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Abstract
The minimum connected dominating set (MCDS)
problem is an important extension of the minimum
dominating set problem, with wide applications, es-
pecially in wireless networks. Despite its practical
importance, there are few works on solving MCDS
for massive graphs, mainly due to the complexity of
maintaining connectivity. In this paper, we propose
two novel ideas, and develop a new local search
algorithm for MCDS called NuCDS. First, a hy-
brid dynamic connectivity maintenance method is
designed to switch alternately between a novel fast
connectivity maintenance method based on span-
ning tree and its previous counterpart. Second, we
define a new vertex property called safety to make
the algorithm more considerate when selecting ver-
tices. Experiments show that NuCDS significantly
outperforms the state-of-the-art MCDS algorithms
on both massive graphs and classic benchmarks.

1 Introduction
Given an undirected connected graph G = (V,E), a set
D ⊆ V is called a dominating set if each vertex in V either
belongs to D or is adjacent to at least one vertex from D. The
minimum dominating set (MDS) problem is to find a domi-
nating set with the minimum number of vertices in the given
graph. An important generalization of MDS is the minimum
connected dominating set (MCDS) problem, whose goal is
to find a minimum size dominating set that forms a con-
nected subgraph in the given graph. An important application
of MCDS is generating a virtual backbone in wireless net-
works such as mobile ad hoc networks [Al-Karaki and Kamal,
2008], wireless sensors networks [Misra and Mandal, 2009]
and vehicular ad hoc networks [Chinnasamy et al., 2019].
Applications are also found in other fields. [Milenković et al.,
2011] Also, MCDS is equivalent to the maximum leaf span-
ning tree problem [Fernau et al., 2011].

It is well known that MCDS is NP-hard [Kann, 1992].
Several exact algorithms [Fomin et al., 2008; Simonetti et

∗Corresponding author

al., 2011; Fan and Watson, 2012; Gendron et al., 2014]
and approximation algorithms [Cheng et al., 2003; Ruan et
al., 2004; Khuller and Yang, 2019] have been designed for
MCDS. Nevertheless, these algorithms are either too time-
consuming or have poor performance in practice, especially
in the context of massive graphs.

1.1 Related Work
Because of its NP-hardness, much of the research effort in
the past decade concerned with solving MCDS has focused
on heuristics with the aim of obtaining a good solution within
a reasonable time. Two algorithms called MCDS/SA and
MCDS/TS based on simulated annealing and tabu search
were proposed [Morgan and Grout, 2007]. Hedar and Is-
mail [2012] designed a simulated annealing algorithm with
stochastic local search for MCDS. Later, Jovanovic and Tuba
[2013] designed an ant colony optimization algorithm with a
so-called pheromone correction strategy. A greedy random
adaptive search procedure that incorporated a local search
procedure based on a greedy function and tabu search was
described in [Li et al., 2017]. Wu et al. [2017] used a re-
stricted swap-based neighborhood to improve the tabu search
procedure, resulting in the RNS-TS algorithm. Two meta-
heuristics based on genetic algorithms and simulated anneal-
ing were designed to solve MCDS [Hedar et al., 2019]. Li
et al. [2019] presented a multi-start local search algorithm
called MSLS based on three mechanisms including a vertex
score, configuration checking, and vertex flipping. Finally,
a meta-heuristic algorithm called ACO-RVNS [Bouamama
et al., 2019] was proposed, based on ant colony optimiza-
tion and reduced variable neighborhood search. Experiments
show that, for classic graphs with fewer than 5000 vertices,
RNS-TS, MSLS, and ACO-RVNS obtain similar state-of-the-
art performance.

1.2 Contributions and Paper Organization
Although previous MCDS algorithms have made progress in
solving classic graphs, these algorithms still cannot handle
massive graphs with millions of vertices. In this work, we
focus on solving MCDS on massive graphs, and develop a
local search algorithm called NuCDS. The algorithm is based
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on two novel ideas that are important for dealing with the
connectivity constraint and for vertex selection in local search
respectively.

The first idea is a hybrid dynamic connectivity mainte-
nance method called HDC. Previous connectivity mainte-
nance methods make the algorithm explore rather large parts
of the search space, but they become futile when faced with
very large search space. To overcome this issue, we propose
a novel tree-based connectivity maintenance (TBC for short)
method, which is inspired by spanning trees. Compared to
previous methods, the TBC method has a very low complex-
ity, while limiting the algorithm to explore a relatively small
part of the search space. To obtain a balance between diversi-
fication and intensification, we design the HDC method to al-
ternately switch between previous connectivity maintenance
methods and TBC during the search process.

The second idea is a safety-based vertex selection heuristic.
We define a new vertex property called safety, which takes
into account the differences among dominated vertices. We
propose a novel vertex selection rule based on different scor-
ing functions, one of which is safety-based. This is in contrast
to previous MCDS algorithms which only use one scoring
function. In some sense, the safety-based scoring function
can be used as a supplement of traditional scoring functions.

Extensive experiments are carried out to evaluate NuCDS
on classical benchmarks used in previous literature and on
massive graphs from real-world applications. Experimental
results indicate that NuCDS performs better than four state-
of-the-art MCDS heuristic algorithms for most instances.

Section 2 introduces preliminary knowledge. In Sections 3
and 4, we describe the hybrid dynamic connectivity mainte-
nance method and the safety-based vertex selection heuristic.
Section 5 presents the NuCDS algorithm. Experiments are
presented in Section 6, and Section 7 concludes the paper.

2 Preliminaries
An undirected graph G = (V,E) consists of a vertex set
V and an edge set E. For an edge e = {u, v}, vertices
u and v are the endpoints of the edge. For a vertex v, its
neighborhood is NG(v) = {u ∈ V |{u, v} ∈ E}, and its
closed neighborhood is NG[v] = NG(v) ∪ {v}. The de-
gree of a vertex v, denoted as dG(v), is defined as |NG(v)|,
and ∆G is the maximum number of dG(v) for ∀v ∈ V .
Given a vertex set S ⊆ V , NG(S) =

⋃
v∈S NG(v) \ S

and NG[S] =
⋃

v∈S NG[v] stands for the neighborhood and
closed neighborhood of S, respectively. G[S] = (VS , ES)
is a subgraph in G induced by S such that VS = S and ES

consists of all the edges in E whose endpoints are in S.
An undirected graph G = (V,E) is connected when it has

at least one vertex and there is a path between every pair of
vertices. For convenience, we use G to denote an undirected
connected graph in the following parts.
Definition 1. Given an undirected connected graph G, a ver-
tex in G is an articulation vertex iff removing it, together with
the edges connected to it, disconnects the graph. The articu-
lation vertex set of G is denoted as art(G).

Given a vertex set D ⊆ V , a vertex v ∈ V is dominated
by D if v ∈ N [D], and is non-dominated otherwise. We use

D ⊆ V to denote a candidate solution. If G[D] is connected
and D dominates all vertices, then D is a connected dominat-
ing set (CDS). For a given graph G, the aim of the minimum
connected dominating set (MCDS) problem is to find the con-
nected dominating set D with the smallest size.

3 The HDC Method
In order to solve the performance bottleneck problem caused
by the connectivity constraint of MCDS, we introduce a hy-
brid dynamic connectivity maintenance method (HDC for
short). After reviewing two main previous connectivity main-
tenance methods, we propose our novel tree-based connectiv-
ity maintenance method, and finally give the HDC method.
For convenience of discussions on complexity, we will use
notations m = |VD| and n = |ED|, where G[D] = (VD, ED)
is the induced subgraph of current candidate solution D.

3.1 Previous Connectivity Maintenance Methods
Before introducing HDC, we review two previous methods to
handle the connectivity constraint, namely the substraction-
based and addition-based methods.

The substraction-based method is used by previous state-
of-the-art MCDS algorithms such as RNS-TS [Wu et al.,
2017]. In order to keep the connectivity of candidate so-
lution D, during each iteration of local search, the algo-
rithm maintains the candidate removal vertex set, defined
as candRemoval(D)=D \ art(G[D]). The traditional ap-
proach to computing art(G[D]) is called Tarjan’s algo-
rithm [Hopcroft and Tarjan, 1973]. It works as follow: depth
first search (DFS for short) is used to determine whether the
child vertex of a vertex u can access the ancestor vertex of
u without passing through u.1 If so, then u is not an articu-
lation vertex, and otherwise it is an articulation vertex. The
complexity of the substraction-based method is O(m + n).

The addition-based method has two versions. The first ver-
sion, used in ACO-RVNS [Bouamama et al., 2019] and in
MCDS/TS [Morgan and Grout, 2007], works as follow: dur-
ing each iteration, the algorithm starts from an empty candi-
date solution D, and iteratively adds a vertex from NG(D) to
D until D becomes a feasible solution. The second version,
used in GRASP [Li et al., 2017] and MSLS [Li et al., 2019],
works as follow: the algorithm allows removing articulation
vertices of D, so D may become disconnected. Thus, before
vertex u is selected to be added, DFS is used to calculate the
number of connected subgraphs of D that v ∈ N(u) belongs
to, and the vertex with the largest number is preferred. The
complexity of both versions is O(m).

The complexity of the above two methods is at least O(m).
This indicates a high commutation time when applied to mas-
sive graphs, hindering the performance on masive graphs.

3.2 Tree-based Connectivity Maintenance Method
To lower the time complexity of connectivity maintenance,
we present a novel tree-based connectivity maintenance (TBC
for short) method, which is inspired by spanning trees.

1The child vertex of u is the vertex visited directly after u, while
father and ancestor vertices of u are the vertices visited directly and
indirectly before u by DFS.
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Figure 1: An example of the TBC method. (The solid nodes de-
note those vertices in the candidate solution D, while the solid edges
compose the spanning tree T of G[D].)

For this purpose, we first introduce the definitions of a
spanning tree and a leaf vertex. Given a connected graph
G = (V,E), a spanning tree T = (V ′, E′) is defined as a
connected subgraph of G with V ′ = V , E′ ⊆ E, and with-
out any cycles. Given a spanning tree T = (V ′, E′), a vertex
v ∈ V ′ is called a leaf vertex if dT (v) = 1 and the leaf set is
defined as LS(T ) = {v|dT (v) = 1, v ∈ V ′}.
Proposition 1. Given a spanning tree T = (V ′, E′) and its
corresponding leaf set LS(T ) of graph G = (V,E), LS(T )
is a subset of V \ art(G).

Proof: For any vertex v ∈ LS(T ), after removing v and
relevant edges through v from T , the remaining graph is still
a spanning tree of G[V \ {v}]. So G[V \ {v}] remains con-
nected, which means that v is not an articulation vertex of G,
inducing that v ∈ V \ art(G). Thus, we can conclude that
LS(T ) ⊆ V \ art(G). �

Based on the definition and proposition above, we describe
TBC as follows. Given a candidate solution D, we main-
tain a spanning tree T of G[D] and its corresponding leaf set
LS(T ) during the search process. Each vertex v ∈ LS(T ) is
allowed to be removed from D. All other vertices are forbid-
den to be removed. In contrast to the previous substraction-
based method, given a current solution D, TBC calculates
an approximate candRemoval(D) = LS(T ), which is a
subset of D \ art(G[D]). In order to dynamically up-
date candRemoval(D), three updating rules of TBC are de-
scribed as follows.

Construction Rule: At the initialization phase, both T and
LS(T ) with respect to G[D] are constructed according to the
initial candidate solution D by using breadth first search.

Removing Rule: When vertex v is selected to be removed,
its father vertex u needs to be found. If dT (u) = 2, mean-
ing that u becomes a leaf vertex after removing v, LS(T ) =
LS(T ) \ {v} ∪ {u}. Otherwise, LS(T ) = LS(T ) \ {v}.

Adding Rule: When vertex v is added to the candidate
solution D, one vertex u ∈ N(v) ∩ T needs to be se-
lected as the father vertex of v. In order to render larger
candRemoval(D), we prefer not to select a leaf vertex in
LS(T ), and thus we pick the vertex u with the maximum
dT (u) among ∀u ∈ N(v)∩T . If u is a leaf vertex, LS(T ) =
LS(T ) \ {u} ∪ {v}, else LS(T ) = LS(T ) ∪ {v}. Lastly, v
is set as the child of u in T .

The complexity of the construction rule is O(m + n).
When adding or removing a vertex v based on the remov-
ing and adding rules, N(v) has to be searched to update T

Algorithm 1: the HDC heuristic
Input: the current solution D
Output: candidate removal vertex set

candRemoval(D)
1 if stepNoimp > NoImpr||stepOneCon >

MaxNoImpr then
2 if curMethod==SUB then
3 curMethod :=TBC;
4 construct a spanning tree T based on

Construction Rule;
5 else curMethod :=SUB ;
6 update NoImpr by some tricks;
7 stepOneCon := 0, stepNoimp := 0;
8 if curMethod==TBC then

candRemovel(D) := LS(T );
9 else

10 compute art(G[D]) based on Tarjan’s algorithm;
11 candRemovel(D) := D \ art(G[D])

12 return candRemoval(D);

and LS(T ), which has a complexity of O(∆G). To make the
TBC method more comprehensive, we present its example in
Figure 1 regarding to removing v10 and then adding v1.

3.3 The Main Framework of HDC Method
For large graphs, TBC is substantially faster than previous
connectivity maintenance methods. However, since TBC
does not consider all candidate removal vertices, it may miss
some high-quality options. As an extreme example, a can-
didate solution D with a vertex v ∈ D such that D \ {v}
is also a connected dominating set. TBC, however, does not
consider this option if v is not a leaf vertex of the current
spanning tree. In contrast, the substraction-based method us-
ing Tarjan’s algorithm potentially considers more options for
removal because it accurately determines the complete candi-
date removal vertex set, but its complexity is higher.

In order to take profit from the respective advantages of
both methods, a balance must be achieved between the com-
plexity and the accuracy of determining the candidate re-
moval vertex set. We propose a heuristic called hybrid dy-
namic connectivity maintenance method (HDC) to switch be-
tween the two methods. We first define three parameters of
the heuristic: 1) parameter NoImpr denotes the maximum
number of steps without improving the candidate solution,
where NoImpr ∈ [MinNoImpr,MaxNoImpr]; 2) pa-
rameter MinNoImpr denotes the minimum value of NoImpr,
and it is also adopted as the absolute value of the change on
NoImpr in each step; 3) parameter MaxNoImpr denotes
the maximum number of steps using the current connectiv-
ity maintenance method.

Considering the difference of complexity between the two
connectivity maintenance methods, two sets of parameters are
respectively set for SUB and TBC.

A formal description of the HDC heuristic is given in Algo-
rithm 1. stepNoImpr and stepOneCon denote the number
of non-improving steps and the number of steps adopting one
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current connectivity maintenance method, respectively.
When the candidate solution has not been improved for

Noimpr iterations or the current method has been used
for MaxNoImpr iterations (line 1), the algorithm switches
from the current connectivity maintenance method to the
other one (lines 2–5). In particular, after switching to TBC, a
spanning tree T of D and its corresponding leaf set LS(T )
need to be constructed (line 4). After the switching op-
eration, NoImpr needs to be updated (line 6). Specifi-
cally, if stepNoimp > NoImpr, then the algorithm in-
creases NoImpr by MinNoImpr so that it can search
more exhaustively for better candidate solutions. Otherwise,
if stepOneCon > MaxNoImpr, the algorithm decreases
NoImpr by MinNoImpr in order to accelerate the search.
Both stepNoimpr and stepOneCon should be reset to 0
(line 7). Lastly, the algorithm uses the selected connectiv-
ity maintenance method to calculate the candidate removal
vertex set candRemoval(D) and returns it (lines 8–12).

4 Safety-based Vertex Selection Heuristic
In this section, we introduce a novel vertex selection heuristic
by considering the safety of vertices. Before proposing our
selection rule, we introduce a previous scoring function.

4.1 Scoring Functions
Local search algorithms typically use scoring functions to
choose an operation to execute in each step. In the context
of the MCDS problem, a scoring function is used to choose
a vertex u ∈ D for removal and a vertex v ∈ N(D) for
addition. Our algorithm adopts the frequency based scoring
function [Wang et al., 2017] for this purpose. For each vertex
v ∈ V , the frequency of v is denoted as freq[v]. It works
as follow: 1) before the local search process, freq[v] = 1
for ∀v ∈ V ; 2) at the end of each iteration of local search,
freq[v] = freq[v]+1 for each non-dominated vertex v ∈ V .

The scoring function, denoted as score, is calculated as
follow: If u ∈ D, score(u) = −

∑
v∈C1

freq[v], and oth-
erwise score(u) =

∑
v∈C2

freq[v], where C1 is the set of
dominated vertices that would become non-dominated by re-
moving u from D and C2 is the set of non-dominated vertices
that would become dominated by adding u to D.

4.2 The Safety-based Selection Rule
In addition to considering the score value, we also observe
that some dominated vertices are more “endangered” than
others, in the sense that they may become non-dominated
more easily. An extreme case is a vertex that is dominated
just by one vertex (either by itself or by one of its neighbors).
Such vertices may become non-dominated due to an exchang-
ing step. Based on this consideration, we define the safety
of vertices, taking into account the differences among domi-
nated vertices. We first give the definition of the domination
degree.
Definition 2. Given a connected graph G = (V,E) and a
candidate solution D, the domination degree of vertex v is
defined as ddG(v) = |NG[v] ∩D|, for each vertex v ∈ V .

This means that a vertex v with ddG(v) = d is dominated
by d vertices. Thus, the larger the domination degree, the

safer the corresponding vertex. Thus, we define the safety of a
vertex v, denoted as sf(v), which measures the accumulative
effectiveness of the domination degree. For each v ∈ V ,
sf(v) = −ddG(v) if v ∈ D, or sf(v) = ddG(v) if v /∈ D.

Different from score, the safety of a vertex measures the
domination degree by removing or adding this vertex. For
large graphs, ties w.r.t. score frequently occur during ver-
tex selection, that is, more than one vertex has the highest
score. In such a situation, we can use the safety as a sec-
ondary criterion for further measurement. By doing this, the
local search process can be more considerate in vertex selec-
tion. In addition, considering the property age 2 is usually
used to break ties for the sake of diversification, we propose
to use safety and age separately as the secondary criterion for
vertex selection. The safety-based vertex selection heuristic
in our algorithm is described as follows.

Selection Rule: Select the vertex v with the greatest score,
breaking ties by preferring the one with the greatest sf(v).
Further ties are broken by picking the one with greatest age if
more than one vertex has the greatest score and sf(v) values.

This idea is inspired by the concept of subscore for the SAT
problem [Cai and Su, 2013] which considers the satisfaction
degree of clauses. Moreover, as far as we know, it is the first
time that the definition of safety is considered to be applied
into solving a graph optimization problem.

5 NuCDS Algorithm
Based on HDC and the safety-based vertex selection heuris-
tic, we develop a local search algorithm for the MCDS prob-
lem named NuCDS. To avoid visiting previous candidate so-
lutions, we use the CC2 strategy [Wang et al., 2017] in the
adding process, and use the tabu strategy [Glover and Laguna,
1998] recording the adding operations to prevent removing
a just added vertex for the next tt iterations. In our work,
tt = 5 + rand(10). The pseudo code of NuCDS is shown in
Algorithm 2.

In the beginning, NuCDS initializes score and sf (line 1),
and sets curMethod = TBC which means that the TBC
method is selected as the initial connectivity maintenance
method (line 2). The non-improvement step stepNoimpr
and the number of steps used by the current connectivity
maintenance method stepOneCon are both set to 0 (line 2).
Then, the algorithm constructs the initial candidate solution
D using the approximation algorithm in [Khuller and Yang,
2019] (line 3). According to the construction rule, the algo-
rithm builds a spanning tree T of D (line 4), and then the
candidate removal vertex set candRemoval(D) is initialized
to LS(T ) (line 5).

During the local search procedure (lines 6–19),
the algorithm first uses the HDC heuristic to update
candRemoval(D) (line 7). If D is a feasible solution, which
means that the algorithm has already found a connected dom-
inating set of size |D|, D∗ is updated to D and stepNoimpr
is set to 0 (line 9). Then, the algorithm continues to find
a solution of size (|D| − 1), i.e., by removing a vertex v
from D using the BMS heuristic [Cai, 2015] (lines 10–11).

2The age of a vertex v is the number of steps that have occurred
since v last changed its state.
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Specifically, the algorithm randomly selects k vertices from
candRemoval(D) and picks from this set the removal
vertex u according to the selection rule (in our work, k is
set to 45). If the algorithm selects the TBC method as the
current connectivity maintenance method, the corresponding
spanning tree T and its leaf set LS(T ) should be updated
based on the removing rule (line 12).

If D is still an infeasible solution, the algorithm tries to
exchange two vertices (lines 14–17), i.e., removing a non-
tabu vertex u ∈ candRemoval(D) from D via the BMS
heuristic and the selection rule, and then adding a vertex
v ∈ N(D) ∩ N(G \ N [D]) to D via the CC2 strategy and
the selection rule, where G \ N [D] is the non-dominated
vertex set and N(D) contains vertices maintaining connec-
tivity. Finally, the algorithm needs to update T , LS(T ),
stepOneCon, and stepNoimpr accordingly (lines 18–19).
When the time limit is reached, the best solution found (D∗)
will be returned. The complexity of each iteration in the local
search process is O(|D|) or O(∆G) when using SUB or TBC
methods respectively.

Moreover, we make use of a trick for adopting the HDC
heuristic. If |D| < 100 ( that is, if the complexity of the SUB
method is acceptable), using TBC becomes trivial and thus
we only use the SUB method under such a situation.

6 Experimental Evaluation
We carry out extensive experiments to evaluate the perfor-
mance of NuCDS. We compare NuCDS with four state-of-
the-art heuristic algorithms: MSLS [Li et al., 2019], ACO-
RVNS [Bouamama et al., 2019], ACO-efficient3 and RNS-
TS [Wu et al., 2017]. The codes of all competitors were
kindly provided by the authors. RNS-TS was implemented
in Java while NuCDS and the other competitors were imple-
mented in C++ and complied by g++ with ‘-O3’. Data struc-
ture was modified to handle massive graph. Moreover, ACO-
efficient was modified by the author of ACO, specialized for
massive graphs. All experiments were run on a server with
Intel Xeon E7-4830 v4 2.00GHz with 256GB RAM under
Ubuntu 16.04.5.

For our experiments, we adopt several popular benchmarks
which are divided into two groups, including classical bench-
marks and massive graphs. First we considered 121 classical
benchmarks, which are mainly divided into five groups: the
instances of the maximum leaf spanning tree problem [Lu-
cena et al., 2010], bus power flow test cases4 , random ge-
ometric graphs [Jovanovic and Tuba, 2013], and random
graphs from [Erdem et al., 2009] and from [Bouamama et
al., 2019]. All these classical instances have already been
used for testing the effectiveness of the competitors [2019].

We also evaluated NuCDS on massive graphs, including
massive real-world graphs from the Network Data Reposi-
tory (NDR) [Rossi and Ahmed, 2015] and Stanford Large
Network Dataset Collection (SNAP)5, as well as large in-

3We contacted the author of ACO-RVNS to get an improved ver-
sion called ACO-efficient, which performs better than ACO-RVNS
on most large instances.

4http://labs.ece.uw.edu/pstca
5http://snap.stanford.edu/data

Algorithm 2: the NuCDS algorithm
Input: An undirected graph G = (V,E), the cutoff

time
Output: An obtained best connected dominating set

D∗

1 initialize score(v), sf(v), for ∀v ∈ V ;
2 curMethod :=TBC,

stepNoimpr := stepOneCon := 0;
3 D := ConstructCDS(G), D∗ := D;
4 build a spanning tree T according to Construction

Rule;
5 candRemoval(D) := LS(T );
6 while elapsed time < cutoff do
7 candRemoval(D) := HDC(D);
8 if D is a connected dominating set then
9 D∗ := D, stepNoimpr := 0;

10 select a vertex u ∈ candRemoval(D) by
BMS according to Selection Rule;

11 D := D \ {u};
12 if curMethod==TBC then update T and

LS(T ) according to Removing Rule;
13 continue;
14 select a vertex u ∈ candRemoval(D) by BMS

according to Selection Rule;
15 D := D \ {u};
16 choose a vertex v ∈ N(D) ∩N(G \N [D])

according to Selection Rule;
17 D := D ∪ {v};
18 if curMethod==TBC then update T and LS(T )

according to Removing and Adding Rules;
19 stepNoimpr++, stepOneCon++;
20 return D∗;

stances from the 10th DIMACS implementation challenge
(DIMACS10)6. As in previous work [Lin et al., 2017], we
only report the results on graphs from the SNAP and DI-
MACS10 benchmarks with at least 30,000 vertices (with the
exception of a few cases with fewer vertices). Moreover, due
to space limitations, we do not report the results on graphs
from the NDR benchmark with fewer than 100,000 vertices
or fewer than 1,000,000 edges. Hence, we picked 22, 31 and
65 instances from SNAP, DIMACS10, and NDR benchmarks
respectively, leading to totally 118 massive graphs.

All algorithms were executed 10 times on each instance in-
dependently. The cutoff time was set to 1000 seconds for the
classical benchmarks, and 3600 seconds for massive graphs.
We report the the best size (min) and the average size (avg)
of the solutions found. If an algorithm fails to find a solution
within the time limit, this is indicated by ‘N/A’.

In preliminary experiments we found that NuCDS is
not very sensitive to parameter settings. According to
these experiemnts we set MinNoImpr=100 when us-
ing SUB, and MinNoimpr=100000 when using TBC.
NoImpr and MaxNoImpr were set as 2×MinNoImpr
and 10×MinNoImpr, respectively.

6https://www.cc.gatech.edu/dimacs10/
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Instance NuCDS MSLS ACO-efficient ACO-RVNS RNS-TS
min(avg) min(avg) min(avg) min(avg) min(avg)

v150 d10 14(14) 14(14.6) 14(14.6) 14(14.5) 14(14)
ieee 300 bus 130(130.9) 129(129.2) 129(129.2) 129(129) 129(129)
n1000 200 r100 38(38) 39(39.6) 39(39.1) 38(38.2) 38(38.5)
n1000 200 r110 34(34) 34(34.1) 34(34.1) 34(34) 34(34)
n1000 200 r120 29(29) 29(30.3) 30(30.2) 29(29) 29(29)
n1000 200 r130 26(26) 26(26.8) 26(26.7) 26(26) 26(26)
n1000 200 r140 23(23) 23(23.1) 23(23.4) 23(23) 23(23)
n1000 200 r150 21(21) 21(21.1) 21(21.1) 21(21) 21(21)
n1000 200 r160 19(19) 19(19.6) 36(36.3) 19(19) 19(19.1)
n1500 250 r130 49(49) 49(50) 49(49.7) 49(49.1) 49(49)
n1500 250 r140 43(43.7) 44(44.3) 44(44) 43(43.9) 43(43.9)
n1500 250 r150 40(40) 41(41.6) 41(41.6) 40(40.7) 40(40.1)
n1500 250 r160 36(36) 37(37.7) 36(36.3) 36(36) 36(36)
n2000 300 r200 41(41.5) 43(43.1) 42(42.5) 42(42.1) 41(41.6)
n2000 300 r210 38(38) 38(38.6) 38(38.5) 38(38) 38(38)
n2000 300 r220 35(35) 36(36.3) 35(36) 35(35.1) 35(35)
n2000 300 r230 33(33) 34(34.8) 34(34.5) 33(33) 33(33.2)
n2500 350 r200 60(60) 61(61.3) 61(62.3) 60(60.7) 60(60.3)
n2500 350 r210 54(54.9) 56(57.0) 57(58.2) 55(56.1) 55(56.0)
n2500 350 r220 51(51.1) 52(54.3) 54(54.7) 51(52.7) 51(51.4)
n2500 350 r230 49(49.1) 50(50.6) 50(51.7) 48(49.5) 49(49.0)
n3000 400 r210 74(74) 74(76.3) 76(76.6) 74(75.5) 75(75.1)
n3000 400 r220 70(70) 71(71.9) 71(71.6) 70(70.8) 70(70.3)
n3000 400 r230 64(64.8) 66(67.0) 65(67.1) 65(65.9) 65(65.1)
n3000 400 r240 60(60.9) 61(62.5) 62(62.8) 61(61.7) 61(61.2)
n600 100 r110 14(14) 14(14.5) 14(14.6) 14(14) 14(14)
n700 200 r100 22(22) 22(22.5) 22(22.9) 22(22) 22(22)
n700 200 r110 20(20) 20(20) 20(20.5) 20(20) 20(20)
n700 200 r120 17(17) 17(17) 17(17.8) 17(17) 17(17)
n700 200 r70 38(38.1) 39(39.6) 39(39) 38(38.1) 38(38.5)
n700 200 r80 32(32) 33(33) 33(33) 32(32) 32(32)
n1000 ep0007 179(179) 191(194) 187(189) 185(186.6) 189(190.7)
n1000 ep0014 98(98) 105(105.5) 104(105.3) 101(103.1) 103(105.3)
n1000 ep0028 59(59.9) 62(62.5) 62(62.8) 61(62.8) 63(63.6)
n1000 ep0056 37(37) 37(37) 37(37.8) 37(37.8) 38(38.2)
n1000 ep0112 22(22) 22(22) 22(22) 22(22) 22(22.1)
n1000 ep0224 12(12.5) 12(12) 12(12.7) 12(12) 12(12.2)
n1000 r0048 275(277.3) 276(276.5) 275(275.2) 275(275.8) 280(283.7)
n1000 r0070 125(126.7) 125(125) 128(129.3) 127(128.4) 132(134.4)
n1000 r0100 61(61.8) 62(62.4) 64(65.4) 64(65.4) 65(66.1)
n1000 r0140 32(32.3) 33(33) 33(33.3) 32(32.9) 34(34.6)
n1000 r0207 15(15.1) 16(16) 16(16.2) 15(15.7) 16(16.6)
n1000 r0308 7(7) 7(7) 7(7) 7(7) 7(7.7)
n5000 ep0007 264(265.6) 277(277.4) 277(278.2) 277(278.2) 392(424.8)
n5000 ep0014 163(164.2) 161(162.1) 164(164.2) 165(166.2) 206(220)
n5000 ep0028 94(94) 95(95.1) 96(96) 95(95.8) 121(25.8)
n5000 ep0056 56(56) 55(55) 55(55.6) 56(56.1) 76(100)
n5000 ep0112 32(32) 31(31.4) 31(31.9) 31(31.7) 2707(2934.0)
n5000 ep0224 18(18) 17(17) 17(17) 17(17.1) 3888(4045)
n5000 r0048 268(270) 275(275.8) 280(284.6) 280(284.6) 319(336.1)
n5000 r0070 127(128.4) 133(133.4) 132(136.4) 132(136.2) 147(150.3)
n5000 r0100 63(64.4) 68(68.42) 70(71.5) 72(72.5) 74(78.2)
n5000 r0140 33(33.2) 36(36.71) 37(37.4) 36(36.9) 39(41)
n5000 r0207 16(16) 17(17) 18(18.9) 16(16.8) 2099(2797.3)
n5000 r0308 7(7.6) 8(8.28) 9(9.5) 8(8) 3652(3876)

Table 1: Results of NuCDS, MSLS, ACO-efficient, ACO-RVNS and
RNS-TS on classical benchmarks.

6.1 Results on Classical Benchmarks
Most instances of classical benchmarks are so easy that all
algorithms obtain the same solution quality very quickly. We
ignore these instances, but we report the average run time
when all algorithms obtain the same minimal and average val-
ues in Figure 2, which shows the effectiveness of NuCDS.

We present the results for the remaining 55 classical in-
stances in Table 1. NuCDS obtains better solutions than
MSLS, ACO-efficient, ACO-RVNS and RNS-TS for 31, 33,
19 and 25 instances, respectively, while NuCDS fails to
match the solutions obtained by some competitors only on
6 instances. For the instances where NuCDS generates a so-
lution with the same value as the best competitor, NuCDS
obtains better average size for 8 instances with 3 exceptions.

6.2 Results on Massive Graphs
Tables 2 and 3 show the results of NuCDS and all competi-
tors on massive graphs. Once again, the results of NuCDS
are significantly better than those of all competitors for most

Instance NuCDS MSLS ACO-efficient ACO RNS
min(avg) min(avg) min(avg) min min

Amazon0302 45818(46419.8) 48225(48625.6) 47969(47969) N/A N/A
Amazon0312 52181(52696.7) N/A N/A N/A N/A
Amazon0505 54045(54544.5) N/A N/A N/A N/A
Amazon0601 48001(48487.6) N/A N/A N/A N/A
Cit-HepPh 3268(3281.4) 3395(3407.2) 3363(3380.4) 3417 31018
Cit-HepTh 3203(3220.3) 3289(3303.3) 3264(3279.6) 3320 24036
cit-Patents 734156(734603) N/A N/A N/A N/A
Email-EuAll 2371(2371) 2368(2368.6) 2368(2369.3) 2373 224163
p2p-Gnutella04 2268(2270.7) 2294(2295.6) 2270(2271.5) 2279 6526
p2p-Gnutella24 5471(5471.2) 5475(5477.1) 5469(5469.9) 5470 23819
p2p-Gnutella25 4558(4558.2) 4561(4562.7) 4556(4556.6) 4557 19467
p2p-Gnutella30 7229(7229.2) 7238(7240.5) 7229(7231.7) 7231 34578
p2p-Gnutella31 12675(12675.1) 12677(12678.7) 12677(12679.4) 12683 61061
Slashdot0811 14990(14992.3) 14993(14994.5) 14994(14996.3) N/A 76148
Slashdot0902 16160(16163) 16170(16173.81) 16169(16171.6) N/A 81006
soc-Epinions1 16667(16669.5) 16668(16668.8) 16671(17762.3) N/A 74677
web-BerkStan 30961(31085.1) 31308(31332.3) N/A N/A N/A
web-Google 86954(86973.8) N/A N/A N/A N/A
web-NotreDame 25665(25679.7) 25406(25462) 25686(25698) 25641 N/A
web-Stanford 11586(11588) 11541(11600.3) 11706(11715.6) 11742 N/A
WikiTalk 35038(35038.2) N/A N/A N/A N/A
Wiki-Vote 1101(1101) 1101(1101) 1101(1101) 1101 3093
333SP 1233411(1233510.8) N/A N/A N/A N/A
as-22july06 2059(2059) 2059(2059) 2059(2059) 2059 19917
audikw1 11055(12776.2) N/A 11864(11864) N/A N/A
belgium 1201658(1201705.1) N/A N/A N/A N/A
cage15 679723(681679.2) N/A N/A N/A N/A
caida*Level 47993(48085.8) 48361(48707.8) 48422(48422) N/A N/A
citationCiteseer 49675(49870) 50488(51109) 50434(50434) N/A N/A
cnr-2000 24769(24779.8) 25177(25190.5) 24880(24880) N/A N/A
coAu*Citeseer 38124(38202.9) 38203(38453.8) 38265(38265) N/A N/A
coAuthorsDBLP 48809(48881.9) 49103(49141.5) 48963(48963) N/A N/A
cond-mat-2005 5125(5129.2) 5165(5169.3) 5168(5171.9) 5175 33782
coPapersCiteseer 34790(35282.3) N/A N/A N/A N/A
coPapersDBLP 46433(47181.5) N/A N/A N/A N/A
ecology1 400417(404621.5) N/A N/A N/A N/A
eu-2005 35143(38694) N/A N/A N/A N/A
G n pin pout 14278(14474) 15124(15154.4) 15040(15065.3) 15351 N/A
in-2004 86846(86859.11) N/A N/A N/A N/A
kron*logn16 3886(3889.125) 3888(3889.2) 3887(3888.4) N/A 53980
ldoor 34128(35520.2) N/A N/A N/A N/A
luxembourg 101556(101570.8) 102284(102305.8) 101968(101968) N/A 113387
prefer*chment 8551(8586) 9100(9116.3) 9022(9048.6) 9155 N/A
rgg n 2 17 s0 23158(23285.4) 23631(23662.3) 23621(23621) N/A N/A
rgg n 2 19 s0 84112(84843.1) N/A N/A N/A N/A
rgg n 2 20 s0 162669(163039.11) N/A N/A N/A N/A
rgg n 2 21 s0 315925(317382) N/A N/A N/A N/A
rgg n 2 22 s0 620349(621002.11) N/A N/A N/A N/A
rgg n 2 23 s0 1199405(1199630.66) N/A N/A N/A N/A
rgg n 2 24 s0 2325059(2325227.55) N/A N/A N/A N/A
smallworld 14363(14801.3) 15354(15374.6) 15609(15645.7) 15646 N/A
uk-2002 1184695(1184712) N/A N/A N/A N/A
wave 16343(16660.7) 17504(17547.8) 17792(17815) N/A N/A

Table 2: Results on SNAP and DIMACS10 benchmarks. To save
space, we denote ACO-RVNS and RNS-TS as ACO and RNS.

of the considered graphs. This is with the exception of only
five graphs. Moreover, NuCDS can solve all these 118 in-
stances within the time limit, while MSLS, ACO-efficient,
ACO-RVNS and RNS-TS can only solve 45, 48, 18, and 26
instances, respectively. Among all those solvable instances,
the best solution values obtained by NuCDS are on average
1.79%, 7.38%, 0.51%, and 85.77% smaller than these found
by MSLS, ACO-efficient, ACO-RVNS, and RNS-TS, respec-
tively. The excellent results of NuCDS on massive graphs can
mainly be attributed to the power of the HDC heuristic.

Two reasons account for why competitors cannot output
feasible solutions on some instances: 1) The construction pro-
cesses of MSLS, ACO and ACO-efficient have a complexity
of O(|V |2). They are essential parts of multi-restart and ACO
framework, so we reserve them; 2) The complexity of each
step is O(|V |2) in RNS, often trapping in the first iteration.
Because |V | of some instances reaches to 107, competitors
fail to output feasible solution.
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Instance NuCDS MSLS ACOe ACO RNS-TS
min(avg) min min min min

bn-human*1-bg 4400(4418.3) 4683 4692 NA NA
bn-human*2-bg 3450(3464.7) 3836 3704 NA NA
ca-coauthors-dblp 46399(46428.1) NA NA NA NA
ca-dblp-2012 51009(51021.3) 51072 51193 NA 316258
ca-hollywood-2009 53090(53199) NA NA NA NA
channel*b050 653930(654224.11) NA NA NA NA
dbpedia-link 1561222(1561222) NA NA NA NA
delaunayn22 1188366(1188453.2) NA NA NA NA
delaunayn23 2367669(2368135.5) NA NA NA NA
delaunayn24 4792433(4792748.7) NA NA NA NA
friendster 659165(659324.8) NA NA NA NA
hugebubbles-00020 12536446(12566644.3) NA NA NA NA
hugetrace-00010 6979613(6989126.1) NA NA NA NA
hugetrace-00020 9344012(9357095.1) NA NA NA NA
inf-europeosm 43785185(43785235.8) NA NA NA NA
inf-germanyosm 9497489(9497535.3) NA NA NA NA
inf-roadNet-CA 1016026(1016095.6) NA NA NA NA
inf-roadNet-PA 539337(539932.2) NA NA NA NA
inf-road-usa 14394770(14394881.9) NA NA NA NA
rec-dating 11747(11749.3) 11748 11754 NA NA
rec-epinions 9083(9084.8) NA 9100 NA NA
rec-libimseti-dir 12988(13008.7) NA 13031 NA NA
rggn223s0 1199405(1199630.6) NA NA NA NA
rggn224s0 2325049(2325222) NA NA NA NA
rt-retweet-crawl 83116(83118.4) NA NA NA NA
sc-ldoor 34062(34101.2) NA NA NA NA
sc-msdoor 15060(15079) 15279 15391 NA NA
sc-pwtk 8732(8772.9) 8819 8931 NA NA
sc-rel9 123682(123963.2) NA NA NA NA
sc-shipsec1 10901(10944.9) 11791 11954 NA 13766
sc-shipsec5 13798(13919) 14839 15082 NA 176869
soc-buzznet 128(128) 128 128 NA 99847
soc-delicious 57684(57686.8) NA NA NA 535742
soc-digg 70654(70659) NA NA NA NA
soc-dogster 27286(27289.6) 27359 27391 NA NA
socfb-A-anon 205956(206047.6) NA NA NA NA
socfb-B-anon 191997(192075.6) NA NA NA NA
socfb-uci-uni 1542466(1542478) NA NA NA NA
soc-flickr 105649(105659.2) NA NA NA 513557
soc-flickr-und 296975(297059.7) NA NA NA NA
soc-flixster 91545(91545) NA NA NA NA
soc-FourSquare 60982(60983.7) NA NA NA 638426
soc-lastfm 67429(67429) NA NA NA NA
soc-livejournal 854544(854551.88) NA NA NA NA
soc-live*-groups 1128481(1128481) NA NA NA NA
soc-LiveMocha 1427(1428.9) 1430 1454 1476 103049
soc-ljournal-2008 1071992(1072003.5) NA NA NA NA
soc-orkut 120565(120616.7) NA NA NA NA
soc-orkut-dir 100505(100618.7) NA NA NA NA
soc-pokec 221632(221703.2) NA NA NA NA
soc-sinaweibo 201634(201634) NA NA NA NA
soc-twitter-higgs 15201(15177.3) 15335 15375 NA NA
soc-youtube 101653(101659.4) NA NA NA 495497
soc-youtube-snap 235584(235590.2) NA NA NA NA
tech-as-skitter 199541(199671.5) NA NA NA NA
tech-ip 153(153.3) NA 170 NA NA
twittermpi 727931(727931) NA NA NA NA
web-arabic-2005 20666(20670.3) 20737 20730 NA 162433
web-baidu-baike 273777(273856.7) NA NA NA NA
web-it-2004 34548(34548.9) 34551 34557 NA NA
web-uk-2005 1728(1728) 1728 1728 1728 NA
web-wiki**2009 395316(395447.5) NA NA NA NA
web-wiki**-growth 118963(118981) NA NA NA NA
web-wikipedlink 190986(190999) NA NA NA NA
wikipedialinken 212240(212241.3) NA NA NA NA

Table 3: Results on the NDR benchmarks. To save space, we denote
ACO-efficient and ACO-RVNS as ACOe and ACO, respectively.
Moreover, since min and avg of all competitors are no better than
that of NuCDS on all instances, we only report min of competitors.

6.3 Effectiveness of Proposed Strategies
As shown in Table 4, three modified versions of NuCDS are
proposed to verify the effectiveness of HDC and safety,
especially on massive graphs. We compared NuCDS with
NuCDS1 to show the effectiveness of safety, and with
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Figure 2: Average running time of NuCDS and competitors.

NuCDS1 NuCDS2 NuCDS3

HDC + - -
SUB - + -
TBC - - +
safety - + +

Table 4: Three modified versions of NuCDS, where ”+” indicates
that the version uses the corresponding strategy while ”-” means not.

Benchmark vs. NuCDS1 vs. NuCDS2 vs. NuCDS3

SNAP(22) #Better 14 10 21
#Worse 2 5 1

DIMACS10(31) #Better 28 28 23
#Worse 1 2 5

NDR(65) #Better 46 59 56
#Worse 8 1 2

Table 5: Comparing NuCDS with three modified versions on mas-
sive graphs. #Better and #Worse respectively represent the number
of instances where NuCDS achieves better and worse result.

NuCDS2 and NuCDS3 to show the effectiveness of HDC.
The results in Table 5 confirm that both strategies are effec-
tive. Moreover, when compared with SUB, HDC improves
the average best solution by 17.285% on massive graphs.

7 Conclusion
We proposed two new algorithmic components, namely the
hybrid dynamic connectivity maintenance heuristic and the
safety-based vertex selection heuristic, for MCDS. Both com-
ponents were used to develop an efficient local search algo-
rithm named NuCDS. We conducted extensive benchmarks
to evaluate the performance of NuCDS and the experimental
results showed that our algorithm significantly outperforms
its competitors on almost all the instances of any size.
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