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Abstract

Minimum dominating set (MinDS) is a canonical
NP-hard combinatorial optimization problem with
applications. For large and hard instances one must
resort to heuristic approaches to obtain good so-
lutions within reasonable time. This paper devel-
ops an efficient local search algorithm for MinDS,
which has two main ideas. The first one is a novel
local search framework, while the second is a con-
struction procedure with inference rules. Our al-
gorithm named FastDS is evaluated on 4 standard
benchmarks and 3 massive graphs benchmarks.
FastDS obtains the best performance for almost all
benchmarks, and obtains better solutions than state-
of-the-art algorithms on massive graphs.

1 Introduction
Given an undirected graph G = (V,E), a dominating set D
is a subset of vertices such that each vertex in V \ D has
at least one adjacent vertex in D. Dominating set is an im-
portant concept in graph theory, and have applications in di-
verse areas, especially in social networks [Wang et al., 2009;
Chalupa, 2018]. One typical problem is to find a smallest
group of influential individuals or a set of initial seeds in a
social network, so that all participants can be reached with
only one hop from the seeds. This problem is equivalent to
finding a minimum dominating set (MinDS) for the network.

The MinDS problem is a classic NP-hard problem, and
cannot be approximated with a constant ratio under the as-
sumption P 6= NP [Raz and Safra, 1997]. Moreover, nega-
tive results have been proved for the approximation of MinDS
even when limited to power law graphs [Gast et al., 2015].
A number of works have been done on exact algorithms for
MinDS, which mainly focus on improving the upper bound
of running time. State-of-the-art exact algorithms for MinDS
are based on the branch and reduce paradigm and can achieve
a run time of O(1.4969n) [van Rooij and Bodlaender, 2011].
Fixed parameterized algorithms have allowed to obtain bet-
ter complexity results [Karthik C. S. et al., 2018]. The main
focus of such algorithms is on theoretical aspects.
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In practice, one usually resorts to heuristic approaches
to obtain good solutions within reasonable time. Although
greedy algorithms are fast, the obtained dominating sets
are far from satisfactory. A comparison among several
greedy heuristics for MinDS can be found in [Sanchis, 2002].
Heuristic search algorithms usually return very good or even
optimal solutions within a reasonable time budget. Com-
monly used heuristic search methods, including genetic al-
gorithm [Hedar and Ismail, 2010] and ant colony optimiza-
tion [Jovanovic et al., 2010; Potluri and Singh, 2011; Potluri
and Singh, 2013], have been developed to solve MinDS.
Hyper meta-heuristic algorithms combine different heuris-
tic search algorithms and preprocessing techniques to obtain
better performance [Potluri and Singh, 2013; Chaurasia and
Singh, 2015; Bouamama and Blum, 2016; Lin et al., 2016;
Abu-Khzam et al., 2017]. These algorithms were tested on
standard benchmarks with up to thousand vertices. Recently,
the configuration checking (CC) strategy [Cai et al., 2011]
has been applied to MinDS and led to two local search al-
gorithms. Wang et al. proposed the CC2FS algorithm for
both unweighted and weighted MinDS [Wang et al., 2017],
and obtained better solutions than ACO-PP-LS [Potluri and
Singh, 2013] on standard benchmarks. Afterwards, another
CC-based local search named FastMWDS was proposed,
which significantly improved CC2FS on weighted massive
graphs [Wang et al., 2018]. Chalupa proposed an order-
based randomised local search named RLSo [Chalupa, 2018],
and achieved better results than ACO-LS and ACO-PP-LS
[Potluri and Singh, 2011; Potluri and Singh, 2013] on stan-
dard benchmarks of unit disk graphs as well as some massive
graphs. Very recently, Fan et. al. designed a local search al-
gorithm named ScBppw [Fan et al., 2019], based on two ideas
including score checking and probabilistic random walk.

This work develops an efficient and robust algorithm for
MinDS named FastDS, which achieves best results on almost
all standard and massive benchmarks, and significantly out-
performs state of the art algorithms on massive benchmarks.
There are two main novel ideas in FastDS. The first one is a
new local search framework. A typical local search frame-
work for MinDS, is to solve the problem by iteratively solv-
ing the k-DS problem — given an integer k, searching for a
k sized dominating set [Fan et al., 2019]. Specifically, when
finding a k sized feasible solution, the algorithm removes one
vertex and goes on to search for a (k − 1) size solution, by
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exchanging a pair of vertices in each step. We propose a new
local search framework. When finding a k size feasible so-
lution, our algorithm goes on to search for a solution with
(k−1) or (k−2) size. That is, our algorithm targets two goals
during the search. This accelerates the convergence speed,
and also expands the search region.

Moreover, we propose inference rules for MinDS, which
are used to fix vertices that must be in some optimal solu-
tion. The inference rules are particularly useful for solving
massive graphs. In order to solve combinatorial optimization
problems on massive graphs, reduction rules have been im-
plemented to reduce the size of the graphs. Examples include
maximum clique [Cai and Lin, 2016], vertex cover [Cai et
al., 2017], k-plex [Gao et al., 2018], as well as the weighted
dominating set problem [Wang et al., 2018]. Unfortunately,
reduction rules become very restricted when coming to the
MinDS problem, due to the special feature of the problem.
For example, even if we can fix the value of a vertex to be 1
(being selected), we cannot delete it from the graph, as this
vertex may be responsible for dominating other vertices in the
remaining graph. Although there are some reduction rules for
minimum weighted dominating set, they are based on the dif-
ferentials among vertex weights [Wang et al., 2018], and can-
not be applied to MinDS as all vertices have the same weight
there. We propose a compromise solution to design inference
rules rather than reduction rules. We fix the value of some
vertices using inference, without deleting them.

We conduct extensive experiments to compare FastDS
with state-of-the-art heuristic algorithms on a broad range of
benchmarks, including 4 standard benchmarks and 3 massive
graphs benchmarks. FastDS obtains the best results for al-
most all benchmarks, and significantly outperforms state-of-
the-art algorithms on the 3 massive benchmarks.

The paper is organized as follows. Section 2 presents ba-
sic definitions. Section 3 introduces the new local search
framework. Sections 4 presents the inference rules. Section
5 describes our FastDS algorithm. Experimental results are
shown in Section 6 and Section 7 gives concluding remarks.

2 Preliminaries
An undirected graph G = (V,E) consists of a vertex set
V and an edge set E. Each edge e = (v, u) connects two
vertices v and u, which are also called endpoints of e. Two
vertices are neighbors if they belong to a same edge. For a
vertex v, N(v) = {u ∈ V |(u, v) ∈ E} is the set of neigh-
bors of v, and the degree of v is degree(v) = |N(v)|. The
closed neighborhood of v is N [v] = N(v) ∪ {v}. Also, we
useN2[v] to denote the set of v’s closed neighborhood and its
neighbors’ neighbors, i.e., N2[v] = N [v]∪ (

⋃
u∈N(v)N(u)).

For a vertex set S ⊆ V , we useN [S] =
⋃

v∈S N [v] to denote
the closed neighborhood of S.

A candidate solution (also known as partial solution) for
MinDS is a subset of V . Given a candidate solution D, the
value of a vertex v, denoted as value(v), indicates whether it
is selected in the candidate solution or not, which is 1 if v ∈
D, and 0 otherwise. A vertex v is dominated by a candidate
solution D if v ∈ N [D], and is non-dominated otherwise.
The cost of a candidate solution D, denoted as cost(D), is

defined as the number of non-dominated vertices under D. A
commonly used scoring function for MinDS is defined as

score(v) = cost(D)− cost(D′)

where D′ = D \ {v} if v ∈ D, and D′ = D∪{v} otherwise.
Obviously, score(v) ≤ 0 if v ∈ D, and score(v) ≥ 0 if
v /∈ D.

We use D to denote the current candidate solution, i.e.,
the set of vertices currently selected for dominating, and U
to denote the set of non-dominated vertices. D∗ is the best
solution found so far, and D∗ at the end of the algorithm is
returned by the algorithm. The age of a vertex v is the number
of steps that have occurred since v last changed its state.

3 Two-goal Local Search
We propose a novel local search framework for MinDS,
which allows the algorithm to target two different sizes dur-
ing each period of the search.

For subset problems whose goal is to find a minimum set
satisfying given constraints, such as MinDS, minimum vertex
cover (MinVC) and minimum set cover, a popular paradigm
of local search is to iteratively find a feasible solution of a
fixed size [Musliu, 2006; Richter et al., 2007; Cai et al., 2013;
Gao et al., 2015; Fan et al., 2019; Li et al., 2019]. Specifi-
cally, when finding a k-sized solution, the algorithm focuses
on searching for a (k-1)-sized solution by fixing the size of
the partial solution to be k-1 at the end of each step. To this
end, a popular local search framework is the two-stage ex-
changing framework [Cai et al., 2013], where one vertex is
removed from the partial solution in the first stage and an-
other vertex is added in the second stage. Because of its good
performance and low complexity, the two-stage exchanging
framework has been applied to local search algorithms for
the MinDS problem [Fan et al., 2019].

We propose a new local search framework for MinDS (Al-
gorithm 1). The local search starts from an initial feasible
solution (line 2) and searches for a feasible solution as small
as possible. Specifically, when D becomes a feasible solu-
tion,D∗ is updated (line 5) and then a vertex is removed from
D (line 6). When D is not a feasible solution, the algorithm
iteratively exchanges vertices until D becomes a new domi-
nating set. It first removes vertices to make |D| = |D∗| − 3;
in the adding phase, one vertex is added to D, and after that,
if D is still infeasible, another vertex is added with a certain
probability. Thus, the size of D can be |D∗| − 1 or |D∗| − 2
at the end of a search step. Finally, the best found dominating
set D∗ is returned when the time limit is reached.

Previous local search algorithms focus on seeking a (k-1)-
sized solution after finding a k-sized solution. Differently,
our framework searches for a (k-1)-sized or (k-2)-sized solu-
tion after it finds a k-sized solution. This has two advantages.
(1) It accelerates the converge of the search, as the algorithm
sometimes directly finds a (k-2)-sized solution without find-
ing a (k-1)-sized one. Note that if we set the goal to be (k-2)
after finding a k-sized solution, we would fail to find the opti-
mal solution if its size is (k-1). Our framework with two goals
can improve the search efficiency without losing the ability to
find the optimal solution. (2) It expands the search region for

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1468



Algorithm 1: A New Local Search Framework for MinDS

Input: An undirected graph G = (V,E)
Output: A dominating set D of G

1 begin
2 D ← ConstructDS();
3 while elapsed time < cutoff do
4 if all vertices are dominated then
5 D∗ ← D;
6 remove a vertex from D;
7 continue;

8 Remove vertices from D until |D| = |D∗| − 3;
9 Add one vertex to D;

10 if ∃ non-dominated vertices then
11 if with certain probability then
12 Add another vertex to D;

13 return D∗;

the adding stage by keeping a smaller candidate solution at
the end of the removing stage. A smaller candidate solution
leads to a larger N [U ] (U is the set of non-dominated ver-
tices), which implies more candidate adding vertices in the
adding stage. Finally, we note that our local search frame-
work can be applied to other subset problems.

4 Inference Rules for MinDS
To improve the performance of local search for MinDS on
large instances, we propose three inference rules, which can
fix a considerable portion of the vertices for massive graphs.

Isolated vertex rule: If a vertex v is not adjacent to any
other vertices, or all its neighbors have a fixed value 0 (not
selected), then v’s value is fixed to 1.

This rule is obvious: in order to make the vertex v domi-
nated, there is only one option — including v in the solution.

Leaf rule: If a vertex v is adjacent to only one vertex u,
or all its neighbors but u have a fixed value 0, then value(u)
is fixed to 1 and value(v) is fixed to 0.

The reasoning of this rule is as follows. In order to domi-
nate vertex v, at least one of u and v should be selected, and
we prove that the best way to do so is to choose u and not
choose v. (1) If both u and v are selected in a dominating set
D, thenD\{v} is a smaller dominating set; (2) If v is selected
and u is not, i.e., v ∈ D and u /∈ D, then we can exchange u
and v and the resulting set D \{v}∪{u} is still a dominating
set, as removing v can only have impact on vertices u and v,
and by adding v we dominate both of them.

Triangle rule: For a triangle {u, v, w} in the graph, where
N(u) = {v, w}, N(v) = {u,w} and N(w) ⊃ {u, v},
value(w) is fixed to 1 while value(u) and value(v) are fixed
to 0.

The reasoning follows as this: For any dominating set D,
in order to dominate vertices u and v, at least one vertex from
{u, v, w} is in D. Now, since N [u] = N [v] = {u, v, w} ⊂
N [w], we know that, any vertex that can be dominated by u
and v can be dominated by w, but not vice versa.

We can generalize the Triangle rule as follows. However,
due to the high computation cost, the generalized rule is not

implemented in our algorithm.
Generalized Triangle rule: For a vertex w and a vertex

set S ⊆ N(w), if N [S] ⊂ N [w], then value(w) is fixed to 1,
and the value of any vertex in S is fixed to 0.

5 The FastDS Algorithm
We develop a local search algorithm for MinDS named
FastDS (Algorithm 3), which is based on our two-goal frame-
work and employs inference rules.

5.1 Initial Construction
In the beginning, the algorithm constructs an initial solution
by a greedy construction procedure, making use of the in-
ference rules. A key concept of the algorithm is the non-
dominated neighborhood and non-dominated degree.

Definition 1. Given a graph G = (V,E) and a vertex subset
D, the non-dominated neighborhood of a vertex v is Nr[v] =
{u|u ∈ N [v], N [u]∩D = ∅}, and the non-dominated degree
of v is degreer(v) = |Nr[v]|.

Intuitively, the set Nr[v] includes all the vertices that are
currently non-dominated and would be dominated if v is
added to the candidate solution D. Thus, degreer(v) mea-
sures the benefits of adding vertex v.

The construction procedure fist traverses all vertices and
employs inference rules to fix the vertices satisfying at least
one of the rules. Then, it utilizes a greedy strategy based
on non-dominated degrees to iteratively add vertices until a
dominating set is obtained. At the end of the construction,
redundant vertices are removed from D to make it minimal.

Algorithm 2: FastDS
Input: An undirected graph G = (V,E)
Output: A dominating set D∗ of G

1 begin
2 D ← ConstructDS(G);
3 while elapsed time < cutoff do
4 if U = ∅ then
5 remove redundant vertices from D;
6 D∗ ← D;
7 remove a vertex with highest score from D;

8 u1 ← a vertex in D according to BMS heuristic;
9 D ← D \ {u1};

10 if |D| = |D∗| − 2 then
11 u2 ← a random vertex from D;
12 D ← D \ {u2};
13 v1 ← a vertex in N [U ] with highest score,

breaking ties by age;
14 D ← D ∪ {v1};
15 if U 6= ∅ then
16 if with probability α then
17 v2 ← a vertex in N [U ] with highest score,

breaking ties by age;
18 D ← D ∪ {v2};

19 return D∗;
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5.2 Local Search
The constructed initial solution is then fed to the local search
phase for improving. During the local search process, when-
ever D becomes a feasible solution, redundant vertices (if
any) are first removed from D, and D∗ is updated to D. Af-
ter that, a vertex with the maximum score (i.e., the minimum
loss) is removed. Then, the local search iteratively executes
exchanging steps until D becomes a feasible solution.

Each exchanging step consists of a removing stage and
an adding stage. In the removing stage (lines 8-12), one
or two vertices are removed from D. The first vertex u1
is selected from D according to a sampling heuristic named
Best from Multiple Selections (BMS) [Cai, 2015], which ran-
domly samples t vertices in D and picks the one with the
maximum score to remove (t is suggested near 50 [Cai, 2015]
and is set to 45 in this work). If there is more than one
such vertex, the vertex with the largest age is selected to re-
move. Additionally, after u1 is removed fromD, if |D∗|−|D|
equals 2 rather than 3, one more vertex is removed, to ensure
|D| = |D∗| − 3 at the end of the removing stage.

In the adding stage (lines 13-18), one or two vertices are
added into D. First, a vertex v1 ∈ N [U ] (U is the set of non-
dominated vertices) with the highest score is added to D,
breaking ties by preferring the one with largest age1. Then,
if there are non-dominated vertices, with a probability of α, a
second vertex v2 is selected in the same way as the first one
and added to D.

An important implementation detail is that, when remov-
ing or adding a vertex x, the score of vertices in N2[x] may
change, and should be updated accordingly.

6 Experiments
We evaluate FastDS on 7 benchmarks, including 4 standard
benchmarks in the literatures and 3 massive benchmarks.

UDG: This is a widely used standard benchmark for
MinDS [Hedar and Ismail, 2010; Potluri and Singh, 2011;
Potluri and Singh, 2013; Chalupa, 2018]. UDG contains 120
instances generated by the topology generator2. UDG is di-
vided into 12 families, each of which has 10 instances.

T1: This data set consists of 520 instances where each in-
stance has two different weight functions [Jovanovic et al.,
2010]. We select these original graphs where the weight of
each vertex is set to 1. There are 52 families, each of which
contains 10 instances with the same size. To save space, we
do not report the results on graphs with 50 vertices.

DIMACS: This benchmark is from the Second DIMACS
Implementation Challenge (1992-1993)3, including problems
from real applications and randomly generated graphs.

BHOSLIB: This benchmark are generated based on the
RB model [Xu et al., 2007] near the phase transition. It is a
popular benchmark for graph theoretic problems.

1In practice, acceleration can be gained for the classic bench-
marks by picking a random non-dominated vertex with a small prob-
ability such as 0.005 here.

2http://www.michelemastrogiovanni.net/software/download/
3ftp://dimacs.rutgers.edu/pub/challenges

Instance CC2FS FastMWDS RLSo ScBppw FastDS
Family Dmin Dmin Dmin Dmin Dmin

V100U150 17 17 17 17.3 17
V100U200 10.4 10.4 10.4 10.6 10.4
V250U150 18 18 18 19 18
V250U200 10.8 10.8 10.8 11.5 10.8
V500U150 18.5 18.5 18.6 20.1 18.5
V500U200 11.2 11.2 11.2 12.4 11.2
V50U150 12.9 12.9 12.9 12.9 12.9
V50U200 9.4 9.4 9.4 9.4 9.4
V800U150 19 19 19.1 20.9 19
V800U200 11.7 11.7 11.9 12.6 11.8
V1000U150 19.1 19.1 19.2 21.3 19.1
V1000U200 12 12 12 13 12

Table 1: Experiment results on UDG benchmark

Instance CC2FS MWDS RLS0 ScBpw FastDS Instance CC2FS MWDS RLS0 ScBpw FastDS
Family Dmin Dmin Dmin Dmin Dmin Family Dmin Dmin Dmin Dmin Dmin

V100E100 33.6 33.6 33.6 33.6 33.6 V250E5000 11 11 11.2 11.5 11
V100E1000 7.5 7.5 7.5 7.8 7.5 V250E750 44 44 44.3 44.9 44
V100E2000 4.1 4.1 4.1 4.3 4.1 V300E1000 48.6 48.6 49.1 49.5 48.6
V100E250 19.9 19.9 19.9 20.1 19.9 V300E2000 29.4 29.4 30 30.6 29.4
V100E500 12.2 12.2 12.2 12.5 12.2 V300E300 100 100 100 100.1 100
V100E750 9 9 9 9.5 9 V300E3000 22 22 22.8 22.9 22
V150E1000 15 15 15.1 15.4 15 V300E500 77.7 77.7 77.8 78.4 77.7
V150E150 50 50 50 50 50 V300E5000 15.1 15.1 15.7 15.9 15.1
V150E2000 9 9 9 9.5 9 V300E750 59.6 59.6 59.6 60 59.6
V150E250 39.1 39.1 39.3 39.3 39.1 V500E1000 114.7 114.7 114.8 116.3 114.7
V150E3000 6.9 6.9 6.9 6.9 6.9 V500E10000 22 22.1 23.2 23.3 22.2
V150E500 24.6 24.6 24.7 24.9 24.6 V500E2000 71.2 71.2 72.5 72.9 71.2
V150E750 18.3 18.3 18.5 18.8 18.3 V500E500 167 167 167 167 167
V200E1000 24.4 24.4 24.7 25 24.4 V500E5000 36.9 36.9 38.4 38.7 36.9
V200E2000 15 15 15 15.3 15 V800E100 267 267 267 267 267
V200E250 61.1 61.1 61.1 61.7 61.1 V800E1000 242.5 242.5 242.5 246.5 242.5
V200E3000 11 11 11.1 11.3 11 V800E10000 50.4 50.3 52.7 53.1 50.2
V200E500 39.6 39.6 39.6 40 39.6 V800E2000 158.3 158.3 159.4 162.1 158.3
V200E750 30 30 30.1 30.4 30 V800E5000 82.6 82.6 85.9 86.3 82.6
V250E1000 36 36 36.3 36.6 36 V1000E1000 333.7 334 333.7 333.7 333.7
V250E2000 21.6 21.6 22.1 22.4 21.6 V1000E10000 74.2 74.1 77.8 77.6 74
V250E250 83.3 83.3 83.3 83.3 83.3 V1000E15000 55.5 55.1 58.2 58.2 55
V250E3000 16 16 16.5 16.6 16 V1000E20000 45.2 45.4 47.1 47.4 45
V250E500 57.8 57.8 57.9 58.1 57.8 V1000E5000 121.2 121.1 125.3 126 121.1

Table 2: Experiment results on T1 benchmark. To save space, we
denote FastMWDS as MWDS.

SNAP: This benchmark is from Stanford Large Network
Dataset Collection4. It is a collection of real world graphs
from 104 vertices to 107 vertices.

DIMACS10: This benchmark is from the 10th DIMACS
implementation challenge (2010)5, which aims to provide
large challenging instances for graph theoretic problems.

Network Repository: The Network Data Repository
[Rossi and Ahmed, 2015] collects massive graphs from vari-
ous areas. Many of the graphs have 100 thousands or millions
of vertices. This benchmark has been widely used for graph
theoretic problems including vertex cover, clique, coloring,
and dominating set problems.

For SNAP and DIMACS10 benchmarks, as in previous lit-
eratures [Lin et al., 2017; Verma et al., 2015], we only re-
port the results on graphs with at least 30 000 vertices. For
Repository benchmark, we choose the graphs with at least
105 vertices. This results in 22, 31 and 65 graphs in SNAP,
DIMACS10, and Repository, respectively.

6.1 Experiment Setup
FastDS is implemented in C++ and complied by g++ with ’-
O3’ option, and the parameter α is set to 0.6. All experiments
are run on a server with Intel Xeon E5-2640 v4 2.40GHz with
128GB RAM under CentOS 7.5.

4http://snap.stanford.edu/data
5https://www.cc.gatech.edu/dimacs10/
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CC2FS FastMWDS RLS0 ScBppw FastDS
Instance Dmin(Davg) Dmin(Davg) Dmin(Davg) Dmin(Davg) Dmin(Davg)
frb40-19-1 14 14 14(15) 15(15.8) 14
frb40-19-2 14 14 15(15.4) 16(16.5) 14(14.3)
frb40-19-3 14(14.8) 14(14.6) 15(15.6) 16(16.5) 14(14.7)
frb40-19-4 14 14 15(15.8) 15(16.2) 14
frb40-19-5 14 14 15(15.1) 15(15.2) 14
frb45-21-1 16 16 16(17.4) 17(18) 16
frb45-21-2 16(16.2) 16 17(17.8) 18(18.1) 16
frb45-21-3 16 16 17(17.5) 17(17.8) 16
frb45-21-4 16 16 17(17.8) 17(18) 16
frb45-21-5 16 16 17(17.7) 18(18.2) 16
frb50-23-1 18 18 19(19.6) 19(19.9) 18
frb50-23-2 18 18 19(20.1) 19(19.8) 18
frb50-23-3 18 18 19(20) 20 18
frb50-23-4 18 18 20(20.1) 19(20) 18
frb50-23-5 18 18 19(19.8) 19(19.9) 18
frb53-24-1 19 19 20(21.1) 21(21.1) 19
frb53-24-2 19 19(19.1) 20(21.4) 21(21.2) 19
frb53-24-3 19 19 20(20.5) 20(20.4) 19
frb53-24-4 18(18.7) 19 19(20) 19(20.2) 18(18.7)
frb53-24-5 19(19.1) 19 20(21.3) 20(21.5) 19
frb56-25-1 20 20 21(21.8) 21(22.2) 20
frb56-25-2 20 20(20.1) 21(22.2) 21(22.5) 20
frb56-25-3 20 20 22(22.7) 21(22.2) 20
frb56-25-4 20(20.5) 20(20.9) 22(22.7) 22(22.5) 20
frb56-25-5 20 20 21(21.5) 21(21.8) 20
frb59-26-1 21 21 22(23) 22(22.6) 20(20.5)
frb59-26-2 21 21 22(22.8) 22(22.6) 21
frb59-26-3 21(21.7) 21(21.5) 22(23.1) 23(23.1) 21
frb59-26-4 21(21.1) 21(21.1) 23(23.6) 23(23.6) 21
frb59-26-5 21(21.9) 21(21.8) 24(24.3) 23(24) 21
frb100-40 37(37.9) 38(38.1) 40(40.7) 39(40.1) 36(36.4)

Table 3: Experiment results on BHOSLIB benchmark

Benchmark CC2FS FastMWDS FastDS
UDG 0.21s 0.83s 22.19s
T1 4.88s 8.35s 11.23s
BHOSLIB 96.68s 101.44s 95.62s

Table 4: Averaged run time on standard benchmarks

We compare FastDS with four state-of-the-art heuristic al-
gorithms, including CC2FS [Wang et al., 2017], FastMWDS
[Wang et al., 2018], RLSo [Chalupa, 2018] and ScBppw [Fan
et al., 2019]. CC2FS is good at solving standard benchmarks,
while FastMWDS and ScBppw are designed to solve massive
graphs, and RLSo is a recent algorithm that outperforms pre-
vious ant optimization and hyper meta-heuristic algorithms.
The codes of CC2FS, FastMWDS and RLSo were kindly pro-
vided by their authors while the codes of ScBppw were open
online6. All of them are implemented in C++ and complied
by g++ with ’-O3’ option.

For each instance, all algorithms are executed 10 times
with random seeds 1,2,3...10. The time limit of each run
is 1000 seconds. For each instance, we report the best size
(Dmin) and the average size (Davg) of the solutions found
over the 10 runs. When Davg = Dmin, we do not report
Davg . For UDG and T1, we report for each family the aver-
aged value of Dmin, denoted as Dmin. When failing to find
a solution in time limit, the cell is marked as ’N/A’.

6.2 Results on Standard Benchmarks
Results on UDG, T1 and BHOSLIB benchmarks are reported
in Tables 1, 2 and 3 respectively. The DIMACS instances
are so easy that CC2FS, FastMWDS and FastDS find the

6https://github.com/Fan-Yi/

FastMWDS RLS0 ScBppw FastDS
Instance Dmin(Davg) Dmin(Davg) Dmin(Davg) Dmin(Davg)
Amazon0302 35616(35619.7) 38735(38771.1) 36199(36212.5) 35593(35602.7)
Amazon0312 45531(45538) 49326(49362.7) 45914(45931.9) 45490(45493.7)
Amazon0505 47362(47374.6) 51281(51306.9) 47734(47748.4) 47310(47317.7)
Amazon0601 42319(42325.5) 45952(45989.9) 42717(42732.8) 42289(42294.2)
Cit-HepPh 3078(3078.6) 3192(3209.3) 3087(3088.9) 3078(3078.9)
Cit-HepTh 2935(2935.7) 2985(2993.4) 2944(2948.6) 2936(2936.1)
cit-Patents 650610(651187.7) 667418(667594.3) 622886(622999.5) 621722(621742.3)
Email-EuAll 18181 18181(18181.6) 18181 18181
p2p-Gnutela04 2227 2227 2227 2227
p2p-Gnutela24 5418(5418) 5418(5418.5) 5418 5418
p2p-Gnutela25 4519 4519(4519.1) 4519 4519
p2p-Gnutela30 7169 7169(7169.4) 7169(7169.2) 7169
p2p-Gnutela31 12582 12593(12596.1) 12582 12582
Slashdot0811 14312(14312) 14333(14337.3) 14312(14312) 14312(14312)
Slashdot0902 15305 15334(15338.4) 15305 15305
soc-Epinions1 15734 15742(15746.3) 15734 15734
web-BerkStan 28434 30119(30152.4) 28615(28628.9) 28432(28436.1)
web-Google 79700(79704.3) 81106(81122.1) 79756(79761.8) 79699
web-NotDame 23733(23734.4) 23950(23957.5) 23746 23735
web-Stanford 13198(13199.1) 14099(14117.6) 13298(13314.2) 13199(13200.7)
WikiTalk 36960 36960(36961.4) 36960 36960
Wiki-Vote 1116 1116 1116 1116
as-22july06 2026 2026 2026 2026
caidaR*Level 40522(40522.8) 41647(41663.4) 40573(40580.2) 40523
citattionCit*r 43412 44936(44958.3) 43430(43434.3) 43412
cnr-2000 22006(22008.5) 22313(22332.1) 22027(22032.6) 22011(22012.2)
coAuthorCit*r 33197 33790(33818.7) 33343(33358.1) 33197(33197)
coAuth*DBLP 43978 44640 44084(44094.9) 43978
cond-mat2005 650 6514(6518.7) 6531(6537.5) 6508
coPapersCit*r 26090(26093.1) 28693(28716.3) 26989(27008) 26082
coPaperDBLP 35629(35636.4) 39883(39939.1) 37060(37090.3) 35597(35599.2)
eu-2005 32292(32300.2) 32812(32831.8) 32322(32330.8) 32284(32287.7)
in-2004 77835(77838.7) 79016(79036.8) 77894(77903.2) 77822(77827.4)
kron*500log16 14105(14107.1) 14103(14105.2) 14100 14100
rgg n 2 17 s0 12378(12385.7) 14705(14745) 13827(13849.4) 12334(12335.9)
rgg n 2 19 s0 44702(44732.6) 55482(55549.2) 50375(50437.4) 44423(44436.7)
rgg n 2 20 s0 87222(89920.5) 106700(106754.8) 96649(96703.5) 84708(84729.6)
rgg n 2 21 s0 180777(181900) 204553(204696) 185387(185478) 162266(162313)
rgg n 2 22 s0 369858(370458) 393433(393551) 356868(356945) 312350(312462)
rgg n 2 23 s0 740096(740750) 757817(758064) 687552(687945.8) 605278(605592)
rgg n 2 24 s0 1448537 N/A 1328020 1189207

(1449017.6) (1328330) (1190047.3)
uk-2002 1085564 N/A 1077327 1075943

(1085668.2) (1077391.7) (1075951)
333SP 676146(676829.7) 698206(698363.9) 628797(629054) 563599(563738)
audikw1 9496(9510.3) 11389(11416.7) 10534(10568.5) 9460(9471.5)
belgium.osm 505880(506566) 537618(537898) 476671(476809.9) 468852(468863)
cage15 518491(518875) 504722(504881) 476574(476878.5) 456062(456340)
ecology1 241117(241345) 269422(269552) 238052(238250.4) 201498(201669)
G n pin pout 13303(13320.4) 14121(14160.4) 12638(12670.2) 12255(12275.7)
ldoor 19798(19807.1) 24010(24065.9) 21527(21546.4) 19722(19730.9)
luxem*g.osm 37753(37754.4) 41229(41333.1) 38421(38444.8) 37751(37752.1)
preferAttach* 8147(8151.2) 8961(8987.4) 8167(8180.1) 8146(8150)
smallworld 10756(10767.6) 12744(12769.3) 11733(11770.8) 10451(10456.3)
wave 11549(11562.2) 15007(15048.8) 13910(13927.4) 11619(11675.7)

Table 5: Experiment results on SNAP and DIMACS10 benchmarks

same solutions on all the instances quickly, but RLSo and
ScBppw are worse. For all standard benchmarks, FastDS
has the best performance in terms of solution quality, except
slightly worse than CC2FS and FastMWDS on UDG bench-
mark. Over all standard benchmarks, CC2FS, FastMWDS
and FastDS are essentially better than the other algorithms.
We compare the averaged run time of these three algorithms
on these benchmarks (Table 4), where the run time of each
run of an algorithm is the time to reach the final solution.

6.3 Results on Massive Benchmarks
Results on SNAP and DIMACS10 benchmarks are reported
in Table 5, and results on Repository benchmarks are reported
in Table 6. CC2FS is dominated by FastMWDS on all the
instances and not reported in Tables 5 and 6. FastDS per-
forms best for all the massive benchmarks. It obtains the
best solutions for 19 (out of 22) SNAP instances, 28 (out
of 31) DIMACS10 instances and 63 (out of 65) Repository
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FastMWDS RLS0 ScBppw FastDS
Instance Dmin(Davg) Dmin(Davg) Dmin(Davg) Dmin(Davg)
bn-human-B*1 1189968 1190728 1190244 1189874

(1189990) (1190752) (1190256) (1189877.3)
bn-human-B*2 1550899 1551502 1551107 1550863

(1550903.4) (1551519) (1551119.2) (1550865.6)
ca-co*-dblp 35629(35638.7) 39880(39938.6) 37060(37090.3) 35597(35599.2)
ca-dblp-2012 46138 46801(46818.5) 46248(46262) 46138
ca-hollyw*d-09 51045(51099) 53073(53109.2) 50334(50364.5) 48740(48748.3)
channel*-b050 407609(408691.8) 421739(421938.9) 392298(392409.6) 342645(342886.3)
dbpedia-link 1537033(1537076) N/A 1536656(1536657) 1536656
delaunay n22 747758(748471.6) 759903(760115.2) 689061(689178.8) 640941(641227.5)
delaunay n23 1516416 1519638 1378243 1288297

(1517199) (1520217.4) (1378425.1) (1289304.2)
delaunay n24 3044962 N/A 2756088 2627137

(3046047.8) (2756512.2) (2632372)
friendster 657039(657107.2) 661305(661382.7) 656464(656466.4) 656463
hugebubs-*20 6782951 N/A 5984446 5926263

(6783747.3) (5984906.2) (5953412.2)
hugetrace-*10 3850232 N/A 3392580 3219420

(3850634.6) (3392947.6) (3230203.8)
hugetrace-*20 5112192 N/A 4508924 4363372

(5113235.7) (4509570) (4380777.8)
inf-euro osm 18854928 N/A 17006807 17111963

(18855875.7) (17012959.9) (17156686.5)
inf-germ* osm 4237300 N/A 3846494 3797838

(4238386.6) (3846917.4) (3799558.6)
inf-roadNet-CA 633952(634444.4) 662093(662374.9) 595726(595798.5) 586513(586550.2)
inf-roadNet-PA 345733(345831.6) 369943(370080.6) 332079(332142.9) 326934(326951.8)
inf-road-usa 8400667 N/A 7852540 7814911

(8401988) (7853213.5) (7818726.7)
rec-dating 11740(11742.3) 11770(11776.4) 11736(11737.6) 11735(11735.7)
rec-epinions 9598 9655(9660) 9599 9598
rec-libimset-dir 12973(12980.4) 13131(13139.9) 12955(12956) 12955(12955.7)
rgg n 2 23 s0 740939(741675.6) 757817(758064) 687552(687946) 605922(606268.9)
rgg n 2 24 s0 1448992 N/A 1328020 1190963

(1449583.4) (1328333.3) (1194498.1)
rt-retw*-crawl 75740 75816(75822) 75740(75740.1) 75740
sc-ldoor 62474(62486.9) 66589(66625.1) 66244(66309.2) 62411(62422.8)
sc-msdoor 19697(19710.1) 21408(21438) 21372(21393.2) 19678(19683.3)
sc-pwtk 4194(4197.8) 5341(5367.7) 5479(5504.5) 4200(4201.8)
sc-rel9 123050(125726.7) 143998(148659.7) 124845(129947) 127548(127632.2)
sc-shipsec1 7713(7727.7) 9309(9338.9) 8787(8800.1) 7662(7672.5)
sc-shipsec5 10381(10394.6) 12560(12577.7) 11873(11894.1) 10300(10306.9)
soc-buzznet 127 130(131.6) 127 127
soc-delicious 55722 55969(55984.3) 55726(55727.8) 55722
soc-digg 66155 66641(66671.1) 66155(66156.6) 66155
soc-dogster 26260(26264.5) 26540(26569.1) 26255(26258) 26253
socfb-A-anon 201774(201793.6) 203194(203218.6) 201690(201690.5) 201690
socfb-B-anon 187031(187036) 187829(187850.7) 187030(187030.1) 187030
socfb-uci-uni 865675(865675.1) N/A 865675 865675
soc-flickr 98062(98062.5) 98640(98658.7) 98063(98064.9) 98062
soc-flickr-und 295773(295790.9) 296979(296991.9) 295702(295705.1) 295700
soc-flixster 91019 91127(91131.9) 91019 91019
soc-FourSq* 60982(60985.8) 61301(61316.3) 60979 60979
soc-lastfm 67226 67264(67271.4) 67226 67226
soc-livejour* 803448(803626.7) 815040(815178.6) 793988(793997.1) 793887(793887.9)
soc-live*groups 1072271 1074058 1071123 1071123

(1072315.9) (1074107.7) (1071124)
soc-LiveMocha 1424 1475(1482) 1424 1424
soc-ljour*2008 1015864 1025928 1005983 1005858

(1016080.1) (1026043.5) (1005988.6)
soc-orkut 120334(120416.1) 124516(124581.3) 111087(111117.8) 110547(110585.8)
soc-orkut-dir 100971(101010.1) 104751(104867.9) 93974(94013.3) 93630(93644.8)
soc-pokec 213149(213242) 221665(221816.5) 207385(207397) 207308(207312.3)
soc-sinaweibo 201328 N/A 201328 201328
soc-twit*-higgs 14751(14763.3) 15235(15257.8) 14689(14690.6) 14689(14689.4)
soc-youtube 89732 90525(90558.2) 89734(89735.3) 89732
soc-yout*-snap 213167(213174.6) 214014(214041.8) 213122(213123.3) 213122
tech-as-skitter 183324(183378.8) 186588(186648.6) 181852(181869.8) 181717(181717.8)
tech-ip 160(162.9) 174(176.1) 155(157.9) 154(154.8)
twitter mpi 566378(566401.4) 567050(567079.3) 566315(566315.5) 566315(566315)
web-arab*05 16901(16901.3) 17176(17191.3) 16907(16909.5) 16901(16901.4)
web-*-baike 278191(278204.7) 279702(279727.1) 277849(277850.4) 277847
web-it-2004 32997 33085(33093.6) 32998(32999.3) 32997
web-uk-2005 1421 1421 1421 1421
web-wik* link 338691(338753.2) 339651(339679) 336688(336690.9) 336682(336682.9)
web-wik*2009 348003(348024.5) 352396(352492.8) 346676(346682.5) 346581(346584)
web-wiki*grow 117626(117663) 118917(118967.5) 116817(116818.7) 116814(116814.6)
wikip* link en 23995929 N/A 23995924 23995924

(23995935.9)

Table 6: Experiment results on Repository benchmark

instances. On average, the best solutions found by FastDS
have 1320 and 23732 fewer vertices than the strongest com-

CC2FS FastMWDS RLS0 ScBppw FastDS
benchmark #total #min #min #min #min #min
UDG 12 12 12 8 2 11
T1 48 43 42 19 7 47
DIMACS 61 60 60 51 45 60
BHOSLIB 31 29 28 2 0 31
SNAP 22 10 15 7 11 19
DIMACS10 31 1 9 1 2 28
Repository 65 5 17 1 19 63

Table 7: Summary results of all benchmarks. We report for each
algorithm the number of instances (or families) where it finds the
best Dmin among the algorithms in experiments.

Benchmark fix ratio ctime rules ctime no rules
SNAP 28.59% 0.98s 1.07s
DIMACS10 7.21% 4.57s 4.42s
Repository 23.82% 35.98s 38.43s

Table 8: The fix ratio of the inference rules and construction time
with and without rules

petitor FastMWDS for SNAP and DIMACS10 benchmarks,
and have 14150 fewer vertices than the strongest competitor
ScBppw for Repository benchmark. Table 7 summarizes the
comparison results on all the benchmarks.

6.4 Analysis of Underlying Ideas
We calculate the portion of vertices fixed by inference rules
among all vertices, and compare the run time of the construc-
tion procedure with and without the rules (Table 8). The in-
ference rules are effective on the massive benchmarks with
little overhead. FastDS without the rules degrades obviously
on the massive benchmarks. It gets worse solutions on half
Repository instances. However, the rules have little impact
on the standard benchmarks.

We also test a variant of FastDS (denoted as FastDS g1)
that uses the one-goal framework (targeting size of (k-1) af-
ter finding a k sized solution) to replace our two-goal frame-
work. FastDS finds better solutions than FastDS g1 on 12,
48 and 31 instances for UDG, T1 and BHOSLIB benchmarks
respectively, and worse on none of the instances. For mas-
sive benchmarks, FastDS finds better solutions on 11, 25 and
39 instances for SNAP, DIMACS10 and Repository respec-
tively, while worse than FastDS g1 only on 3 and 9 instances
in DIMACS10 and Repository benchmarks respectively.

7 Conclusions
We proposed a two-goal local search framework for MinDS
and proposed three inference rules. The resulting algorithm
FastDS is robust and efficient on standard benchmarks and
massive benchmarks, and significantly outperforms state-of-
the-art algorithms on massive benchmarks. We would like to
study the ideas for other subset problems.
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