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Abstract

A rising vision for Al in the open world centers
on the development of systems that can comple-
ment humans for perceptual, diagnostic, and rea-
soning tasks. To date, systems aimed at comple-
menting the skills of people have employed models
trained to be as accurate as possible in isolation.
We demonstrate how an end-to-end learning strat-
egy can be harnessed to optimize the combined per-
formance of human-machine teams by considering
the distinct abilities of people and machines. The
goal is to focus machine learning on problem in-
stances that are difficult for humans, while recog-
nizing instances that are difficult for the machine
and seeking human input on them. We demonstrate
in two real-world domains (scientific discovery and
medical diagnosis) that human-machine teams built
via these methods outperform the individual per-
formance of machines and people. We then ana-
lyze conditions under which this complementarity
is strongest, and which training methods amplify it.
Taken together, our work provides the first system-
atic investigation of how machine learning systems
can be trained to complement human reasoning.

1 Introduction

Systems developed via machine learning (ML) are increas-
ingly competent at performing tasks that have traditionally
required human expertise, with emerging applications in
medicine, law, transportation, scientific discovery, and other
disciplines (e.g., [Esteva et al., 2017; Chen et al., 2018;
McGinnis and Pearce, 2019]). To date, engineers have con-
structed models by optimizing model performance in isola-
tion rather than seeking richer optimizations that consider
human-machine teamwork.

Optimizing ML performance in isolation overlooks the
common situation where human expertise can contribute
complementary perspectives, despite humans having their
own limitations, including systematic biases [Tversky and
Kahneman, 1974]. We introduce methods for optimizing
team performance, where machines take on some parts of
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Figure 1: Illustration of task and proposed approaches.

the task and humans others. In an ideal world, the machine
would be able to handle all instances itself. For complex do-
mains though, this rarely holds in practice, whether due to
limited data or model capacity, outliers, superior perceptual
or reasoning abilities of people on a given task, or evidence
or context available only to humans. When perfect accuracy
is unattainable, the machine should focus its limited capacity
on regions of the space where it offers the most benefit (e.g.,
on cases that are challenging for humans), while pursuing hu-
man expertise to handle others. We develop methods aimed
at training the ML model to complement the strengths of the
human, accounting for the cost of querying an expert. While
human-machine teamwork can take many forms, we focus
here on settings where a machine takes on the tasks of de-
ciding which instances require human input and then fusing
machine and human judgments.

Prior work includes systems that determine when to con-
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sult humans [Horvitz and Paek, 2007; Kamar et al., 2012;
Raghu er al., 2019]. However, the predictive models are still
trained to maximize their own, solitary performance, rather
than to leverage the distinctive strengths of machines and hu-
mans. The latter requires a shift in the learning objective so
as to optimize team performance via instance-sensitive deci-
sions about when to seek human input. To our knowledge, the
methods we present are the first to optimize human-Al teams
by jointly training ML systems together with policies for al-
locating tasks to human experts versus machines. We make
four contributions:

First, we propose a family of approaches to training an ML
system for human-machine complementarity as schematized
in Figure 1. The run-time system combines machine predic-
tions with human input, which may come at additional cost.
During training, we use logged human responses to the task
to simulate queries to a human. We study both discrimina-
tive and decision-theoretic approaches to optimizing model
performance, taking the complementarity of humans and ma-
chines into consideration. A baseline approach in either fam-
ily would first construct an ML model to predict the answer
to a given task and then build a policy for deciding when to
query the human, taking the predictive model as fixed. We in-
troduce the first generic procedures that operate end-to-end,
focused on team performance. With these approaches, we
jointly optimize the predictive model and the query policy
for team performance, accounting for human-machine com-
plementarities. In the discriminative setting, we introduce a
combined loss function that uses a soft relaxation of the query
policy for training, along with a technique for making discrete
query decisions at run time. In the decision-theoretic setting,
we introduce a differentiable surrogate for value of informa-
tion (VOI) calculations, which allows joint training of the pre-
dictive model and the VOI-based query policy through back-
propagation. In both cases, joint training focuses the predic-
tive model on instances where the human will not be queried,
amplifying complementarity.

Second, we demonstrate the benefits of optimizing for team
performance in human-machine teams for two real-world do-
mains of societal importance: scientific discovery (a galaxy
classification task) and medical diagnosis (detection of breast
cancer metastasis). Via comparative studies, we highlight the
importance of guiding learning to optimize the performance
of human-machine teams.

Third, we pursue experimental insights about when and
how complementarity-focused training provides benefits. We
find evidence for two conclusions: First, training for comple-
mentarity is most important when the ML model has limited
capacity, forcing it to pick parts of the task to focus on. This
suggests that an emphasis on team performance is particularly
necessary for difficult tasks that machines cannot perfectly
master on their own. Second, training for complementarity
has larger benefits when there is an asymmetric cost to errors
(e.g., false negatives are more costly than false positives). The
need to prioritize among potential errors increases the returns
of optimizing for team utility.

Fourth, we analyze how our methods distribute instances
to the human and machine and how these allocations reflect
differences in relative capabilities. We find that humans and

machines may make qualitatively different kinds of errors.
Moreover, the errors made by the ML model change under
joint training as the model places more emphasis on instances
that are difficult for humans. Via joint training, human and
machine errors become different in structured ways that can
be leveraged by the methods to improve team performance.

2 Related Work

Previous work shows that human-machine teams can be more
effective than either individually [Horvitz and Paek, 2007;
Kamar er al., 2012], including for medical domains [Wang et
al., 2016; Raghu et al., 2019]. However, in some others [Tan
et al., 2018; Zhang et al., 2020], potential complementarity
has been difficult to leverage.

Sharing our motivation for developing techniques that har-
ness human-machine complementarity, the work by [Raghu
et al.,2019] and [De et al., 2020] study when a model should
outsource a given instance to a human. [Raghu et al., 2019] is
most closely related to our fixed decision-theoretic algorithm;
their approach considers predictive variance for the human
and machine at each point to allocate human effort. However,
the ML model is always fixed, instead of being trained for
complementarity. [De et al., 2020] propose a method to se-
lect the parameters of a ridge regression model jointly with a
set of training instances to allocate to the human. Our work
differs in three important ways: (i) they do not train a query
policy to allocate new instances at run time, (ii) our methods
apply to arbitrary differentiable models (not just ridge regres-
sion), (iii) we provide a characterization of why some meth-
ods are more or less effective at leveraging complementarity.

Other related work addresses the complementary ques-
tion of designing ML models as an aid for a human who
is charged with making decisions [Grgi¢-Hlala et al., 2019;
Green and Chen, 2019; Hilgard et al., 2019; Lage et al.,
2018]. Some of this work emphasizes the need for ML mod-
els to account for human reasoning, in particular for humans
to learn when to trust the ML model [Bansal et al., 2019a;
Bansal et al., 2019b], but does not optimize the model for
complementarity. We focus on cases were the ML system
decides which instances require human input.

3 Problem Formulation

We formalize the problem of optimizing human-Al team-
work for predictive tasks. We start with the standard super-
vised learning setting, predicting labels y € ) from features
x € X. We focus on multiclass classification, where ) is a
discrete set, but our methods apply to regression with minor
modifications. As is typical, we train a model m with param-
eters 6, which produces a prediction § = mg(x). The differ-
ence is that each instance may also be labeled by a human.
Our training data contains instances {(z, y, )} ~ P where
h € Y is a human’s prediction and P is an (unknown) joint
distribution. The machine must decide, for each instance,
whether to predict on its own or first consult a human expert.

Specifically, the machine learning model first sees x and
then decides whether to pay a cost ¢ to observe h. gg(z) de-
notes the query policy, which outputs 1 when the human is
queried and O otherwise. The model makes a prediction 7,
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which may depend on h if gg(x) = 1. The team’s utility is
u(y, ) if the human is not queried, and u(y, §) — c if they are.
One choice for the utility is u(y, ) = 1[y = 9] (predictive
accuracy), but our framework extends easily to asymmetric
weightings of different errors. We aim to maximize out-of-
sample utility,

Eloymr [002) (wly, mole, 1) =) (1)
+(1 = ao(@)) (uly, mo (@) |.

The first term gives the team utility when the human is
queried, and the second when they are not. Conventional su-
pervised learning targets only the second term; our formula-
tion includes the query decision, and the impact of the ad-
ditional information provided by the human, on the team’s
overall accuracy.

4 Approach

A standard approach to optimizing for human-machine team-
work would first train the model in isolation m to predict the
labels y given x. Then, m is taken as fixed when construct-
ing the query policy q (as, e.g., in [Raghu er al., 2019]). We
propose an alternate approach: joint training that considers
explicitly the relative strengths of the human and machine.
We introduce methods for both discriminative and decision-
theoretic approaches, and now introduce each family in more
detail.

4.1 Discriminative Approaches

Discriminative approaches learn functions for m and ¢ which
directly map from features to decisions, without building in-
termediate probabilistic models for the different components
of the system. We first introduce a baseline “fixed” method
for training a discriminative system and then propose a means
to jointly train the model and query policy together for com-
plementarity with people.

Fixed Discriminative Approach

Traditional fixed discriminative approaches train a model m
in isolation to perform the task, making the assumption that
there is no ability to query the human. That is, we train m to
optimize E(, )~ p[u(y, mg(x))] using any number of well-
established methods. Then, taking m as fixed, we construct a
query policy ¢ by optimizing Equation 1.

Joint Discriminative Approach
In distinction to the fixed approach, we present a joint dis-
criminative method that trains the ML model mgy end-to-end
with the query policy gy so that my can prioritize instances
allocated by gy to the machine. The goal is to optimize a
training surrogate for the team utility in Equation 1. In the
notation, mg(x) denotes the distribution over classes output
by the model, and h gives the one-hot encoding of the human
responses.

We propose a differentiable surrogate for Equation 1,
which can be optimized via stochastic gradient descent when-
ever the models are themselves differentiable (e.g., neural
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networks). During training, we will allow gg(z) to take con-
tinuous values. This soft relaxation both ensures differentia-
bility and speeds learning by propagating gradient informa-
tion for both cases (querying and not querying). The most
direct relaxation for Equation 1 is

qo(x)L(y, me(x, h)) + (1 = qo())L(y, me(7)) + cgo(z)

where /¢ is any standard loss, which may be weighted to cap-
ture asymmetries in the utility u. This replaces the potentially
discontinuous u with a differentiable loss ¢ defined on soft
predictions (probability distributions), along with a penalty
scaling ¢ by the query probability gp(z). In experiments, this
direct relaxation often produced unstable training; intuitively,
the predictions and query policy may be spiky in some re-
gions, giving a rapidly changing training signal. The loss we
use is

Uy, qo(x)mp(x, h) + (1 — qo(x))me(z)) + cqo(z)

which measures the loss of a fractional prediction that com-
bines the human and machine outputs. The combination tends
to behave more smoothly, enabling better training. A key fea-
ture of this loss is that it allows the predictions mg(x) to fo-
cus on instances that rely heavily on the machine. If gy (x) for
some z is close to 1, then the loss for = depends only weakly
on mg(x), incentivizing m to focus on instances where ¢ is
lower instead.

When the human is queried, the general formulation allows
mg(z, h) to output a prediction different than the human re-
sponse h. However, we observe stronger empirical perfor-
mance using the simplification mg(x, h) = h (though train-
ing a separate model for mg(x, h) results in similar qualita-
tive conclusions). Intuitively, often the correct decision after
querying is to output A, and including a separate model only
adds unnecessary parameters.

For this simplified formalization, we introduce the fol-
lowing run-time query policy: we need a way of convert-
ing the fractional ¢ to a O or 1 decision (whether to ac-
tually query the human). In an idealized setting where
the human label was free, the run-time prediction would
be arg max (qo(x)h + (1 — go(z))me(z)) (i.e., the highest-
probability label in the combined prediction). A naive thresh-
olding scheme would query the human if go(z) > 0.5 (or
another fixed value). However, we can approximate the ide-
alized prediction more closely by incorporating a measure of
the ML model’s confidence, max (mg(z)). Specifically, we
query the human if

(1 — go(x)) max (mp(x)) < go()

which results in a query if gg(z) is sufficiently high, or the
model is sufficiently uncertain. More formally, when this
condition holds, the idealized prediction must align with h
since max (gg(x)h) > max ((1 — gg(x))my(z)).

4.2 Decision-Theoretic Approaches

A decision-theoretic approach to human-machine teams, as
described in [Kamar et al., 2012], is to construct probabilistic
models for both the ML task and the human response. This
allows a follow-up step that calculates the expected value of
information for querying the human.
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Fixed Value of Information Approach
The fixed value of information (VOI) method trains three
probabilistic models. p,(y|x) models the distribution of the
label given the features, pg(h|z), the human response given
the features, and p, (y|h, z), the label given both the features
and the human response. «, 3, v are model parameters. Each
model is individually trained to fit its intended target. In our
implementation, we use neural networks trained via gradi-
ent descent, followed by a sigmoid calibrator trained using
the Platt method [Platt, 1999; Niculescu-Mizil and Caruana,
2005]. Calibration is necessary for the predicted probabilities
to give meaningful expected utilities.

At execution time, we use these models to estimate the
value of querying the human. The estimated expected util-
ity of the ML model without querying the human is

Upg = MAax § Pa(yl@)u(d, y)
JeY
yey

i.e., the value of the prediction with highest expected utility
according to p, (y|z). Before querying the human, we cannot
know the value of h and hence the post-query distribution
Dy (y|x, h) is also unknown. However, we can estimate the
expected utility by averaging over pg(h|z),

Uqg = Ehpr/;(h\z) |:l;§lea§;( (Z p"/(y|x7 h)u(:g7 y)>:| —C

yey
and then query the human whenever ug > 4.

Joint Value of Information Approach

We propose a new decision-theoretic method, which we re-
fer to as a joint VOI approach, that optimizes the utility of
the combined system end-to-end, instead of training the best
probabilistic model for each individual component. Retain-
ing the structure of the fixed VOI system can be viewed as
an inductive bias which allows the model to start from well-
founded probabilistic reasoning and then to be fine-tuned for
complementarity. To benefit from this inductive bias, we in-
stantiate each of the probabilistic models p,, pg, and p,, with
aneural network followed by a Platt calibration layer, just like
the fixed VOI approach. However, with joint VOI all of the
neural network parameters are trained together via an end-
to-end loss, which is grounded in the VOI calculation. We
update the calibration layer every ¢ steps to maintain well-
calibrated probabilities.

Algorithm 1 outlines joint VOI training. We optimize a sur-
rogate for team utility via stochastic gradient descent, so each
iteration first samples a minibatch of data points. For each
point, we simulate a differentiable VOI calculation which
draws on soft versions of the team’s utility if the human were
queried (ug) and if the human were not queried (uyq), along
with the cost to query. Specifically, line 4 computes uyq(7),
the expected utility of predicting ¢ (according to p,) when
the human is not queried. Line 5 takes a softmax over all
potential ¢ in order to achieve a differentiable approximation
to the best achievable expected utility without a query. Simi-
larly, line 6 computes the expected utility uq(y, i) of predict-
ing ¢ supposing that the human was queried and responded
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Algorithm 1 Joint VOI training

1: for T iterations do

2 Sample a minibatch B C [n]

3 fori € B do

4 for j € Y do

5 Ung (7)) = Zyey pa(ylzi)u(d, y)

6: end for (8) exp(una (@)
) _ tng () exp (tng (§

7 Ung = 3563 3y, oxpluma ()

8 for j € Y do

9 ug(9,h) =32, cy Py (ylzs, h)u(g, y)

0 end for (6.) exp(ua(@.1))

— uq(§,h) exp(uq(J,

1 Ug = Zh pﬁ(h|$) Zy qu’ey exp(uql(y’,h))
) _ exp (uq)

12: q_ exp(uq)Jre;(lp(unq)

13: gzombined = E(q p'y('|xi7 hz)

14: +(1 = @)pa(|zi)) +qc

15: end for '

16: Backpropagate ﬁ > ie B Leombined

17: Every t iterations: update calibrators

18: end for

with h. Line 7 takes a softmax over ¢ for each fixed A (the
inner sum), and then an expectation over h ~ pg (the outer
sum). This approximates the expected utility of observing h
and then predicting the best § given the observation. Line 8
makes a soft query decision via a softmax over upq and uq.

Using the output (query decision and prediction) of the dif-
ferentiable VOI calculation, we compute a team 10ss Zombined>
which uses the same form as in the joint discriminative model.
We average this loss over the minibatch and backpropagate
it to update the predictive models. During this process, we
freeze the parameters of the calibration layers of the models.
The calibration layers are updated using the Platt procedure
every t steps in order to ensure that the model remains well-
calibrated even under end-to-end training.

Compared to the fixed model, the joint model uses well-
calibrated models to calculate the expected utility of a query.
However, it encourages these models to fit most carefully to
parts of the space that the are best handled by the machine,
and obtains human expertise for others.

5 Experiments

We conducted experiments in two real-world domains to ex-
plore opportunities for human-machine complementarity and
methods to best leverage the complementarity.

5.1 Domains

We first explore a scientific discovery task from the Galaxy
Zoo project. Here, citizen scientists label images of galax-
ies as one of five classes to help understand the distribution
of galaxies and their evolution. We use 10,000 instances for
training and 4,000 for testing. Each instance contains visual
features which previous work extracted from the dataset [Lin-
tott et al., 2008; Kamar et al., 2012] for . The human re-
sponse h is the label assigned by a single volunteer (who may
make mistakes), while the ground truth y is the consensus
over many (> 30) volunteers.
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Task Layers Hidden % diff. (min/ avg / max)
GZ 1 - 21.8/38.9/73.3
GZ 2 50 2.13/9.02/14.0
GZ 2 100 -1.05/8.89/13.5
CAM. 1 - -3.10/4.51/10.4
CAM. (asym.) 1 - -1.26/5.13/15.2
CAM. 2 20 0.30/1.82/2.65
CAM. (asym.) 2 20 -0.80/1.91/4.85
CAM. 2 50 0.00/0.03/2.31
CAM. (asym.) 2 50 -0.67/1.70/2.28

Table 1: Comparison of joint and fixed VOI models across a range of
settings. “Layers” gives the number of layers used in the predictive
models, “Hidden,” the number of hidden units, and “% diff.,” the
percentage improvement of the joint over fixed model (given as the
min, average, and max improvement in loss over costs from 0 to
0.2).

We next study the medical diagnosis task of detecting
breast cancer metastasis in lymph node tissue sections from
women with a history of breast cancer. We use data from
the CAMELYON6 challenge [Bejnordi et al., 2017]. Each
instance contains a whole-slide image of a lymph node sec-
tion. Each image was labeled by an expert pathologist with
unlimited time, providing the ground truth y. It was also la-
beled by a panel of pathologists under realistic time pressure
whose diagnoses contain errors; we sample h from the panel
responses.

The dataset consists of 127 images. There are also 270 im-
ages without panel responses, with which we pretrain the ML
models. To develop our models, we follow common practice
from high-scoring competition entries (our implementation is
based on [Vekariya, 2016]). We first train a convolutional net-
work (Inception-v3 [Szegedy et al., 2016]) to predict whether
cancer is present in 256 X256 pixel patches sampled from the
larger whole-slide images. Then, we use Inception-v3 to pre-
dict the probability of cancer in each patch, giving a proba-
bility heatmap for each slide. We extract visual features from
the heatmap (e.g., size of the largest cancer region, eccen-
tricity of the enclosing ellipse, etc). These features are the
input z into the human-Al task. This workflow produced the
highest-scoring competition entries, ensuring we compare us-
ing a state-of-the-art ML method.

5.2 Models

We compare each of the four approaches introduced earlier:
fixed versus joint discriminative and VOI models. All use
neural networks with ReLU activations and dropout (p =
0.2). Our experiments vary the number of layers and hidden
units to examine the impact of model capacity. We also show
a “Human only” baseline that always queries the human and
outputs their response h.

5.3 Results

We first examine the performance of these methods for the
two tasks. Fig 2 shows each method’s total loss (combining
classification error and the cost of human queries). For each
model, the dashed line shows the fixed version and the solid
line denotes joint. For the joint models, we train the model
under a range of weightings of classification loss vs query
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cost, and each z-axis point selects the version with lowest
total loss for that cost. We show discriminative models with
one- and two-layer networks. Because the one- and two-layer
VOI models have fairly different losses (which compresses
the plots), we only show two layers. Table 1 gives results for
all VOI configurations.

The joint models, which optimize for complementarity,
uniformly outperform or tie their fixed counterparts. For
Galaxy Zoo, joint training leads to 21-73% reduction in loss
for the one-layer VOI models and 10-15% reduction in loss
for two-layer VOI. The reductions are 10-15% and 29% for
the one and two layer discriminative models respectively. For
CAMELYONI6, joint training improves the one-layer dis-
criminative model by up to 20% and the one-layer VOI model
by up to 10%. For deeper models, joint training ties the fixed
approach or makes modest improvements (around 2% reduc-
tion in loss). Next, we vary the problem setting to explore the
factors that influence the benefits of joint training. First, we
vary the capacity of the models, as measured by the number
of hidden units. Figures 2b and 2d compare the total loss of
different approaches when hidden unit sizes is reduced from
50 to 20. Table 1 examines the effect of model capacity on
the VOI-based approaches. Overall, joint training provides
larger benefits with limited model capacity. For example,
for CAMELYON16, the reduction of loss from joint training
for discriminative approaches is up to 15% when hidden units
are reduced to 20, whereas for the 50 neuron condition the
two discriminative approaches are tied (two-layer models).
This dovetails with earlier results that showed larger gains
for shallower models. Essentially, a lower-capacity model has
more potential bias (since it represents less complex hypothe-
ses which cannot fit the ground truth as closely). This makes
aligning the training process with team performance more
important because some errors are inevitable; joint training
helps the model focus its limited predictive ability on the most
important regions. In theory, sufficiently large datasets would
let us train arbitrarily complicated models that perfectly re-
cover the ground truth, rendering simple models unnecessary.
In practice, limited data requires us to prevent overfitting by
restricting model capacity; maximizing the performance of
simple models is valuable in many tasks.

The second experimental modification introduces an asym-
metric loss for CAMELYON16: motivated by high cost of
missing diagnoses in many areas of medicine (such as fail-
ing to recognize the recurrence of illness in patients with a
history of cancer), we weight false negatives twice as heav-
ily as false positives. The gaps between the fixed and joint
models grow under asymmetric costs. For example, in Fig-
ure 2(b) (equal costs), the two-layer model performance of
discriminative or VOI approaches were previously tied. In
Figure 2(c) (asymmetric costs), the joint approaches now out-
perform their fixed counterparts by up to 10% (discriminative
family) and 4.8% (VOI). Optimizing combined team perfor-
mance is especially helpful when it is necessary to prioritize
between potential errors.

Finally, we examine how joint training influences the ca-
pabilities of the ML system in relation to those of humans.
We start with the Galaxy Zoo task (two-layer models, 50 hid-
den units, cost = 0.1). Figure 3 shows the error rates of the



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

(2)0.06 (b) 0.4 (c) 05 (d) 04 —+— joint discrim 1
g g go 4 . ﬁ -4 fixed discrim 1
% % % ’ /:/ % joint discrim 2
D—E |§ 0.2 ,La 0 3/:/‘/ E 0.2 fixed discrim 2

—— joint voi
0.0 0.10 0.20 0209 0.10 0.20 00 0.10 000 7 fixed voi
Cost Cost Cost —+— Human only
a b 0.16 C d) 1 . 3 :

(u))O o (.,,) (U?U o) (V,)(J.lg + fl)fed VO‘I
g 8015 g0 ] 8 PP —+— joint voi
473 _.S E W E 0.16 ///

20.031. 80.14} S 099 '20 y

00 0.10 020 1307 0.10 0.20 00 0.10 0.20 00 0.10 0.20
Cost Cost Cost Cost

Figure 2: Total loss (classification error + cost of queries to human) as a function of the cost of a human query. Top row: All approaches.
Bottom row: Zooming in on decision-theoretic approaches. (a) Galaxy Zoo (b) CAMELYONI16 (c) CAMELYON16, doubling the cost of
false negatives. (d) CAMELYON 16, reducing hidden layers to 20 neurons (from 50). We omit the “human only” baseline for Galaxy Zoo
since it has over twice the loss of any other method. All differences between fixed and joint models are statistically significant for Galaxy
Zoo, and on the CAMELYONI6 task for the discriminative models (Student t-test, p < 10~%). Due to the small size of the CAMELYON16
dataset (127 samples), not all VOI comparisons are statistically significant, but the larger differences approach significance (e.g, p < 0.15 for
the point with largest difference in each of Figures 2(c-d)).
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Figure 3: Detailed analysis on Galaxy Zoo task. Left: Error rate of machine versus human models for each class. Right: Fraction of instances
in each class queried by the machine.

Mean tumor area> 1.77

fixed and joint VOI models for each of the five classes when
acting alone and when paired with people. Both the error
rates of the two approaches on classes 2 and 3, and the way
they query humans show differences, indicating that joint op-
timization changes how the ML system learns and makes de-

Human errors: 0.03
Fixed VOI: 0.07
Joint VOI: 0.07

cisions. The joint approach makes more queries to humans
for classes that are hard for the machine and less for class 1,
which is easy for the machine (note that class 1 accounts for
over 70% of instances). This behavior improves team perfor-
mance on classes 2 and 3 without diminishing performance
on class 1. For class 3, the error rate of the joint VOI model
is higher than its counterpart when acting alone, but lower
when combined with the human, a reduction in loss that can-
not be simply explained by the marginal increase in human
queries. This shows that the joint model can harness human
input more effectively by discovering input spaces within in-
dividual classes where the benefits of complementarity can be
realized, and also that joint training encourages the model to
manage tradeoffs in accuracy to leverage the ability to query
the human.

We observe similar behavior for CAMELYON16. Here,
we find clear structure in the human errors, uncovered by fit-

Length of largest tumor < 0.13

Human errors: 0.01
Fixed VOI: 0.09
Joint VOI: 0.13

Human errors: 0.57
Fixed VOI : 0.29
Joint VOI: 0.00

Figure 4: Error rates of humans and decision-theoretic approaches
for prominent feature regions of CAMELYON16.

ting the decision tree shown in Figure 4 (for the uniform-cost
task with two-layer models and 50 hidden units). Over 68%
of human errors are concentrated in a region containing just
10% of instances, identified using two features. For each leaf,
we show the error rate of the human, the fixed VOI model,
and the joint VOI model. The joint model prioritizes the re-
gion that contains most of the human errors, improving from
the 0.29 error rate of the fixed model to perfect accuracy. This
comes at the cost of increased errors in the far-left leaf; how-
ever, in this region the human is almost perfectly accurate.
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Overall, this tradeoff made by the joint optimization leads to
a 2% overall reduction in loss. In other words, the distribution
of errors incurred by the joint model shifts to complement the
strengths and weaknesses of the human.

6 Conclusion and Future Work

We studied how ML systems can be optimized to comple-
ment humans via the use of discriminative and decision-
theoretic modeling methodologies. We evaluated the pro-
posed approaches by performing experiments with two real-
world tasks and analyzed the problem characteristics that lead
to higher benefits from training focused on leveraging human-
machine complementarity. The methods presented are aimed
at optimizing the expected value of human-machine team-
work by responding to the shortcomings of ML systems, as
well as the capabilities and blind spots of humans. With this
framing, we explored the relationship between model capac-
ity, asymmetric costs and ML-human complementarity. We
see opportunities for studying additional aspects of human-
machine complementarity across different settings. Direc-
tions include optimization of team performance when interac-
tions between humans and machines extend beyond querying
people for answers, such as settings with more complex, in-
terleaved interactions and with different levels of human ini-
tiative and machine autonomy. We hope that the methods and
results presented will stimulate further pursuit of opportuni-
ties for leveraging the complementarity of people and ma-
chines.
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