the above two
components, the total time complexity in feature learning is
O(K[Clmd

2 + (Cl − 1)nld
2] + (KCl + 1)nld), which in-

creases linearly with step K and channels Cl.

4 Experiments
We evaluate MuchGNN to answer the following questions:
• Q1: How does MuchGNN perform when it is compared

with other state-of-the-art models?
• Q2: How does the multiple channels in MuchGNN help

improve the graph representation learning ability?
• Q3: How does the multiple channels encode the meaning-

ful pooled structures to inform the graph classification?

4.1 Experiment Settings
Datasets. We use 7 graph classification benchmarks as sug-
gested in [Yanardag and Vishwanathan, 2015], including 3
bioinformatic datasets (PTC, DD, PROTEINS [Borgwardt et
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al., 2005]) and 4 social network datasets (COLLAB, IMDB-
BINARY, IMDB-MULTI, REDDIT-MULTI-12K [D Dobson
and Doig, 2003]).
Baselines. We build MuchGNN upon the message-passing
GNN and differential pooling, and see how MuchGNN im-
proves the graph classification over these two baselines. For
the baseline methods of GNN, we consider the state-of-the-
art models of GCN [Kipf and Welling, 2017], GRAPH-
SAGE [Hamilton et al., 2017], PATCHYSAN [Niepert et al.,
2016], DGCNN [Zhang et al., 2018a] and ECC [Simonovsky
and Komodakis, 2017]. We also compare with DIFFPOOL
that applies the differentiable pooling to further encode the
pooled graphs hierarchically. The classification results of
GCN and DIFFPOOL are obtained via running the models
provided by the authors. The others are reported from the
open publications directly.
Implementation details of MuchGNN. Considering the
intra-channel and inter-channel graph convolutions as shown
in Equations (3) and (5), we apply K = 3 for the message
passing step, and d = 64 for the hidden dimension. The
GlobalPool function is given by maximization pooling to
read out the graph representation. Batch normalization [Ioffe
and Szegedy, 2015] and l2 normalization are applied after
each step of graph convolutions to make the training more
stable. We regularize the objective function by the entropy of
cluster matrix to make the cluster pooling more sparse [Ying
et al., 2018]. Adam optimizer is adopted to train MuchGNN,
and the gradient is clipped when its norm exceeds 2.0. We
evaluate MuchGNN with 10-fold cross validation, at which
the average classification accuracy and standard deviation are
reported. The model is trained with total of 100 epochs on
each fold. Three variants of MuchGNN are considered here:
• MuchGNN-M: the tailored MuchGNN framework that

only learns the multiple characteristics of nodes. To be spe-
cific, we define the channel expansion to be Tl = 4, which
means that a set of 4 convolutional filters is applied to learn
the various characteristics based on Equation 4. The layer
number of L = 1 is used to remove the pooling module.
• MuchGNN-H: the tailored one that only encodes the more

and more pooled graphs, at which L > 1 and Tl = 1.
MuchGNN-H generates a pooled graph at each layer like
DIFFPOOL. A total of L = 3 layers accompanied with as-
sign ratios rl = 0.25 are used for PROTEINS datasets,
while the other datasets have the similar performances
when L = 2 accompanied with rl = 0.1.

• MuchGNN-MH: the general MuchGNN framework that
learns both the multiple characteristics and pooled graph
structures at each layer. The framework applies the same
channel expansion with MuchGNN-M, and contains the
same layers with MuchGNN-H.

4.2 Graph Classification Results
Model Comparison
Table 1 compares MuchGNN-MH with all the baselines and
its own variants, and provides the positive answers for Q1.
We observe that MuchGNN-MH achieves the most compet-
itive classification accuracies on all the benchmarks. Con-
sidering the models of GCN, DIFFPOOL, MuchGNN-H and

MuchGNN-M, MuchGNN-MH obtains the average improve-
ments of 4.33%, 3.10%, 2.13% and 3.29%, respectively.
This is expected because the baseline methods are not infor-
mative enough to classify a graph with the following facts.
GNNs classify a graph via aggregating the representations
over nodes, which fails to learn the pooled structures present
in the input graph. On most of the benchmarks, DIFFPOOL
and MuchGNN-H improve the graph classification by further
clustering the input graph. However, node clustering loses the
graph details and may make it hard to distinguish the hetero-
geneous graphs. The single pooled graph at each layer can-
not preserve the multiple characteristics of the input graph.
Although MuchGNN-M exploits the various characteristics,
such shallow model cannot reach the pooled structures.

Compared with the above baselines, MuchGNN-MH pro-
vides the general framework to learn the informative graph
representation comparable with CNN at image domains. The
convolutional filters learn the various nodes’ characteristics
to compensate the shrinking loss. After node clustering, the
multi-view pooled structures are encoded as well.

Effectiveness Validation of Multiple Channels
Note that the series of graph channels could be concatenated
and regarded as a super graph at each layer of MuchGNN. At
layer l, the total node numbers in DIFFPOOL and MuchGNN
are given by nl and Clnl, respectively. MuchGNN has much
more nodes than the DIFFPOOL if channel number Cl > 1.
It would be hard to claim that the performance advantage of
MuchGNN relies mostly on the channels encoded with differ-
ent characteristics, rather than simply reserving more nodes.
In this subsection, we validate how the multiple channels im-
prove the graph representation learning ability to answer Q2.
The channel expansion and cluster ratio of MuchGNN are
fixed to control the related variables: Tl = 4 and rl = 0.25.
For DIFFPOOL, we gradually increase node number in the
pooled graphs by considering the following ratios rl: 0.25,
0.5 and 1. The last one has the same node number with
MuchGNN at each layer, in order to provide a fair compar-
ison. We compare the two models comprehensively by con-
sidering different depths of the hierarchical neural networks,
and show their graph classification accuracies in Table 2.

The following observations are made to claim the effec-
tiveness of multiple channels in learning the graph represen-
tation. First, the larger ratio leads to a more smaller classifica-
tion accuracy when layer number L = 4. One of the possible
reasons is the extra node clusters that introduce noise to the
pooled graph as introduced in [Ying et al., 2018]. Second, it
is observed that MuchGNN outperforms DIFFPOOL consis-
tently even when they have the same node number (i.e., DIFF-
POOL of rl = 1). Especially, while the classification accu-
racies of DIFFPOOL decrease significantly with L, those of
MuchGNN remain stable accompanied with a small variance.
That is because the graph series learn the various characteris-
tics to decease the pooling loss at the higher layers of model,
which makes the graph classification more robust.

Performance Improvement via Increasing Channels
We study the variation of classification accuracy with the
channel numbers in MuchGNN, and further answer research
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Methods Datasets
PTC DD PROTEINS COLLAB IMDB-B IMDB-M RDT-M12K

GCN 62.26±4.8 77.83±4.2 76.30±2.3 80.78±1.8 78.48±1.9 54.60±2.2 45.03±1.9
GRAPHSAGE 63.9±7.7 75.42 70.48 68.25 72.3± 5.3 50.9± 2.2 42.24

PATCHYSAN 62.29±5.7 76.27±2.6 75.00±2.5 72.60±2.2 71.00±2.3 45.23±2.8 41.32±0.4
DGCNN 58.59±2.5 79.37±1.0 75.54±1.0 73.76±0.5 70.03±0.9 47.83±0.9 41.82

DIFFPOOL 64.85±4.3 79.43±4.1 75.63±2.7 81.25±1.1 80.18±1.8 55.0±2.4 44.11±1.4
MuchGNN-M 67.69±7.1 80.47±4.3 79.30±3.3 81.56±1.4 80.59±2.6 56.20±2.2 38.47±1.1
MuchGNN-H 63.67±4.6 78.67±4.0 78.93±2.7 81.36±1.4 80.99±3.0 56.07±2.4 44.99±3.0
MuchGNN-MH 68.08±4.8 80.87±4.4 79.84±2.6 81.72±1.6 81.26±2.5 56.73±1.7 45.92±2.9

Table 1: The comparison of graph classification accuracy and stand deviation in percent. The best results are highlighted with boldface.

Methods rl Tl
Layer number L

Variance
2 3 4

DIFFPOOL 0.25 1 77.15 75.63 73.42 2.35

DIFFPOOL 0.5 1 77.88 71.68 70.03 11.42

DIFFPOOL 1 1 78.59 78.74 73.23 6.57

MuchGNN 0.25 4 79.21 79.84 78.94 0.14

Table 2: Classification accuracy in percent on PROTEINS dataset.
DIFFPOOL is compared by gradually increasing its cluster ratio.

Layer Ratio Channel expansion Tl
L rl 1 2 3 4

2 0.25 78.85 79.75 79.93 79.21

3 0.25 78.93 79.38 79.83 79.84

Table 3: Classification accuracies in percent on PROTEINS dataset,
given a series of channel expansions.

question Q2. We reuse two of the well-performed architec-
tures in the previous experiments: L = 2 and L = 3 ac-
companied with rl = 0.25. Through enhancing the channel
expansion Tl from 1 to 4, we show the classification accuracy
of MuchGNN in Table 3. It is obvious that the larger Tl is, the
better the classification accuracy could be achieved generally.
That is because the multiple channels preserve the more infor-
mation from the input graph. It would be more easier for the
downstream classifier to distinguish heterogeneous graphs.

Visualization of Channels
We investigate how multiple channels encodes the meaning-
ful pooled graphs by visualizing the cluster assignments, and
answer research question Q3. Figure 2 shows the two chan-
nels at layer 1, which are generated by learning and hard
pooling a graph from COLLAB. Node colors represent the
cluster memberships. We observe that these two channels en-
codes the distinct pooled structures of the input graph. To be
specific, channel 1 extracts local structure of input graph, at
which only the closely-connected nodes are assigned into a
cluster. On the contrary, channel 2 preserves the global struc-

Channel 1

Channel 2

Figure 2: Channel visualization via pooling a graph from COLLAB.

ture roles of nodes with blue and grey colors, which bridge
the different communities. These channels encodes the in-
herently various characteristics of input graph, which makes
the higher layers of MuchGNN being more informative for
classifying graphs.

5 Conclusion
Motivated by the CNN architecture, we propose the multi-
channel framework named MuchGNN to learn the graph rep-
resentation specifically. In detail, we design the graph convo-
lutional filters to learn the various characteristics of nodes in
the series of graph channels. The inter-channel graph convo-
lutions are given to aggregate the entire graph channels and
generate the one at the next layer. Experimental results show
that we achieve state-of-the-art performance on the task of
graph classification, and improve model robustness greatly.
In the future works, we would apply MuchGNN to other
tasks, such as the node classification and link prediction.
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