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Abstract
Graph Neural Networks (GNNs) are powerful
for the representation learning of graph-structured
data. Most of the GNNs use a message-passing
scheme, where the embedding of a node is itera-
tively updated by aggregating the information from
its neighbors. To achieve a better expressive capa-
bility of node influences, attention mechanism has
grown to be popular to assign trainable weights to
the nodes in aggregation. Though the attention-
based GNNs have achieved remarkable results in
various tasks, a clear understanding of their dis-
criminative capacities is missing. In this work,
we present a theoretical analysis of the represen-
tational properties of the GNN that adopts the at-
tention mechanism as an aggregator. Our analy-
sis determines all cases when those attention-based
GNNs can always fail to distinguish certain distinct
structures. Those cases appear due to the ignorance
of cardinality information in attention-based aggre-
gation. To improve the performance of attention-
based GNNs, we propose cardinality preserved at-
tention (CPA) models that can be applied to any
kind of attention mechanisms. Our experiments on
node and graph classification confirm our theoreti-
cal analysis and show the competitive performance
of our CPA models. The code is available online:
https://github.com/zetayue/CPA.

1 Introduction
Graph, as a kind of data structure in non-Euclidean domain,
can represent a set of instances (nodes) and the relationships
(edges) between them, thus has a broad application in various
fields [Zhou et al., 2018]. Different from regular Euclidean
data such as texts and images, graph structured data are ir-
regular so it is not straightforward to apply important opera-
tions in deep learning (e.g. convolutions). Consequently, the
analysis of graph-structured data remains a challenging and
ubiquitous question.

In recent years, Graph Neural Networks (GNNs) have
been proposed to learn the representations of graph-structured
∗Corresponding Author

data and attract a growing interest [Scarselli et al., 2009;
Li et al., 2016; Niepert et al., 2016; Kipf and Welling, 2017;
Hamilton et al., 2017; Zhang et al., 2018; Ying et al., 2018;
Morris et al., 2019; Xu et al., 2019]. GNNs can iteratively
update node embeddings by aggregating/passing node fea-
tures and structural information in the graph. The generated
node embeddings can be fed into extra modules and the whole
model is trained end-to-end for different tasks.

Though many GNNs have been proposed, it is noted that
when updating the embedding of a node vi by aggregating
the embeddings of its neighbor nodes vj , most of the GNN
variants will assign non-parametric weight between vi and
vj in their aggregators [Kipf and Welling, 2017; Hamilton et
al., 2017; Xu et al., 2019]. However, such aggregators (e.g.
sum or mean) fail to learn and distinguish the information
between a target node and its neighbors during the training.
Taking account of different contributions from the nodes in
a graph is important in real-world data as not all edges have
similar impacts. A natural alternative solution is making the
edge weights trainable to have a better expressive capability.

To assign learnable weights in the aggregation, the atten-
tion mechanism [Bahdanau et al., 2014; Vaswani et al., 2017]
is incorporated in GNNs. Thus the weights can be directly
represented by attention coefficients between nodes and give
interpretability [Veličković et al., 2018; Thekumparampil et
al., 2018]. Though GNNs with the attention-based aggrega-
tors achieve promising performance on various tasks empir-
ically, a clear understanding of their discriminative power is
missing for the designing of more powerful attention-based
GNNs. Recent works [Morris et al., 2019; Xu et al., 2019;
Maron et al., 2019] have theoretically analyzed the expressive
power of GNNs. However, they are unaware of the attention
mechanism in their analysis. So that it is unclear whether
using attention mechanism in aggregation will constrain the
expressive power of GNNs.

In this work, we make efforts to theoretically analyze the
discriminative power of GNNs with attention-based aggrega-
tors. Our findings reveal that previous proposed attention-
based aggregators fail to distinguish certain distinct struc-
tures. By determining all such cases, we reveal the reason
for those failures is the ignorance of cardinality informa-
tion in aggregation. It inspires us to improve the attention
mechanism via cardinality preservation. We propose models
that can be applied to any kind of attention mechanisms and
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achieve the goal. In our experiments on node and graph clas-
sification, we confirm our theoretical analysis and validate the
power of our proposed models. The best-performing one can
achieve competitive results comparing to other baselines. Our
key contributions are summarized as follows:

• We show that previously proposed attention-based ag-
gregators in message-passing GNNs always fail to dis-
tinguish certain distinct structures. We determine all of
those cases and demonstrate the reason is the ignorance
of the cardinality information in the aggregation.

• We propose Cardinality Preserved Attention (CPA)
methods to improve the original attention-based aggre-
gator. With them, we can distinguish all cases that pre-
viously always make an attention-based aggregator fail.

• Experiments on node and graph classification validate
our theoretical analysis and the power of our CPA mod-
els. Comparing to baselines, CPA models can reach
state-of-the-art level.

2 Preliminaries
2.1 Notations
Let G = (V,E) be a graph with set of nodes V and set of
edges E. The nearest neighbors of node i are defined as
N (i) = {j|d(i, j) = 1}, where d(i, j) is the shortest dis-
tance between node i and j. We denote the set of node i and
its nearest neighbors as Ñ (i) = N (i)∪ {i}. For the nodes in
Ñ (i), their feature vectors form a multiset M(i) = (Si, µi),
where Si = {s1, . . . , sn} is the ground set of M(i), and
µi : Si → N∗ is the multiplicity function that gives the mul-
tiplicity of each s ∈ Si. The cardinality |M | of a multiset is
the number of elements (with multiplicity) in the multiset.

2.2 Graph Neural Networks
General GNNs
Graph Neural Networks (GNNs) adopt node or edge features
and the graph structure as input to learn the representations
in graphs for different tasks. In this work, we focus on the
GNNs under the massage-passing framework, which updates
the node features by aggregating its nearest neighbor node
features iteratively. In previous surveys, this type of GNNs
is referred as Graph Convolutional Networks in [Wu et al.,
2020] or the GNNs with convolutional aggregator in [Zhou et
al., 2018]. Under the framework, a learned representation of
each node after l layers contains the features and the structural
information within l-hop neighborhood. The l-th layer of a
GNN can be formulated as:

hli = φ l
(
hl−1i ,

{
hl−1j , ∀j ∈ N (i)

} )
, (1)

where the superscript l denotes the l-th layer. hi is the rep-
resentation of node i, and h0i is initialized as Xi. The ag-
gregation function φ in Equation (1) propagates information
between nodes to update the node features.

In the final layer, since the node representation hLi after
L iterations contains the L-hop neighborhood information,
it can be directly used for local/node-level tasks. While for

global/graph-level tasks, the whole graph representation hG
is computed using an extra readout function g:

hG = g
( {
hLi , ∀i ∈ G

} )
. (2)

Attention-Based GNNs
In a GNN, when the aggregation function φ in Equation (1)
adopts attention mechanism, we consider it as an attention-
based GNN. The attention-based aggregator in l-th layer can
be formulated as follows:

el−1ij = Att
(
hl−1i , hl−1j

)
, (3)

αl−1
ij = softmax

(
el−1ij

)
=

exp(el−1ij )∑
k∈Ñ (i) exp

(
el−1ik

) , (4)

hli = f l
(∑

j∈Ñ (i)
αl−1
ij hl−1j

)
, (5)

where the superscript l denotes the l-th layer and eij is the at-
tention coefficient computed by an attention function Att to
measure the relation between node i and node j. αij is the
attention weight calculated by the softmax function. Equa-
tion (5) is a weighted summation that uses all α as weights
followed with a nonlinear function f .

2.3 Related Works
Since GNNs have achieved remarkable results in practice,
a clear understanding of the power of GNNs is needed to
design better models. Recent works [Morris et al., 2019;
Xu et al., 2019; Maron et al., 2019] focus on understand-
ing the discriminative power of GNNs by comparing it to the
Weisfeiler-Lehman (WL) test [Weisfeiler and Leman, 1968]
when deciding the graph isomorphism. It is proved that the
massage-passing-based GNNs are at most as powerful as the
1-WL test [Xu et al., 2019]. Inspired by the higher dis-
criminative power of the k-WL test (k > 2) than the 1-WL
test, GNNs with a theoretically higher discriminative power
than the massage-passing ones have been proposed in [Mor-
ris et al., 2019; Maron et al., 2019]. However, the GNNs in
those works do not specifically analyze the role of attention
mechanism. So it is currently unknown whether the atten-
tion mechanism will constrain the discriminative power. Our
work focuses on the massage-passing-based GNNs with at-
tention mechanism, which are upper bounded by the 1-WL
test.

Another recent work [Knyazev et al., 2019] aims to un-
derstand the attention mechanism over nodes in GNNs with
experiments in a controlled environment. However, the atten-
tion mechanism discussed in the work is used in the pooling
layer for the pooling of nodes, while our work investigates
the usage of attention mechanism in the aggregation layer for
the updating of nodes.

3 Limitation of Attention-Based GNNs
In this section, we theoretically analyze the discriminative
power of attention-based GNNs and show their limitations.
The discriminative power means how well an attention-based
GNN can distinguish different elements (local or global struc-
tures). We find that previously proposed attention-based
GNNs can fail in certain cases and the discriminative power
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is limited. Besides, by theoretically finding out all cases
that always make an attention-based GNN fail, we reveal that
those failures come from the lack of cardinality preservation
in attention-based aggregators.

3.1 Discriminative Power of Attention-based
GNNs

We assume the node input feature space is countable. For any
attention-based GNNs, we give the conditions in Lemma 1
to make them reach the upper bound of discriminative power
when distinguishing different elements (local or global struc-
tures). In particular, each local structure belongs to a node
and is the k-height subtree structure rooted at the node, which
is naturally captured in the node feature hki after k iterations
in a GNN. The global structure contains the information of
all such subtrees in a graph.
Lemma 1. Let A : G → Rg be a GNN following the neigh-
borhood aggregation scheme with the attention-based aggre-
gator (Equation (5)). For global-level task, an extra readout
function (Equation (2)) is used in the final layer. A can reach
its upper bound of discriminative power (can distinguish all
distinct local structures or be as powerful as the 1-WL test
when distinguishing distinct global structures) after sufficient
iterations with the following conditions:
• Local-level: Function f and the weighted summation in

Equation (5) are injective.
• Global-level: Besides the conditions for local-level, A’s

readout function (Equation (2)) is injective.

Proof. Local-level: For the aggregator in the first layer, it will
map different 1-height subtree structures to different embed-
dings from the distinct input multisets of neighborhood node
features, since it is injective. Iteratively, the aggregator in the
l-th layer can distinguish different l-height subtree structures
by mapping them to different embeddings from the distinct
input multisets of (l-1)-height subtree features, since it is in-
jective.

Global-level: From Lemma 2 and Theorem 3 in [Xu et al.,
2019], we know: when all functions in A are injective, A
can reach its upper bound of discriminative power, which is
the same as the Weisfeiler-Lehman (WL) test [Weisfeiler and
Leman, 1968] when deciding the graph isomorphism.

With Lemma 1, we are interested in whether its conditions
can always be satisfied, so as to reach the upper bound of
discriminative capacity of an attention-based GNN. Since the
function f and the global-level readout function can be pre-
determined to be injective, we focus on the injectivity of the
weighted summation function in attention-based aggregator.

3.2 Non-Injectivity of Attention-Based Aggregator
In this part, we aim to answer the following two questions:
Q 1. Can the attention-based GNNs actually reach the up-
per bound of discriminative power? In other words, can the
weighted summation function in an attention-based aggrega-
tor be injective?
Q 2. If not, can we determine all of the cases that prevent any
kind of weighted summation function being injective?

Given a countable feature spaceH, a weighted summation
function is a mapping W : H → Rn. The exact W is de-
termined by the attention weights α computed from Att in
Equation (3). Since Att is affected by stochastic optimiza-
tion algorithms (e.g. SGD) which introduce stochasticity in
W , we have to pay attention thatW is not fixed when dealing
with the two questions.

In Theorem 1, we answer Q1 with No by giving the cases
that make W not to be injective. So that the attention-based
GNNs can never meet their upper bound of discriminative
power, which is stated in Corollary 1. Moreover, we answer
Q2 with Yes in Theorem 1 by pointing out those cases are
the only reason to always prevent W being injective. This
alleviates the difficulty of summarizing the properties of those
cases. Besides, we can specifically propose methods to avoid
those cases so as to let W to be injective.

Theorem 1. Assume the input feature space X is countable.
Given a multiset X ⊂ X and the node feature c of the central
node, the weighted summation function h(c,X) in aggrega-
tion is defined as h(c,X) =

∑
x∈X αcxf(x), where f : X →

Rn is a mapping of input feature vector and αcx is the atten-
tion weight between f(c) and f(x) calculated by the atten-
tion function Att in Equation (3) and the softmax function in
Equation (4). For all f and Att, h(c1, X1) = h(c2, X2) if
and only if c1 = c2, X1 = (S, µ) and X2 = (S, k · µ) for
k ∈ N∗. In other words, h will map different multisets to the
same embedding iff the multisets have the same central node
feature and the same distribution of node features.

Proof. (Sketch) We prove Theorem 1 in both two directions:
(1) If given c1 = c2, X1 = (S, µ) and X2 = (S, k · µ), we

can derive h(c1, X1) = h(c2, X2) using the formula of the
weighted summation function.

(2) If given h(c1, X1) = h(c2, X2) for all f , Att, we de-
note the multisets X1 = (S1, µ1) and X2 = (S2, µ2). We
prove by contradiction that if S1 6= S2 or c1 6= c2, the equa-
tion h(c1, X1) = h(c2, X2) for all f , Att is not always true.
Thus we have S1 = S2 and c1 = c2. Then we can derive
X1 = (S, µ) and X2 = (S, k · µ).

Corollary 1. LetA be the GNN defined in Lemma 1. A never
reaches its upper bound of discriminative power:

There exists two different subtrees S1 and S2 or two graphs
G1 and G2 that the Weisfeiler-Lehman test decides as non-
isomorphic, such thatA always maps the two subtrees/graphs
to the same embeddings.

Proof. We provide the cases when A always maps two sub-
trees/graphs to the same embeddings:

(1) For subtrees, S1 and S2 are 1-height subtrees that have
the same root node and the same distribution of node features.

(2) For graphs, letG1 be a fully connect graph with n nodes
and G2 be a ring-like graph with n nodes. All nodes in G1

and G2 have the same feature x.
We denote {Xi}, i ∈ G1 as the set of multisets for aggre-

gation in G1, and {Xj}, j ∈ G2 as the set of multisets for
aggregation in G2. As G1 is a fully connect graph, all multi-
sets in G1 contain 1 central node and n− 1 neighbors. As G2
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Figure 1: An illustration of different attention-based aggregators on
multiset of node features. Given two distinct multisets H1 and H2

that have the same central node feature hi and the same distribution
of node features, aggregators will map hi to hi1 and hi2 for H1 and
H2. The Original model will get h′i1 = h′i2 and fail to distinguish
H1 and H2, while our Additive and Scaled models can always dis-
tinguish H1 and H2 with h′′i1 6= h′′i2 and h′′′i1 6= h′′′i2 .

is a ring-like graph, all multisets in G2 contain 1 central node
and 2 neighbors. Thus we have

Xi = ({x}, {µ1(x) = n}), ∀i ∈ G1,

Xj = ({x}, {µ2(x) = 3}), ∀j ∈ G2,

where µi(x) is the multiplicity function of the node with fea-
ture x in Gi, i ∈ {1, 2}.

From Theorem 1, we know that h(c,Xi) = h(c,Xj), ∀i ∈
G1, ∀j ∈ G2. Considering Equation (5), we have hli =
hlj , ∀i ∈ G1, ∀j ∈ G2 in each iteration l. Besides, as the
number of nodes in G1 and G2 is equal to n, A will always
map G1 and G2 to the same set of multisets of node features
{hl} in each iteration l and finally get the same embedding
for the whole graph.

3.3 Only Unpreserved Cardinality Guarantees the
Non-Injectivity

With Theorem 1, we are now interested in the properties of
all cases that guarantee the non-injectivity of the weighted
summation functions W . Since the multisets that all W fail
to distinguish share the same distribution of node features, we
can say that W ignores the multiplicity information of each
identical element in the multisets:

Corollary 2. Let W be the weighted summation function in
any attention-based GNN.W cannot preserve the cardinality
information of the multiset of node features. The lost of car-
dinality information inW is the only reason that preventsW
to be injective.

In the next section, we aim to propose improved attention-
based models to preserve the cardinality in aggregation.

4 Cardinality Preserved Attention Model
Since the attention-based aggregators do not preserve the car-
dinality of the multiset, our goal is to propose modifications

to any kind of attention mechanism to capture the cardinal-
ity information. So that all of the cases that always prevent
attention-based aggregator being injective can be avoided.

To achieve our goal, we modify the weighted summation
function in Equation (5) to incorporate the cardinality infor-
mation and do not change the attention function in Equation
(3) so as to keep its original expressive power. Two different
models named as Additive and Scaled are proposed to modify
the Original model in Equation (5):
Model 1. (Additive)

hl
i = f l

(∑
j∈Ñ (i)

αl−1
ij hl−1

j + wl �
∑

j∈Ñ (i)
hl−1
j

)
, (6)

Model 2. (Scaled)

hl
i = f l

(
ψl(∣∣Ñ (i)

∣∣)�∑
j∈Ñ (i)

αl−1
ij hl−1

j

)
, (7)

where w is a non-zero vector ∈ Rn, � denotes the element-
wise multiplication, |Ñ (i)| equals to the cardinality of the
multiset Ñ (i), ψ : Z+ → Rn is an injective function that
maps the cardinality value to a non-zero vector.

In the Additive model, each element in the multiset will
contribute to the term that we added to implicitly preserve
the cardinality information. In the Scaled model, the original
weighted summation is directly multiplied by a representa-
tional vector of the cardinality value. So with these models,
distinct multisets with the same distribution will result in dif-
ferent embedding h. Note that both of our models do not
change the Att function, such that they can keep the learning
power of the original attention mechanism. We summarize
the effect of our models in Corollary 3 and illustrate it in Fig-
ure 1.
Corollary 3. Let T be the original attention-based aggrega-
tor in Equation (5) that operates on a multisetH ⊂ H, where
H is a node feature space mapped from the countable input
feature space X . There exists a H so that with our proposed
Cardinality Preserved Attention (CPA) models in Equation
(6) and (7), T can now distinguish all different multisets in
aggregation that it previously always fails to distinguish.

Proof. According to Theorem 1, for any two distinct mul-
tisets H1 and H2 that T previously always fail to distin-
guish (h(c,H1) = h(c,H2)), we know H1 = (S, µ) and
H2 = (S, k · µ) ⊂ H for some k ∈ N∗. H1 and H2 have
the same central node feature c ∈ S in aggregation. We de-
note M =

∑
h∈H1

αch1h =
∑

h∈H2
αch2h, where αchi is

the attention weight that belongs to Hi, and between c and h,
h ∈ Hi, i ∈ {1, 2}. After applying CPA models, the aggre-
gations in T can be rewritten as:

Model 1: h1(c,Hi) =M + w �
∑

h∈Hi

h, i ∈ {1, 2},

Model 2: h2(c,Hi) = ψ(
∣∣Hi

∣∣)�M, i ∈ {1, 2}.
To prove the existence ofH,H can be defined as following:

All h are vectors with positive values.
For Model 1, we have h1(c,H1) − h1(c,H2) = w �

(
∑

h∈H1
h−
∑

h∈H2
h). Since k·

∑
h∈H1

h =
∑

h∈H2
h 6= 0,

we know
∑

h∈H1
h−
∑

h∈H2
h 6= 0. Considering w is a non-

zero vector, we have h1(c,H1) 6= h1(c,H2).
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For Model 2, we have h2(c,H1)−h2(c,H2) = (ψ(
∣∣H1

∣∣)−
ψ(
∣∣H2

∣∣))�M . As αch > 0 due to the softmax function, and
h 6= 0 in our definition, we know M 6= 0. Since ψ(

∣∣H1

∣∣) −
ψ(
∣∣H2

∣∣) 6= 0, we can get h2(c,H1) 6= h2(c,H2).
In conclusion, our CPA models can help T to distinguish

different multisets in aggregation, which it previously always
fails to distinguish.

While the original attention-based aggregator is never in-
jective as we mentioned in previous sections, our cardinal-
ity preserved attention-based aggregator can be injective with
certain learned attention weights to reach its upper bound of
discriminative power as stated in Lemma 1. We validate this
in our experiments.

For the efficiency of our CPA models compared with the
original attention-based aggregator, it is possible that the
Model 1 and 2 require more parameters than the original one
when our introduced w and ψ(|Ñ (i)|) are learnable during
the training. Thus we further simplify our models by fixing
the values in w and ψ(|Ñ (i)|) and define two CPA variants:
Model 3. (f-Additive)

hli = f l
(∑

j∈Ñ (i)
(αl−1

ij + 1)hl−1j

)
, (8)

Model 4. (f-Scaled)

hli = f l
(∣∣Ñ (i)

∣∣ ·∑
j∈Ñ (i)

αl−1
ij hl−1j

)
. (9)

Model 3 and 4 still preserve the cardinality information
while require the same number of parameters as the original
model in Equation (5). In practice, we find that the simplified
models exhibit similar performance compared with Model 1
and 2 as shown in the experiments.

5 Experiments
In our experiments, we focus on the following questions:
Q 3. Since attention-based GNNs (e.g. GAT) are originally
proposed for local-level tasks like node classification, will
those models fail or not meet the upper bound of discrimi-
native power when solving certain node classification tasks?
If so, can our CPA models improve the original model?
Q 4. For global-level tasks like graph classification, how well
can the original attention-based GNNs perform? Can our
CPA models improve the original model?
Q 5. How the attention-based GNNs with our CPA models
perform compared to baselines?

To answer Question 3, we design a node classification task
which is to predict whether or not a node is included in a
triangle as one vertex in a graph. To answer Question 4 and 5,
we perform experiments on graph classification benchmarks
and evaluate the attention-based GNNs with CPA models.

5.1 Experimental Setup
Datasets
In our synthetic task (TRIANGLE-NODE) for predicting
whether or not a node is included in a triangle, we gener-
ate a graph with 4800 nodes and 32400 edges. 40.58% of the

nodes are included in triangles as vertices while 59.42% are
not. There are 4000 nodes assigned with feature ’0’, 400 with
feature ’1’ and 400 with feature ’2’. The label of each node
for prediction is whether or not it is included in a triangle.

In our experiment on graph classification, we use 6 bench-
mark datasets collected by [Kersting et al., 2020]: 2 so-
cial network datasets (REDDIT-BINARY (RE-B), REDDIT-
MULTI5K (RE-M5K)) and 4 bioinformatics datasets (MU-
TAG, PROTEINS, ENZYMES, NCI1).

In all datasets, if the original node features are provided,
we use the one-hot encodings of them as input.

Models and Configurations
In our experiments, the Original model is the one that uses
the original version of an attention mechanism. We apply
each of our 4 CPA models (Additive, Scaled, f-Additive and
f-Scaled) to the original attention mechanism for compari-
son. In the Additive and Scaled models, we take advan-
tage of the approximation capability of multi-layer perceptron
(MLP) [Hornik et al., 1989] to model f and ψ. All MLPs
have 2 layers with Batch normalization [Ioffe and Szegedy,
2015] and ReLU activation.

For node classification, we use GAT [Veličković et al.,
2018] as the Original model. In the GAT variants, we use 2
GNN layers and a hidden dimensionality of 32. The negative
input slope of LeakyReLU in the GAT attention mechanism
is 0.2. The number of heads in multi-head attention is 1. We
use a dropout ratio of 0 and a weight decay value of 0.

For graph classification, we build a GNN (GAT-GC) based
on GAT as the Original model: We adopt the attention mech-
anism in GAT to specify the form of Equation (3). For
the readout function, a naive way is to only consider the
node embeddings from the last iteration. Although a suf-
ficient number of iterations can help to avoid the cases in
Theorem 1 by aggregating more diverse node features, the
features from the latter iterations may generalize worse and
the GNNs usually have shallow structures [Xu et al., 2019;
Zhou et al., 2018]. So the GAT-GC adopts the same function
as used in [Xu et al., 2018; Xu et al., 2019; Li et al., 2019],
which concatenates graph embeddings from all iterations:
hG = ‖Lk=0

(
Readout(

{
hki
∣∣i ∈ G})). For the Readout

function, we use sum for bioinformatics datasets and mean
for social network datasets. In the GAT-GC variants, we use
4 GNN layers. The hidden dimensionality is 32 for bioinfor-
matics datasets and 64 for social network datasets. The nega-
tive input slope of LeakyReLU is 0.2. We use a single head
in the multi-head attention. The following hyper-parameters
are tuned for each dataset: (1) Batch size in {32, 128}; (2)
Dropout ratio in {0, 0.5} after dense layer; (3) L2 regulariza-
tion from 0 to 0.001.

For all experiments, we perform 10-fold cross-validation
and repeat the experiments 10 times for each dataset and each
model. Following [Xu et al., 2019], to get a final accuracy for
each run, we select the epoch with the best cross-validation
accuracy averaged over all 10 folds. The results are reported
based on the results averaged across all runs. All models are
trained using the Adam optimizer [Kingma and Ba, 2018]
and the learning rate is dropped by a factor of 0.5 every 400
epochs for node classifications and every 50 epochs for graph
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Dataset TRIANGLE-NODE
P (%) 29.2

Original 78.40± 7.65

Additive 91.31± 1.19
Scaled 91.38± 1.23

f-Additive 91.18± 1.24
f-Scaled 91.36± 1.26

Table 1: Testing accuracies (%) of the original GAT and the GAT ap-
plied with each of our 4 CPA models on TRIANGLE-NODE dataset
for node classification. We highlight the result of the best performed
model. The proportion P of multisets that hold the properties in
Theorem 1 among all multisets is also reported.

Datasets RE-B RE-M5K
P (%) 100.0 100.0

Original 50.00± 0.00 20.00± 0.00

Additive 93.07± 1.82 57.39± 2.09
Scaled 92.36± 2.27 56.76± 2.26

f-Additive 93.05± 1.87 56.43± 2.38
f-Scaled 92.57± 2.06 57.22± 2.20

Table 2: Testing accuracies (%) of GAT-GC variants (the original
one and the ones applied with each of our 4 CPA models) on so-
cial network datasets. We highlight the result of the best performed
model per dataset. The proportion P of multisets that hold the prop-
erties in Theorem 1 among all multisets is also reported.

classifications. We use an initial learning rate of 0.01 for the
TRIANGLE-NODE and bioinformatics datasets and 0.0025
for the social network datasets. On each dataset, we use the
same hyper-parameter configurations in all model variants for
a fair comparison.

5.2 Node Classification
For the TRIANGLE-NODE dataset, the proportion P of mul-
tisets that hold the properties in Theorem 1 is 29.2%, as
shown in Table 1. The classification accuracy of the Orig-
inal model (GAT) is significantly lower than the CPA mod-
els. It supports the claim in Corollary 1: the Original model
fails to distinguish all distinct multisets in the dataset and ex-
hibits constrained discriminate power. On the contrary, CPA
models can distinguish all different multisets in the graph as
suggested in Corollary 3 and indeed significantly improve the
accuracy of the Original model as shown in Table 1. This ex-
periment thus well answers Question 3 that we raised.

5.3 Graph Classification
Here we aim to answer Question 4 by evaluating the per-
formance of GAT-based GNN (GAT-GC) variants on graph
classification benchmarks. Besides, we compare our best-
performing CPA model with baselines to answer Question 5.

Social Network Datasets
All graphs in the RE-B and RE-M5K datasets are the graphs
stated in Corollary 1 that all attention-based GNNs fail to dis-
tinguish: Since those datasets do not contain original node
features and we assign all the node features to be the same,
we have P = 100.0% in those datasets. Thus all multisets
in aggregation will be mapped to the same embedding by the

Figure 2: Training curves of GAT-GC variants on bioinfo datasets.

Datasets MUTAG PROTEINS ENZYMES NCI1
P (%) 56.9 29.3 29.4 43.3

Original 84.96± 7.65 75.64± 3.96 58.08± 6.82 80.29± 1.89

Additive 89.75± 6.39 76.61± 3.80 58.90± 6.96 81.92± 1.89
Scaled 89.65± 7.47 76.44± 3.77 58.35± 6.97 82.18± 1.67

f-Additive 90.34± 6.05 76.60± 3.91 59.80± 6.18 81.96± 2.01
f-Scaled 90.44± 6.44 76.81± 3.77 58.45± 6.35 82.28± 1.81

Table 3: Testing accuracies (%) of GAT-GC variants (the original
one and the ones applied with each of our 4 CPA models) on bioin-
formatics datasets. We highlight the result of the best performed
model per dataset. The highlighted results are significantly higher
than those from the corresponding Original model under paired t-
test at significance level 5%. The proportion P of multisets that hold
the properties in Theorem 1 among all multisets is also reported.

Original GAT-GC. After a mean readout function on all mul-
tisets, all graphs are finally mapped to the same embedding.
The performance of the Original model is just random guess-
ing of the graph labels as reported in Table 2. While our
CPA models can distinguish all different multisets and are
confirmed to be significantly better than the Original one.

Here we examine a naive approach to incorporate the car-
dinality information in the Original model by assigning node
degrees as input node labels. By doing this way, the node
features are diverse and we get P = 0.0%, which means that
the cases in Theorem 1 can be all avoided. However, the test-
ing accuracies of Original can only reach 76.65 ± 9.87% on
RE-B and 43.71 ± 9.05% on RE-M5K, which are signifi-
cantly lower than the results of CPA models in Table 2. Thus
in practice, our proposed models exhibit good generalization
power comparing to the naive approach.

Bioinformatics Datasets
For bioinformatics datasets that contain diverse node labels,
we also report the P values in Table 3. The results reveal the
existence (P ≥ 29.3%) of the cases in those datasets that can
fool the Original model, thus the discriminative power of the
Original model is theoretically constrained.
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Datasets MUTAG PROTEINS ENZYMES NCI1 RE-B RE-M5K

B
as

el
in

es

WL 82.05 ± 0.36 74.68 ± 0.49 52.22 ± 1.26 82.19 ± 0.18 81.10 ± 1.90 49.44 ± 2.36
PSCN 88.95 ± 4.37 75.00 ± 2.51 - 76.34 ± 1.68 86.30 ± 1.58 49.10 ± 0.70

DGCNN 85.83 ± 1.66 75.54 ± 0.94 51.00 ± 7.29 74.44 ± 0.47 76.02 ± 1.73 48.70 ± 4.54
GIN 89.40 ± 5.60 76.20 ± 2.80 - 82.70 ± 1.70 92.40 ± 2.50 57.50 ± 1.50

CapsGNN 86.67 ± 6.88 76.28 ± 3.63 54.67 ± 5.67 78.35 ± 1.55 - 52.88 ± 1.48

GAT-GC (f-Scaled) 90.44 ± 6.44 76.81 ± 3.77 58.45 ± 6.35 82.28 ± 1.81 92.57 ± 2.06 57.22 ± 2.20

Table 4: Testing accuracies (%) for graph classification. We highlight the result of the best performed model for each dataset. Our GAT-GC
(f-Scaled) model achieves the top 2 on all 6 datasets.

To empirically validate this, we compare the training ac-
curacies of GAT-GC variants, since the discriminative power
can be directly indicated by the accuracies on training sets.
Higher training accuracy indicates a better fitting ability to
distinguish different graphs. The training curves of GAT-GC
variants are shown in Figure 2. From these curves, we can
see even though the Original model has overfitted different
datasets, the fitting accuracies that it converges to can never
be higher than those of our CPA models. Compared to the
WL kernel, CPA models can get training accuracies close to
100% on several datasets, which are comparable with the WL
kernel (equal to 100% as shown in [Xu et al., 2019]). These
findings validate that the discriminative power of the Origi-
nal model is limited while our CPA models can approach the
upper bound with certain learned weights.

For the performance on testing sets, the testing curves ex-
hibit similar patterns as those shown in Figure 2. The testing
accuracies of GAT-GC variants on bioinformatics datasets are
reported in Table 3. From those results, we find our proposed
CPA models can further improve the testing accuracies of the
Original model on all datasets. This indicates that the preser-
vation of cardinality can also benefit the generalization power
of the model besides the discriminative power.

Comparison to Baselines
From the previous results in Table 2 and 3, we find the f-
Scaled model has the highest average testing accuracy on
all datasets. Thus the f-Scaled model is chosen as the best-
performing GAT-GC variant to be compared with other base-
lines. Note that all 4 models (Additive, Scaled, f-Additive and
f-Scaled) exhibit very small differences in performance, and
fail to be distinguished by paired t-test at significance level
5% on all datasets. The similar performance of the fixed-
weight models (f-Additive and f-Scaled) comparing to the full
models (Additive and Scaled) demonstrates that the improve-
ments achieved by CPA models are not simply due to the in-
creased capacities given by the additional parameters used in
the full models. The preservation of cardinality information
in CPA models is the key to the improvements.

We then compare our GAT-GC (f-Scaled) model with
several state-of-the-art baselines: WL kernel (WL) [Sher-
vashidze et al., 2011], PATCHY-SAN (PSCN) [Niepert et
al., 2016], Deep Graph CNN (DGCNN) [Zhang et al.,
2018], Graph Isomorphism Network (GIN) [Xu et al., 2019]
and Capsule Graph Neural Network (CapsGNN) [Xinyi and
Chen, 2019]. For the baselines, we use the results reported
in their original works. If results are not available, we use
the best testing results reported in [Xinyi and Chen, 2019;

Ivanov and Burnaev, 2018].
In Table 4, the results show that our GAT-GC (f-Scaled)

model achieves 4 top 1 and 2 top 2 on all 6 datasets. It should
be noted that our model is general enough to adopt any kind
of attention mechanism, it is expected that even better perfor-
mance can be achieved with certain choice of attention mech-
anism besides the one used in GAT.

6 Conclusion
In this paper, we theoretically analyze the representational
power of GNNs with attention-based aggregators: We de-
termine all cases when those GNNs always fail to distin-
guish distinct structures. The finding shows that the miss-
ing cardinality information in aggregation is the only reason
to cause those failures. To improve, we propose cardinality
preserved attention (CPA) models to solve this issue. In our
experiments, we validate our theoretical analysis that the per-
formances of the original attention-based GNNs are limited.
With our models, the original models can be improved. Com-
pared to other baselines, our best-performing model achieves
competitive performance. In future work, a challenging prob-
lem is to better learn the attention weights so as to guarantee
the injectivity of our cardinality preserved attention models
after the training. Besides, it would be interesting to analyze
different attention mechanisms.
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