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Abstract
In this paper, we explore to learn representations
of legislation and legislator for the prediction of
roll call results. The most popular approach for
this topic is named the ideal point model that relies
on historical voting information for representation
learning of legislators. It largely ignores the con-
text information of the legislative data. We, there-
fore, propose to incorporate context information to
learn dense representations for both legislators and
legislation. For legislators, we incorporate rela-
tions among them via graph convolutional neural
networks (GCN) for their representation learning.
For legislation, we utilize its narrative description
via recurrent neural networks (RNN) for represen-
tation learning. In order to align two kinds of rep-
resentations in the same vector space, we introduce
a triplet loss for the joint training. Experimental
results on a self-constructed dataset show the effec-
tiveness of our model for roll call results prediction
compared to some state-of-the-art baselines.

1 Introduction
Quantitative political science aims to understand how the
government behaves via analyzing legislative data. Roll call
data, historical records of legislators’ votes on a set of issues,
attracts intensive attention from quantitative political scien-
tists because it presents actions of law-makers. Researchers
have analyzed roll call data from the United States Congress
[Clinton et al., 2004] or the British Parliament [Cowley and
Garry, 1998] to reveal the political leaning of congressmen.
An example of a legislative record can be seen in Figure 1.
Each record contains voting results and information about the
legislation with its title and description. A legislation is ini-
tialized by a group of congressmen, consisting of a sponsor
and several co-sponsors. Voting results made by legislators
include Ayes (yes), Noes (no), and Not Vote.

The most popular approach for roll call data modeling is
named ideal point model [Clinton et al., 2004]. It represents
∗Indicates the two authors have equal contributions.
†Contact author

Figure 1: An example of a legislative record collected from U.S.
Congress. The legislation is initialized by Rep. Hurd. Will with
four co-sponsors.

legislators and legislation as points in a latent space. And
the voting behavior of a legislator can be characterized as the
distance between his/her position and the target legislation in
the space. With this setting, researchers explore to predict the
voting results of legislators. However, the positions of legisla-
tors are learned based on their historical voting results, ignor-
ing other context information. This results in poor predicting
accuracy. In practice, the voting behavior of the congressman
is affected by multiple factors, the topic of legislation, the in-
fluence of other congressmen, personal preferences, etc. Al-
though some extensions [Gerrish and Blei, 2011] are made to
incorporate textual information for better modeling the legis-
lation, the ideal point model still lacks the power to capture a
richer context of the legislative record.

To tackle this problem, we propose to learn representations
for both legislators and legislation incorporating context in-
formation of a legislative record for better prediction of roll
call results. For legislators, we introduce relationships among
legislators and utilize graph convolutional networks (GCNs)
for representation learning. For legislation, we encode its nar-
rative description via recurrent neural networks (RNNs) for
the representation learning. Following the ideal point model,
we map representations of the legislation and legislators into
the same embedding space. A triplet loss is utilized as the
objective function to learn the two kinds of representations
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jointly. Therefore, legislators’ degree of approval to a tar-
get legislation can be measured by the Euclidean distance
between their representations and the legislation’s represen-
tation. We collect a dataset from the Congress website in the
U.S. between 1993 and 2018 for the evaluation. The major
contributions of this paper can be three-fold.

• We represent a congressman using their background in-
formation and jointly learn dense representations of all
congress members incorporating their network information
via graph neural networks.

• We align representations of legislation and legislators in the
same vector space and introduce a triplet loss for the joint
training.

• We collect a dataset including legislative records of U.S.
Congress. Experimental results from this self-constructed
dataset show the effectiveness of our framework. To the
best of our knowledge, this is the first dataset constructed
for voting result prediction in the political area. We will
make it public.

2 Dataset Construction
The dataset is collected from the Congress website in U.S. 1,
including both legislation information and roll call results
from 1993 to 2018. There are 215,857 legislation in total,
with 2,234,082 voting records. 2,347 legislators are involved
in this dataset. We present the change of numbers of legisla-
tion along the time span in Figure 2a.

Legislator. A legislator is a person who writes and passes
laws, especially someone who is a member of a legislative
body. Our targets here are Members of the U.S. House of
Representatives. The total number of voting representatives
is fixed by law at 435, and the term of office of the mem-
bers is two years, with no limit for re-election (the re-election
rate is around 81.91%). Every member owns an ID and has
information about party and state.

Legislation. The legislation is a law which has been pro-
mulgated by a legislature or in the process of making it. Be-
fore an item of legislation becomes a law, it may be known
as a bill and can be broadly referred to as “legislation” (we
use legislation through this paper). Every legislation belongs
to a specific policy area and it has related textual information
of title and description. We list the proportion of legislation
in different policy areas in Figure 2b. A legislation is ini-
tialized by a group of congressmen, consisting of a sponsor
and several co-sponsors. The distribution of the numbers of
co-sponsors is shown in Figure 2c.

Roll call record. A roll call record contains voting results
of legislators with respect to a legislation. There are three
types of voting results, namely, “yeas” (yes), “nays” (no), and
“not vote”. The distribution of voting results can be seen in
Figure 2d.

1www.congress.gov. The dataset is avaliable on
http://www.sdspeople.fudan.edu.cn/zywei/data/fudan-
USRollCall.zip and the codes for this paper is avaliable on
https://github.com/lxqjdai/Joint-Representation-Learning-of-
Legislator-and-Legislation-for-Roll-Call-Prediction

(a) (b)

(c) (d)

Figure 2: (a) number of legislation each year; (b) proportion of leg-
islation in different policy areas; (c) distribution of the number of
co-sponsors for each legislation; (d) distribution of different stands
in roll call results.

3 Task Formulation and Overall Architecture
Given a legislation and a set of legislators, we aim to predict
the voting result for each legislator. We describe the predic-
tion task starting with the definition of symbols.

• A set of congress members M = {m1,m2, . . . ,mk} and
every membermi has an ID:mi(ID), information of party:
mi(p) and state: mi(s).

• A set of legislation L = {l1, l2, . . . , ln} and every legis-
lation li has a description li(d), and a sponsor co-sponsor
network li(s).

• A set of roll call voting records R =
{r(mi, lj)|1 ≤ i ≤ k, 1 ≤ j ≤ n}, r(mi, lj) stands
for the voting result of legislator mi to legislation lj and it
has three labels, namely yea, nay and not vote.

The overall inference workflow can be seen in Figure 3. It
mainly includes three components, namely, legislation rep-
resentation learning, legislator representation learning, and
voting result prediction. We learn the representation of leg-
islators with graph convolutional networks utilizing sponsor
co-sponsor network and learn the representation of legislation
using recurrent neural network based on its description. The
voting preference of a legislator with respect to a legislation
is measured by the similarity between their representations.
We then rank legislators in terms of their preferences (higher
preference score means higher tendency to vote yes) and pre-
dict their voting results according to a provided voting ratio
(proportion of different voting results). The voting ratio of
a legislation is automatically determined by a semantic GCN
model.

For the training, we introduce a triplet loss as the objective
function to jointly learn of the two kinds of representations.
We will introduce our joint training framework in Section 4
and the ratio aware result prediction module in Section 5.
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Figure 3: The overall structure of the inference workflow for voting result prediction.

4 Joint Representation Learning of
Legislation and Legislators

We explore to learn dense vectors to include complex infor-
mation for both legislation and legislators. And then, we aim
to align both kinds of representations within the same vec-
tor space via joint training. The joint learning framework
mainly includes three components, namely, GCN-based leg-
islator representation learning, LSTM-based legislation rep-
resentation learning, and joint training based on triplet loss.

4.1 GCN-based Legislator Representation
Learning

We initialize the representation of congressmen by their back-
ground information and then update their representations via
GCNs taking legislator network into consideration.
Representation initialization. We first map every congress
member to a continuous low-dimension vector, Xlgt, with
three components, namely, ID, party, and state.

Xlgt(i) = XID(i)⊕XParty(i)⊕XState(i) (1)

where XID stands for ID which is unique for every Congress
member, XParty denotes democracy or republican and
XState stands for the state where the member is elected.
Legislator network construction. Each legislation is ini-
tialized by a sponsor and several co-sponsors. It is reason-
able that the relationship among legislators can be reflected
from such political activity, i.e., raise a legislation together.
In specific, we regard legislators as nodes and use the connec-
tions of sponsor and co-sponsor as the edge in the network.
We consider all the sponsor and co-sponsor relationships in
a period of time to obtain the adjacency matrix A. The el-
ement aij means the number of legislation that mi and mj

co-sponsor.
GCN-based legislator representation updating.
GCNs [Kipf and Welling, 2016] are neural networks
operating on graphs and including features of nodes based
on properties from their neighborhoods. In our scenario, we
utilize GCNs for the representation updating of legislators

based on the sponsor co-sponsor network. Each layer of our
GCNs is structured as follows:

Z = f(X,A) = AReLU(AXinputW
(0))W (1) (2)

Here, A is the normalized adjacency matrix of the network.
W (0) ∈ RC×H is an input-to hidden weight matrix for a hid-
den layer. W (1) ∈ RH×F is a hidden-to-output weight ma-
trix. Here we take Xlgt of all legislators as input and update
their representation accordingly.

4.2 LSTM-based Legislation Representation
As for the legislation, we use the title and description for its
representation learning. We use the recurrent neural network
(LSTM [Hochreiter and Schmidhuber, 1997] in our case) to
encode the text information of the legislation as the legislation
feature(Xlgn).

Xlgn(j) = LSTM(lj(d)) (3)

li(d) stands for the text information of the legislation lj .

4.3 Joint Training via Triplet Loss
For inference, the distance between legislators and legislation
should represent the legislators’ preference for voting for the
legislation. We, therefore, want to align representations of
both the legislation and legislators within the same space. In
order to achieve this, we introduce triplet loss [Chechik et al.,
2010; Wang et al., 2014] for the joint training.

At each training iteration, we sample a mini-batch of
triplets. Each one consists of the legislation and a pair
of legislators, one is positive mj

+ and the other is nega-
tive mk

−. Voting results of the two legislators should sat-
isfy r(mk

−, li) < r(mj
+, li) with the rule of Y ES <

Not V ote < No. The goal of triplet loss is to push away
the representation of negative legislator Xlgt(k)

− from the
representation of the legislation Xlgn by a distance margin
ε > 0 compared to the representation of positive legislators
Xlgt(j)

+. Here is the form of hinge loss to implement this:

L = max(ε, ‖Xlgn(i)−Xlgt(j)
+‖2 − ‖Xlgn −Xlgt(k)

−‖2)
(4)
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5 Ratio Aware Voting Result Prediction
Based on representations of legislators and the target legisla-
tion, we measure the preference of legislators to vote for this
legislation by computing their Euclidean distances in the em-
bedding space. Legislators are then ranked by the distance
in ascending order (the closer the distance is, the higher ten-
dency to vote for this legislation). With a provided voting
ratio, i.e., the proportion of different voting results, we are
able to classify legislators as supporters/neutrals/opposers in
turn. In practice, we predict the ratio of voting results for the
legislation automatically. We explore to utilize a GCN-based
model for voting ratio prediction, named semantic-GCN.

Legislation network construction. We treat each legisla-
tion as a node and the similarity between two legislation as
the weight of the edge for legislation network construction.
Following [Liu et al., 2019], we extract keywords for each
legislation using the Text-rank algorithm and use the average
of keywords’ glove vectors as its representation. Based on
the representation, we compute the similarity between legis-
lation.

Semantic-GCN based voting ratio prediction. Take the
representation of legislation learned in Section 4.2 as initial
input, we utilize GCN to update the representation of leg-
islation. We concatenate the GCN output with the initial
representation of the legislation and predict the voting ratio
through a two-layer MLP regression. Note that the output is
a probability distribution with three entries corresponding to
three voting results.

6 Experiment
6.1 Experiment Setup
Experimental dataset construction. Considering legisla-
tion in the dataset spread in a large range of time span, we set
a window size to extract roll-call data to build a number of
experimental datasets for the evaluation of our model. In spe-
cific, we continuously extract five years of data from 1993 to
2018 each time to construct a single experiment set, and this
results in 22 splits with overlaps. In each split, we use data in
the first four years as the training set and the data in the last
year as the testing set. Moreover, we randomly select 20%
of legislation in the training set for parameter tuning. For
instance, the first experiment set is constructed based on leg-
islation raised from 1993 to 1997 (training on the year 1993
to 1996 and test on the year 1997). We calculate accuracy for
each experiment set and report the average accuracy of the 22
sets for evaluation.

Legislator network construction. The information of
sponsor and co-sponsor network might uncover future infor-
mation for roll call result prediction of legislation in the same
period of time. Therefore, We use sponsor and co-sponsor
information in a period of time to construct the legislator net-
work for the representation learning of legislators. In order
to avoid the issue of future information leaking, we use the
legislator network constructed in the training set for the infer-
ence of legislation in the test set.

Implementation details. The GCN for legislator represen-
tation learning is two-layer and the size of the hidden layer is
32. The dimension size of the legislator representation is 32
(16 for ID, 8 for the party, 8 for state). The initial learning
rate is 1× 10−4. We apply early stop to keep the model from
over-fitting. The number of the hidden layer in the Seman-
tic GCN is 32. The parameters are tuned on the validation set.

6.2 Models for Comparison
We compare our model with two state-of-the-art approaches.

clinton [Clinton et al., 2004] This model utilizes the
Bayesian model to compute positions of legislators and
legislation in the ideal point space. Distance between repre-
sentations of legislators and legislation is used to characterize
the voting behavior.
gerrish [Gerrish and Blei, 2011] This model extends the
ideal point model with textual information of the legislation
and embeds the positions of legislation using text regression.

We employ different algorithms for three components in
our framework as ablation study, namely, legislation repre-
sentation learning, legislator representation learning and vot-
ing result prediction. Here are the details of comparative
models.

LSTM+Deepwalk This model uses deepwalk [Perozzi et
al., 2014] to obtain the representation of legislators. LSTM
is used for legislation representation learning. It concate-
nates the two representations and uses a two-layer perceptron
model for voting result prediction.
LSTM+Node2vec This model is similar to
LSTM+Deepwalk except it uses the node2vec [Grover
and Leskovec, 2016] for legislator representation learning.
LSTM+GCN LSTM, GCN and a two-layer perceptron are
used for legislation representation learning, legislator repre-
sentation learning and voting result prediction.
LSTM+Party This model is similar to LSTM+GCN, except
we use only party information to represent legislators.
LSTM+GCN+triplet loss This is our model that utilizes the
triplet loss to update the representations of legislation and leg-
islators jointly. The voting ratio of the legislation is obtained
via semantic GCN.
LSTM+GCN+triplet loss (GT) We use the ground-truth
voting ratio in our model and report the results for reference.

6.3 Overall Performance
The overall performance of different models are shown in Ta-
ble 1. We have following findings:

• The performance of clinton is worse than all other meth-
ods, which shows the limited prediction power of the ideal
point model that ignores context information of legislative
records. By incorporating the textual information, gerrish
can improve the performance by a large margin.

• By using dense representations for legislation and legisla-
tors, the prediction models achieve much better accuracy
compared to the classic model clinton.
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Model Acc
clinton 68.10
gerrish 75.30

LSTM + Deepwalk 75.88
LSTM + Node2vec 75.89
LSTM + Party 76.26
LSTM + GCN 76.75

LSTM + GCN + triplet loss 78.09
LSTM + GCN + triplet loss (GT) 81.86

Table 1: Overall performance of different models for roll-call results
prediction. bold number is the best performance.

• Compared LSTM+GCN with LSTM+deepwalk and
LSTM+node2vec, we can see the effectiveness of using
graph neural network to model relationships among legis-
lators for their representation learning. It is interesting to
note that the performance of LSTM+party that uses party
information to stand for a legislator is quite promising. We
will further analyze this in the next sub-section.

• Our model LSTM+GCN+triplet loss performs better than
all other baselines. This indicates the effectiveness of using
triplet loss for joint training the representation of legislation
and legislators.

• By using the ground-truth voting ratio, the model can fur-
ther improve the performance compared to models with au-
tomatic ratio prediction results.

6.4 Performance of Voting Ratio Prediction
We further analyze the performance of our semantic-GCN for
automatic voting ratio prediction. We compare four different
models with various configurations for legislation representa-
tion learning and adjacency matrix construction.

S-GCN-Cos-Glove We learn the initial representation of
legislation via averaging the embedding of words it contains.
The similarity between two legislation is computed cosines
similarity of the two representation vectors. A two-layer
GCN is then used to update the representation of legislation
for voting ratio prediction.

S-GCN-Cos-LSTM This model is the same as S-GCN-Cos-
Glove, except that it uses LSTM to initialize the representa-
tion of legislation.

S-GCN-Cos-Cat-LSTM On top of S-GCN-Cos-LSTM, this
model concatenates the output of semantic GCN and LSTM
as the representation of a legislation for the final prediction.
This is the one we used for voting ratio prediction.

S-GCN-Coo-Cat-LSTM This model is the same as S-GCN-
Cos-Cat-LSTM, except the adjacency matrix for GCN is built
via co-occurrence of keywords.

We use MSE as the evaluation metric. The lower the
score is, the better the model is. The results can be seen
in Table 2. The performance of S-GCN-Cos-LSTM and S-
GCN-Cos-Glove shows no significant difference. However,
S-GCN-Cos-LSTM’s performance is relatively more stable
across different years. So we choose LSTM to continue.
The performance of S-GCN-Cos-Cat-LSTM is better than that

Model MSE
S-GCN-Cos-Glove 0.02136
S-GCN-Cos-LSTM 0.02123

S-GCN-Coo-Cat-LSTM 0.03232
S-GCN-Cos-Cat-LSTM 0.01580

Table 2: Performance of various configurations of semantic-GCN
models for voting ratio prediction. bold number is the best perfor-
mance.

of S-GCN-Cos-LSTM, which shows that the concatenation
works. The performance of S-GCN-Cos-Cat-LSTM is appar-
ently better than that of S-GCN-Coo-Cat-LSTM, which shows
that the cosine similarity works better than co-occurrence
when constructing the adjacency matrix.

6.5 Influence of Party Stand on Voting Behavior of
Legislators

Legislators in the same party tend to have the same stand to
a specific legislation. Therefore, party is a vital feature for
voting result prediction. The performance of LSTM+party
in Table 1 confirms this. In this sub-section, we look deep
into the relationship between the voting behavior of legisla-
tors and their party stand.
Intra-party consistency. We first define the main stand of
a party with respect to a specific legislation as the majority
voting result of party members. We then measure the intra-
party consistency as the percentage of legislators in the party
who make the same voting decision as the main stand. Aver-
aging on all the experimental sets for both parties, we get that
the intra-party consistency is 88.42% (Democratic: 87.05%
VS Republican: 89.11%). This shows that there are a number
of legislators who do not follow the main stand of their party.
Deviation degree of legislator. We say that a legislator de-
viates from the party if he/she did not follow the main stand
of the party in a voting process. We compute the deviation
degree DRmi

of a legislator mi, with the following formula:
DRmi

=
Dmi

Tmi
. Dmi

is the total number of deviations of mi,
Tmi

is the total number of voting records ofmi. The distribu-
tion of deviation degree of legislators is shown in Figure 4a.
Behavior prediction for legislators of high deviation de-
gree. We select the top 5% of legislators with higher devia-
tion degree. Their behaviors are supposed to be more difficult
to predict. The results of the prediction accuracy for these leg-
islators are shown in Table 3. Experimental results show that
our model is more effective for modeling behaviors of these
legislators with higher deviation degree.
Deviation degree of legislation. We further study the de-
gree of deviation for legislation to see in what policy areas
legislators tend to vote differently with the main stand of their
party. We define the deviation degree DRlj of legislation lj
with the formula: DRlj =

Dlj

Tlj
. Dlj is the number of leg-

islators who deviates from their party in voting this legisla-
tion and Tlj is the total number of legislators involved in this
voting. We then define the deviation degree of policy area
Pk as the average deviation degree of legislation it includes:
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(a) (b)

Figure 4: (a) Distribution of deviation degree of legislators. We
select legislators with more than 50 roll call records (accounts for
98.13%); (b) distribution of deviation degree of different policy ar-
eas (we list top 8 out of 32 to save the space)

Model Acc
LSTM + Deepwalk 62.37
LSTM + Node2vec 62.61
LSTM + Party 62.85
LSTM + GCN 62.70

LSTM + GCN + triplet loss 65.93
LSTM + GCN + triplet loss (GT) 67.68

Table 3: Performance of different models for roll-call results predic-
tion on legislators with top 5% deviation degree. bold number is the
best performance.

DRPk
=

∑
lj∈Pk

Dlj

#lj∈Pk
. The distribution of deviation degrees

for different policy areas is shown in Figure 4b. We can infer
that policy areas related to animals, food, and sports, which
are highly related to the individual personalities instead of
party interests, obtain a higher deviation ratio.

6.6 Case Study
To show the efficiency of our framework qualitatively, we se-
lect a specific legislation and get the representation of the leg-
islation and legislators. Then, we project representations into
the 2-D space through PCA. The visualization can be seen in
Figure 5. We can see that legislators who vote for this legis-
lation stay close to the representation of this legislation and
those who against the legislation locate far away. This shows
that the triplet loss efficiently encodes the roll call result infor-
mation into the representation of legislators and legislation.

7 Related Work
There are two related research fields, namely, the application
of Graph Neural Network and roll call result prediction.

Application of Graph Neural Network. The most popular
task of Graph Neural Network explores to learn dense repre-
sentation for nodes in the network. Traditional GNN models
usually use explicit graph Laplacian regularization [Zhu et
al., 2003; Belkin et al., 2006; Weston et al., 2008] while cur-
rent research borrows the idea from word embedding learn-
ing [Mikolov et al., 2013]. Approaches in the latter category
includes DeepWalk [Perozzi et al., 2014], LINE [Tang et al.,
2015]) and node2vec [Grover and Leskovec, 2016]. Other
graph embedding methods incorporate text information [Tu
et al., 2017; Sun et al., 2016]. More recent literature, i.e.,

Figure 5: Layout of the representation of legislators and a spe-
cific legislation. Black star is the representation of the legislation;
green circles represent those who vote ”yes” for this legislation; red
crosses represent those who are against this legislation; blue squares
represent those who do not vote.

GCNs [Kipf and Welling, 2016], makes progress in combin-
ing graph structure with supervised machine learning targets
directly. Based on GCNs, researchers explore different appli-
cations including semantic role labeling [Marcheggiani and
Titov, 2017], named entity recognition[Cetoli et al., 2017]
and structured label classification[Chen et al., 2017].
Roll call result prediction. Modeling the policy prefer-
ences of legislators toward legislative outcomes is the main
research problem of modern legislative behavior research.
Based on legislative voting records, researchers make infer-
ences about the policy preferences of legislators [Clinton et
al., 2004], the conflicted political issues [Cowley and Garry,
1998], the cohesiveness of parties [Rosenthal and Voeten,
2004] and the existence of intra-party factions [Rosenthal
and Voeten, 2004]. Most of transitional research is based on
ideal point model [Clinton et al., 2004; Jackman and Rivers,
2004]. [Gerrish and Blei, 2012] develops the issue-adjusted
ideal point model. And there are also some game-theoretic
models of congressional vote prediction [Ghoshal and Hono-
rio, 2016; Irfan and Gordon, 2018].

8 Conclusions and Future Work
We focus on the task of roll call results prediction based on
legislative data. We build up the first dataset for this task
and propose a framework to learn dense vectors for both the
legislation and legislators to make the prediction of roll call
result. Experimental results show the effectiveness of our
framework. In future work, we are interested in conducting
graph convolutions dynamically to help draw the picture of
the change in the Congress members.
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