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Abstract

Quality assurance is one of the most important
problems in crowdsourcing and human computa-
tion, and it has been extensively studied from var-
ious aspects. Typical approaches for quality as-
surance include unsupervised approaches such as
introducing task redundancy (i.e., asking the same
question to multiple workers and aggregating their
answers) and supervised approaches such as us-
ing worker performance on past tasks or inject-
ing qualification questions into tasks in order to
estimate the worker performance. In this paper,
we propose to utilize the worker performance as
a global constraint for inferring the true answers.
The existing semi-supervised approaches do not
consider such use of qualification questions. We
also propose to utilize the constraint as a regular-
izer combined with existing statistical aggregation
methods. The experiments using heterogeneous
multiple-choice questions demonstrate that the per-
formance constraint not only has the power to esti-
mate the ground truths when used by itself, but also
boosts the existing aggregation methods when used
as a regularizer.

1 Introduction

In spite of the recent significant advances in artificial intel-
ligence technologies, it is still difficult for machines to solve
open-world and knowledge-intensive problems. Human com-
putation [Law and Ahn, 2011] is a promising idea of com-
bining human intelligence and machine intelligence to solve
such “Al-hard” problems. On the other hand, the recent rise
of crowdsourcing allows one to recruit human labor that can
be scaled in an on-demand manner. This not only has such
a quantitative advantage but also has a qualitative advantage,
that is, the crowds often include experts who know correct so-
lutions to the problems at hand. Consequently, crowdsourc-
ing is often regarded as a favorable execution platform for hu-
man computation. However, despite such huge merits, there
are still several challenges in the effective use of crowdsourc-
ing. One of the typical problems is the quality control of
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Q: Which of the following drugs is most likely to cause
Cushing’s syndrome with long-term use?
(a) Heparin, (b) Insulin, (c) Theophylline, (d) Prednisolone

Figure 1: An example of heterogeneous multiple-choice questions.

crowd work. Because there is huge variability in the diligence
and ability of crowd workers, the quality of crowdsourcing re-
sults also has a huge variance. There are at least two typical
approaches to the quality control problem: one is the unsuper-
vised approach and the other is the supervised approach. The
unsupervised approach is based on the statistical inference of
latent true answers. One of the typical methods is majority
voting. More sophisticated statistical models that consider
worker ability and task difficulty have also been proposed
(e.g., Dawid and Skene (1979), Karger et al. (2011), Zhou
et al. (2012), Venanzi et al. (2014), Whitehill et al. (2009),
Welinder et al. (2010), Wauthier and Jordan (2011), Bachrach
et al. (2012), Ma et al. (2015), Zhou and He (2016), and Yin
et al. (2017)).

However, because most of the unsupervised aggregation
methods basically enhance the majority opinions (and the
workers who provided them), their performance is limited in
difficult cases where majority voting fails [Li et al., 2017].
Figure 1 shows a difficult multiple-choice question requiring
professional medical knowledge. Among the four candidate
answers, the correct one is ‘(d) Prednisolone’. However, ‘(b)
insulin’ is probably the most familiar medical term for non-
experts, and therefore, incapable workers are likely to choose
it, which sometimes results in the wrong answer winning in
the majority voting. This is the so-called availability heuristic
by which people tend to choose answers that are easier to re-
call [Baker et al., 2004]. A simple remedy for the difficult ag-
gregation problem is the supervised approach that estimates
worker performance more directly. It typically uses qualifica-
tion questions whose true answers are known to the requester,
but unknown to the workers. The estimated performance al-
lows us to give large importance weights to the expert work-
ers or screen out incapable workers. Instead of qualification
questions, the performance on past tasks the workers engaged
in is sometimes available.

In this paper, we propose a hybrid approach that we call
performance constraint that combines the supervised and un-
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Question 1 | Question 2 | Question 3
Worker 1 A D B
Worker 2 B C F
Worker 3 B D E

Figure 2: An example of three heterogeneous multiple-choice ques-
tions answered by three equal-performance workers. A, C, and
E are the correct answers of the three questions, respectively, and
the others are wrong answers. The simple majority voting and
performance-weighted voting fail to find the correct answers, while
the proposed method successfully finds the solutions by using the
worker performance information (i.e., 1/3 of the answers are cor-
rect) as a constraint of inference.

supervised approaches in a novel manner. Our approach does
not involve the typical usages of worker performance such
as the use as the seeds or local constraints for the answers
in semi-supervised aggregation methods. Instead, we solve a
constraint satisfaction problem to find answers that are con-
sistent with given worker performance. In other words, we
use worker performance as a global constraint for inferring
the true answer. Our theoretical analysis guarantees that we
can find true answers with high probability if we have a suf-
ficient number of workers even when used by itself.

We demonstrate the idea of our approach using an example.
Assume that we have three heterogeneous multiple-choice
questions and obtain the answers shown in Figure 2. The
ground truth answers to the three questions are A, C, and E,
respectively. Like the previous example (Figure 1), the major-
ity voting fails and results in wrong answers B, D, and F that
are more popular than the correct answers. What if we know
the exact performance of each worker? Even in this case,
since the performance of all the workers are equally 1/3, the
answers of all workers should be considered equally impor-
tant, and therefore the performance-weighted majority voting
still results in the wrong answers. However, if we change the
way in which we exploit the worker performance, it is pos-
sible to estimate the correct answers. Instead of using the
performance information as the reliability of the workers, we
use it as a constraint on the ratio of correct answers of each
worker. In the present example, assuming that the correct an-
swer to question 1 is B, workers 2 and 3 are correct on this
question, and worker 1 is not. Considering the constraint that
the performance of all workers is 1/3, workers 2 and 3 cannot
make any more correct answers, and therefore none of C, D,
E, F can be correct answers for the other questions; this is a
contradiction for worker 1. Similarly, we can exclude D and
F from the answers of questions 2 and 3, respectively, and ob-
tain the correct answers, A, C, and E. Note that if we set the
ground truth answers as B, D, and F, although majority vot-
ing succeeds; our method can also give the correct answers;
our method has higher capacity than majority voting.

In practice, the constraints cannot always uniquely iden-
tify the correct answers, or the worker performance is known
only approximately. We relax the above constraint satisfac-
tion problem as an optimization problem to minimize the dis-
crepancy between the performance on the estimated answers
and the performance constraint. As well as standard diver-

gence measures such as the Euclidean distance and KL diver-
gence, we also propose a ranking-based relaxation.

In addition to using the performance information as a con-
straint for aggregation, we also propose to use it as a regular-
izer for existing the statistical aggregation methods, which we
call performance regularization. Because the performance
constraint itself is independent of the underlying probabilistic
generative models of worker answers, we use it in combina-
tion with such models to boost their performance.

The experimental results show the proposed method is
quite powerful when we know the exact worker performance.
The aggregation accuracy degrades when the performance
estimates are not accurate, but the ranking-based constraint
relaxation alleviates the weakness. In addition, when com-
bined with existing statistical aggregation methods, the per-
formance regularizer consistently boosts the performance.

2 Problem Setting

We address a problem of aggregating answers provided by
crowd workers for rather difficult questions. In contrast to
the standard unsupervised aggregation setting, we addition-
ally suppose that we know the performance of each worker.

Assume that we have M questions, each of which is a het-
erogeneous /C-choice question that has its own /C potential
answers (e.g., the medical knowledge question in Figure 2).
For simplicity, we assume that /C is the same for all questions,
but this is not a requirement. We ask the questions to " work-
ers, and obtain a set of responses {r;;}, ;, where ;; is the
response of worker ¢ to question j. For notational simplicity,
we assume that all workers answer all questions, but this as-
sumption is not necessarily required. Here, r;; is represented
as a KC-dimensional one-hot vector only one of whose ele-
ments is 1, that is, 7;; = (0,...,0,1,0,...,0)" € {0,1}*.
The goal is to estimate the ground truths {g;};, where g,
is the estimated ground truth for question j and denoted
by a K-dimensional one-hot encoded binary vector, that is,
g; = (0,...,0,1,0,... ,0)T € {0,1}*. An important as-
sumption we make in this paper is that we somehow know
the performance p; of worker ¢; in other words, p; is the ratio
of correct answers by worker .

In summary, the aggregation problem with worker perfor-
mance takes the input as {r;; }; ;, the set of worker responses,
and {p; };, the performance levels of the workers, and the out-
puts are the estimated ground truths {g,},.

One might be afraid that it is a too strong assumption that
we know the worker performance; however, it is often the
case that we can know (or at least guess) the worker perfor-
mance based on the past tasks the worker has accomplished
or the answers to qualification questions.

3 Performance Constraint

3.1 Worker Performance as a Constraint

In crowdsourcing, we often use qualification questions to test
if the workers have sufficient capacity to execute the given
tasks. Unlike that in the case of the main tasks, the requester
knows the true answers for the qualification questions. They
are given to workers before they start the main tasks, or are
just mixed in with the main tasks in an indistinguishable way.
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The requester can evaluate the worker ability using the qual-
ification questions. The qualification questions can also be
used in statistical aggregation methods in a semi-supervised
manner. Most of the existing aggregation models are unsu-
pervised and usually estimate the true answers as latent vari-
ables; however, they can easily incorporate the qualification
questions by fixing their latent answers to their true answers.

In this paper, we consider a totally different way to ex-
ploit the results of the qualifications questions, that is, to use
the performance on the qualification questions as a global
constraint for aggregation. More precisely, suppose that the
performance (i.e., accuracy) of worker ¢ on the qualification
questions is p;, we force the performance (i.e., the ratio of
correct answers) on the other (main) questions also to be p;.
Our idea is represented as a constraint satisfaction problem to
find {g; }; that satisfies the constraint

1
2L =95) =pi, (1)
J

where I is the indicator function. Note that I(r;; = g;) can
also be written as I(r;; = g;) = r;jgj.

3.2 Theoretical Justification

We gave an intuitive explanation of how the performance con-
straint helps aggregation, but it is still not theoretically clear if
the performance constraint is generally capable of finding the
ground truth answers. The following theorem guarantees that
we can obtain the ground truth answers with high probability
if we have a sufficient number of workers. For simplicity, we
consider a simple case where K = 2 and each worker 7 gives
the ground truth answers for p; M questions independently
and uniformly at random (i.e., (p.:\;(\/l) possibilities occur with
the same probability). We assume p; # 1 / 2 for some 1, be-

cause otherwise the all-wrong answers (g]) (i.e., g] # 95
for all question j) always satisfy the constraint (1).

Theorem 1. Ifp; # 1/2 and N > M In M, then the ground
truth answers are uniquely determined by the performance
constraint (1) with high probability.

Proof. Without loss of generality, we assume that p; & {0,1}
for all ¢, because if p; € {0, 1}, the ground truth answers are
determined by the answers of worker .

For s = 1,..., N, consider an integer linear system:

IP(s): dojar = (2p — 1M (Vie {1,...,s}),
i €{-1,1} (Vj e {1,...,M}),

where a;; = +1 (g;:rij)’
Y =1 (gj #rij)-

Then, (1) has a unique solution if and only if IP(A) has a
unique solution. Indeed, if (g;); is a solution of (1), then

-1 (9; # 9;)
is a solution of IP(\), and vice versa. In particular, the all-

one vector of length M (which corresponds to the ground
truth answers) is always a solution of IP(s) for any s.

If rank(a{ ,...,a]) = M (i.e., full rank), then the so-
lution of IP(s) is uniquely determined. Suppose that the
solution of IP(s) is not uniquely determined and let p =
rank(a;,...7a;r) (< M). Then, for any s’ > s, we
have a/, ¢ span{a],...,al} with probability at least (i)
M—-p—-1/Mif p < M —1, and (i) 1/ M if p =
M — 1 (see supplementary material for proof). Note that
al, & span{a{,...,al} implies rank(a,...,al) > p.
Hence, by the standard analysis of the coupon collector’s
problem, IP(N) has a uniquely solution with high probability
(see, e.g., Motwani and Raghavan [1995]). O

A detailed proof can be found in the appendix.

4 Relaxation and Performance Regularization

4.1 Distance-based Constraint Relaxation

In practice, there might be neither an exact solution nor a
unique solution satisfying Eq. (1), so we relax the ground
truth vector; let g; € [0,1]* be a K-dimensional vector in
a simplex such that g; > 0 and |g;|1 = 1. We obtain a re-
laxed optimization problem as

{g;}i = arg mmZd M Zr”gj, i 2)

{95}; i

subjectto g; > 0 and \ 9; |1 = 1, where d is a distance function
between two probability values. The choice of d is arbitrary;
for example, we can choose the Euclidean distance

2

1 T 1 T
ﬂzrijgja bi ﬂzrijgj —Dpi|
J J

or the KL-divergence, which also seems a reasonable choice:

1 1
o g b | = —pilog | 5> 10
j J

—(1—pi)log |1 - — Zr”gj + const.

4.2 Ranking-based Constraint Relaxation

Obviously, the worker accuracy is not exactly the same be-
tween the qualification questions and the main questions,
and therefore, there is a risk that the performance constraint
becomes harmful when the performance estimate is wrong.
Our solution is that, instead of using the constraint based on
the distance, we relax the constraint by the relative order of
worker accuracies. More precisely, if a worker ¢; has higher
accuracy than that of another worker 72 on the qualification
questions, we impose the constraint that ¢; has higher accu-
racy than 75 on the main questions. We implement this idea
as another relaxed objective function instead of Eq. (2) as

{g;}j = arg min Z 1(iy > i2)log (1 + e*T"](il’i2)> ,

9isi  iq,i0

J(i1,42) =

1
M Z Ti1595 — M Zriszgj' 3)
J
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The constant 7 > 0 controls how strict the constraint is.

All of the above choices are convex functions; hence, the
optimal solutions are found by the simple gradient-based up-
date, followed by the projection to the constraints g; > 0 and
lgjl1 = 1 (normalizing g; so as to be a probability vector).
The computation cost of the rank-based constraint is higher
than the distance-based constraints, but it does not give a sig-
nificant impact on the scalability of the entire optimization.

4.3 Performance Regularization

The performance constraint itself is model agnostic; that is,
it works independently of the underlying probabilistic gen-
erative models of worker answers. Now, we combine the
constraint with the existing statistical methods; namely, we
include the performance constraint as a regularization term.

For example, let us consider a simple generative model.
Assume that the probability of worker ¢ giving a correct an-
swer is a,; and that when a worker fails to give a correct an-
swer, the worker chooses a wrong answer uniformly at ran-
dom, namely,

rl g, 1—a; liri—;gj
P({rij}ig 1 {95}) = Hai ! — .
i -1
The log-likelihood of the worker answers is given as
L({rij}ij | {95}5)
1-— a;
= Z (rggj loga; + (1 — riTjgj) log (lC — 1)) . @
4]

In practice, we apply the following re-parameterization to en-
sure the positiveness of a;:

B 1
Cl4eai’

By including the distance d in (2) as a regularization term,
the overall objective function is given as

F({ai}i, {9;};)
- Zz: (rggj log a; + (1 —59;) log (}C_—alz)>

®

Q;

+AY d ﬁzrfjgj,pi ; (©6)
i J

where A > 0 is the regularization constant. Instead, we can
use the ranking constraint term in Eq. (3) as the regularization
term. We call this performance regularization.

Performance regularization is also applicable to more so-
phisticated generative models. For example, if we use
GLAD [Whitehill et al., 2009] as the underlying model, we
use the following re-parameterization instead of (5): a; =
1/ (1 + e*‘)‘idf) , where d; denotes the easiness of task j.
With the help of proper underlying models, the performance
regularization method can incorporate both worker perfor-
mance constraint and other types of useful factors for truth
estimation such as task difficulty. The latent variables in the
performance regularization term are only the estimated truth
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Figure 3: How robust is the performance constraint when we do
not know the true accuracy? The distance-based performance con-
straints (PC(EUC) and PC(KL)) are moderately tolerant of a small
amount of noise; however, the performance degrades fast when the
noise level increases, in contrast with the weighted majority voting
(WMYV). The ranking-based constraint (PC(RANK)) is relatively
robust to such error.

g;. Therefore, it is easy to include the performance regular-
ization term in the objective function of an underlying model
to iteratively estimate the truths and other potential factors
such as worker expertise on each question. One example is to
use the MINMAX [Zhou et al., 2012] approach as the under-
lying model. Note that, if the performance of only a subset of
workers is known, we can use the performance constraint or
regularization only for such workers.

S Experiments

We investigate the following issues in the experiments: (1).
How powerful is the performance constraint (PC) alone? (2).
How robust is the performance constraint (PC) when we do
not know the true worker performance? (3). Does the perfor-
mance regularization (PR) improve aggregation results?

We use the six real datasets collected by Li et al. (2017),
which consist of multiple-heterogeneous-answer questions on
Chinese language, English language, Information technology
(IT), Medicine, Pokémon, and Science. They are relatively
difficult questions in which the simple majority voting per-
forms poorly (See the ‘MV’ column in Table 1.)

5.1 How Powerful is PC Alone?

The first question we investigate is whether the performance
constraint is informative in guessing the ground truths. In
this experiment, we assume that we somehow know the true
worker accuracy. We test the performance constraint using
two different divergence measures, i.e., the Euclid distance
and the KL divergence, and the ranking-based constraint. We
compare the proposed method with some baselines that are
applicable to heterogeneous multiple-choice questions: (i)
the simple majority voting (MV), (ii) the weighted majority
voting (WMV) [Kuncheva and Rodriguez, 2014] which is the
solution that maximizes Eq. (4) with respect to {g;}; (with
a; = p;), and (iii) several existing unsupervised aggregation
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Datasets PC(EUC) | PC(KL) | PC(RANK) | WMV || MV | D&S | GLAD | DARE | MINMAX
ENGLISH 1.000 1.000 1.000 0.733 || 0.467 | 0.400 | 0.533 | 0.600 0.567
CHINESE 1.000 1.000 0.917 0.708 || 0.625 | 0.542 | 0.625 | 0.625 0.667

IT 1.000 1.000 0.920 0.840 || 0.760 | 0.680 | 0.8 0.800 0.840
MEDICINE 1.000 1.000 0.972 0.806 || 0.667 | 0.6904 | 0.806 | 0.861 0.972
POKEMON 1.000 1.000 1.000 1.000 || 0.650 | 0.600 | 1.000 | 1.000 0.950

SCIENCE 1.000 1.000 0.900 0.750 || 0.550 | 0.550 | 0.650 | 0.600 0.650

Table 1: How powerful is the performance constraint alone? Quite powerful. The proposed methods (PC(EUC) and PC(KL)) achieve
perfect aggregations, while the ranking-based constraint (PC(RANK)) is suboptimal. They outperform another way of using the worker
performance (WMYV) as well as various standard unsupervised methods (MV, D&S, GLAD, DARE, MINMAX).

PC WMV GLAD MINMAX

Dataset MV (alone) +PR +PR +PR
EUC | KL |[RANK EUC | KL |[RANK EUC | KL |RANK EUC | KL |RANK
ENGLISH {/0.461 [[0.483{0.439| 0.535 {[0.500{0.600|0.617 | 0.591 [[0.509]0.578 0.570 | 0.587 | 0.50410.626 | 0.570 | 0.596
CHINESE [/ 0.622 [ 0.628 [ 0.594 | 0.728 |[0.633]0.661 [ 0.683 | 0.644 |/ 0.644 | 0.667|0.650| 0.711 [[{0.633]0.700|0.661 | 0.772
1T 0.768 || 0.695 [ 0.690 | 0.779 {/0.7530.821 [0.821 | 0.811 [/ 0.768 [ 0.800 [ 0.800 | 0.832 |/ 0.816[0.816[0.779 | 0.826
MEDICINE || 0.667 || 0.782 1 0.782 | 0.874 {/0.770|0.796 [0.796 | 0.852 [/ 0.811 [0.830[0.852| 0.967 |/ 0.915[0.952{0.922| 0.956
POKEMON || 0.647 || 0.820 [0.760 | 0.987 || 1.000]1.000 |1.000 | 1.000 |/ 1.000 |1.000|0.920 | 1.000 |[0.907 |0.960]0.893 | 1.000
SCIENCE |[0.547 {[0.540|0.527 | 0.627 ][ 0.567|0.640|0.653 | 0.620 || 0.640|0.647 |0.553 | 0.667 || 0.633 |0.600 |0.533 | 0.653

Table 2: Does the performance regularization improve aggregation results? The performance regularization (‘+PR’) consistently boosts the
accuracy of its unsupervised analogue, especially with the ranking constraint.

methods (D&S [Dawid and Skene, 1979], GLAD [White-
hill et al., 2009], DARE [Bachrach et al., 2012], and the
min-max entropy method (MINMAX) [Zhou et al., 2012]).
The weighted majority voting method corresponds to the op-
timal and standard approach when we know the worker per-
formance. We use the entire datasets in the experiments.
Table 1 shows the accuracy achieved by the perfor-
mance constraint with two different distances (PC(EUC)
and PC(KL)), the one with the ranking-based constraint
(PC(RANK)), as well as the WMV and other existing un-
supervised aggregation methods. Surprisingly, the distance-
based constraint achieves almost perfect aggregation, in
contrast with the inferior performance achieved by WMV,
which is the standard usage of the performance informa-
tion. The ranking-based constraint shows sub-optimal perfor-
mance since it cannot exploit the full performance informa-
tion, but it still significantly outperforms WMYV. This shows
that our method exploits the performance information very
differently from the standard approaches. It is noteworthy
that the proposed method even outperforms DARE, one of
the most powerful unsupervised Bayesian aggregation meth-
ods, and MINMAX, a powerful minimax entropy method.

5.2 How Robust is PC When We Do Not Know
True Worker Performance?

As discussed earlier, it is just an ideal case that we know the
accurate worker performance; such assumption does not nec-
essarily hold in practice, and hence all we can do is only to
“guess” the worker performance from past work or qualifica-
tion questions. In order to test the robustness to inaccurate
estimates of worker performance, we add noise with the bias
to the estimated worker accuracy parameters {p;}; and test
the robustness against the noise. We add a noise generated
by a Gaussian distribution N\ (1, %) with bias 7 of estimated
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worker performance to true worker performance as the mean
and fit into [0, 1], and we use it as the performance estimate.
Figure 3 shows the results when we change 7 €
{-0.1,0.1} and o € {0.05,0.1}. We compare the per-
formance constraint with the weighted majority voting (4).
WMV is not quite sensitive to the inaccurate estimation of
worker performance, but always not quite good. The per-
formance of the proposed methods drops as the noise level
increases. The general tendency of the performance degrade
of each PC variation looks similar among different datasets.
When the noise level is not very high (¢ = 0.05), in most of
the cases, the proposed methods (PC) keep their performance
relatively high. Among the three variations, the ranking con-
straint (PC(RANK)) fights relatively better against the noise,
while the other two (PC(EUC) and PC(KL)) suffer from the
increasing noise. From these observations, the robustness to
high-level noise in the performance estimate is one of the
weaknesses of the proposed method; but the ranking-based
constraint relaxation alleviates this problem for practical use.

5.3 Does PR Improve Aggregations?

Finally, we test our approach in a more realistic scenario,
where we do not know the true worker performance and use
several qualification questions to estimate it. Our primary
interest here is to find out if the performance regularization
improves the aggregation accuracy when combined with or-
dinary statistical aggregation methods. To test the hypothe-
sis, we combine the proposed method (‘PR’) with the WMV,
GLAD and MINMAX. In this experiment, a subset (25%) of
the questions in each dataset is considered as a set of qualifi-
cation questions; we estimate the worker performance using
their ground truths. The others are used as a test set. We
iterate the split and test ten times, and obtain the average ag-
gregation accuracy. For tuning the hyper-parameter A in the
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performance regularization, we utilize the idea of the KL cost
annealing method [Bowman et al., 2016] to avoid running the
optimization many times for the candidate hyper-parameters.
We first gradually and linearly increase A from zero during
optimization until the perplexity on the test subset reaches
zero. After that, we fix A and optimize until convergence. The
perplexity is defined as P({g}};x) = >_; >, —9} log g},
where ¢¥ is the estimated value of g for question j and its
k-th candidate answer. It only needs to run the optimization
once, which speeds up the hyper-parameter tuning consider-
ably. Note that we do not use the ground truth labels at all.

Table 2 summarizes the results. In contrast with the previ-
ous where we knew the exact performance of the workers, the
overall accuracy of the performance constraint (‘PC(alone)’)
degrades as implied by Figure 3. However, it is still compa-
rable with WMV, the direct competitor, as well as the other
methods such as MV, GLAD and MINMAX. Among the
three choices of the performance constraint, the one with the
ranking-based constraint performs the best, which is also con-
sistent with the results of the previous experiment. When
combined with the unsupervised aggregation methods, i.e.,
WMV, GLAD and MINMAX, the performance regulariza-
tion (“+PR’) consistently boosts the accuracy of its unsuper-
vised analogue, especially with the ranking constraint.

The performance regularization exploits the qualification
questions in a very different way than the semi-supervised
methods; it does not rely on detailed worker labels for the
qualification questions, while most of the semi-supervised ap-
proaches assume they are available. In practice, it is some-
times difficult to obtain the detailed worker labels in past
tasks, for example, due to privacy reasons, even in the cases
where we know the overall past performance of a worker.

6 Related Work

Majority voting is probably the simplest answer aggregation
method. Since it assigns equal weights to all workers, the ag-
gregation performance is not stable due to the wide variety
of crowd workers in their ability and diligence; therefore re-
searchers have studied more sophisticated statistical aggrega-
tion methods that allow diverse worker abilities and other un-
certainties. Some approaches jointly estimate worker ability
and true answers using the expectation-maximization (EM)
algorithm [Dawid and Skene, 19791, bipartite models [Karger
et al., 2011], the maximum entropy principle [Zhou et al.,
2012], and Bayesian inference [Liu et al., 2012; Venanzi et
al., 2014]. More sophisticated models that incorporate task
difficulty [Whitehill er al., 2009], worker-task affinity [Welin-
der er al., 2010], and their Bayesian treatments [Wauthier
and Jordan, 2011; Bachrach et al., 2012] have also been pro-
posed. Unsupervised quality control is a quite active area,
so we do not exhaustively enumerate all the work, but just to
name a few, Zhou and He (2016), Yin et al. (2017), Kawase et
al. (2019) are such examples. For truth discovery on the Web,
Zheng et al. (2017) reviewed and compared various existing
aggregation methods. Some of those methods are applicable
to the heterogeneous multiple-choice questions.

Another practical and typical way of crowdsourcing qual-
ity control is to perform qualification tests [Downs er al.,
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2010; Ipeirotis er al., 2010; Mortensen et al., 2013]. A quali-
fication test is a set of questions whose ground truth answers
are known only to the requester, and are performed before
proceeding to the main tasks to appraise the workers or to
filter out incapable workers. Instead of such pre-screening,
qualification questions are also injected into the main tasks to
perform post-screening. If the workers were engaged in pre-
vious tasks, their results and evaluations by past requesters
are also considered as qualification results. Besides directly
using the qualification results for pre- or post-worker screen-
ing, they are also used in semi-supervised aggregation as the
seeds or local constraints for latent ground truths. Ipeiro-
tis et al. (2010) implemented a variant of D&S [Dawid and
Skene, 1979] by using injected qualification questions. Qual-
ification tests are also used for targeting the expert work-
ers [Downs et al., 2010]; however, it is not always guaran-
teed that well-designed qualification tests are available for re-
questers. Mortensen et al. (2013) utilized crowdsourcing for
constructing biomedical ontologies and selected knowledge-
able workers using qualification tests. Unlike the previous us-
ages of qualification questions, we use them as a global con-
straint or a regularizer to infer the ground truths. Recently,
although in a different context and with a different motiva-
tion, Whitehill (2019) discussed the possibility of guessing
the ground truth labels from AUC values of machine learning
classifiers, whose settings are somewhat similar to ours.
Most semi/un-supervised approaches strengthen the opin-
ions of the majority workers, and therefore do not perform
well in cases where the number of capable workers (i.e., ex-
perts) is smaller than that of incapable workers. There are
a few studies addressing such few-expert scenarios. Li et
al. (2014) used worker profiles such as demographic infor-
mation to predict their abilities. Ma et al. (2015) focused on
task information such as the words appearing in task descrip-
tions, and combined a topic model and a worker ability model
to characterize worker expertise. Kazai et al. (2012) used de-
mographics information and personality traits. Ipeirotis and
Gabrilovich (2014) used sponsored search associated with
medical terms to guide medical experts to medical question
tasks. Prelec et al. (2017) used the response for an additional
question asking the answer distribution of other workers. Dif-
ferent from those approaches exploiting auxiliary informa-
tion, Li et al. (2017) proposed a method not relying on side
information by bundling questions into “hyper questions”.

7 Conclusion

We addressed the crowd aggregation problem when we
know the worker performance. Unlike the previous semi-
supervised approaches, we use worker performance as the
constraint to infer ground truth labels. We also proposed per-
formance regularization, which can be combined with ordi-
nary aggregation methods. The experiments showed that the
proposed method is quite powerful when we know the ex-
act worker performance. The aggregation accuracy degrades
when the performance estimates are not accurate, but the
ranking-based constraint alleviates the weakness. When com-
bined with statistical aggregation methods, the performance
regularizer boosted the aggregation performance.
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PC WMV GLAD MINMAX

Dataset MV (alone) +PR +PR +PR
EUC | KL [RANK EUC | KL [RANK EUC | KL [RANK EUC | KL [RANK
ENGLISH [ 0.400 [[ 0.439{0.391 | 0.439 |[0.4350.535[0.500| 0.539 |{0.404[0.522(0.478 | 0.522 {0.361|0.457{0.417| 0.457
CHINESE [/ 0.583 |[0.561 [ 0.533 | 0.606 |/ 0.606|0.656|0.578 | 0.633 || 0.600 | 0.644 |0.583 | 0.672 || 0.600|0.567[0.517| 0.611
IT 0.753{/0.6420.642 | 0.637 {/0.768 |0.774 {0.779 | 0.763 |/ 0.768 | 0.763 [ 0.705 | 0.800 |{ 0.721{0.721{0.700 | 0.674
MEDICINE | 0.715 [ 0.752]0.730 | 0.759 {[0.763]0.811|0.830| 0.800 [|0.807|0.822|0.811 | 0.859 || 0.774|0.841|0.815| 0.819
POKEMON (| 0.533|[0.720 | 0.673 | 0.847 |[0.753]0.927 |0.740| 0.840 |{0.867|0.933|0.713 | 0.947 |/ 0.653|0.767|0.707 | 0.867
SCIENCE |{[0.513 [ 0.500 | 0.460 | 0.533 {[0.540]0.5930.433 | 0.547 {|0.5130.5270.513 | 0.613 || 0.480|0.520 [0.493 | 0.527

Table 3: The results of the missing value case for the experiments in Table 2. 50% of the answers to each test question are removed. The

performance regularization still improves the performance.
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A Proofs

Here, we provide omitted proofs from the proof of Theo-
rem 1.

Claim 1. Forany ' > sand p < M — 1, we have a;r, ¢
span{aq ,...,a] } with probability at least (M —p—1)/ M.

Proof. We regard as a vector of random variables but
ai,...,as are fixed. We define £ as the event that a;!—/ &
span{a;,...,al}.

Letb],...,b) be abasis of span{a],...,a] }, and let .J
be the index set of the rows that form a basis of (b ,...,b) ).
Note that |J| = p. In addition, we write A; for the set of
vectors in {1, —1}7 with exactly ¢ ones (i.e., 4; = {a €
{1,-1}7 | > jes@j =2t — p}) and T for the set of ¢ such
that (as ;) ;je.s contains exactly ¢ ones and (a;);¢. contains
both one and minus one for some realization of ay (i.e., T :=
{t | max{0, p— M(1—py)+1} <t < min{p, Mps —1}}
since a¢ contains exactly Mp, ones). Then, for any o € A,
witht € T, we have

M—-p—-1
P(& | (asj)jes = a) > “M—p
since a € span{a] ,...,al} with (a;);c; = « is uniquely
determined but a, with (ay;)jcs = « has at least M — p
possibilities and they occur with the same probability. More-
over, we have

(W) + ()

Z P((agj)jes =a) > 1—

a€lUier At (Mj\:lp)
M—1
(pr) M

since 0 < Mp, < M. Hence, we have

P(E)> Y P(E|(ay))jes = )P((ag))jes = @)

a€lU,cr At
>M—p—1../\/l—p:/\/l—p—1. 0
- M-p M M

Claim 2. Forany s' > sand p = M — 1, we have a, ¢
span{a] ,...,al } with probability at least 1/ M.

Proof. We regard ag a vector of random variables but
ai,...,as are fixed. Let £ = Mp, and let T be a solution of
IP(s) that is not the all-one vector nor the all-minus-one vec-
tor. Such an £ must exist since IP(s) has multiple solutions
and the all-minus-one vector is not feasible by p; # 1/2. It
is sufficient to prove that >, as;%; = (2¢ — M) happens
with probability at most (M — 1)/ M. Let t be the number
of minus ones in Z. Since 7 is not the all-one vector nor the
all-minus-one-vector, we have 1 < ¢t < M — 1.

t M-t
The probability that 3 asjz; = (2¢ — M) is %
2
since it occurs when (ayj, ;) = (—1, —1) holds for exactly
t/2 choices of j. This probability is equal to the probability
that exactly ¢/2 balls are red out of ¢ balls drawn one after
another without replacement from a bag that containing ¢ red
balls and M — ¢ black balls. If £ > M — t/2, the probability
is clearly zero. If £ = M — /2, the probability is at most
t (M-t t (M-t t
(y2) () () () o)

G GWhe) GR)
(t;2) Ct/241 M -1
AGHIET R

since t < M — 1. For the case when ¢ < M — t/2, consider
the situation that we have drawn ¢ — 1 balls and about to draw
the final one ball from the bag. We have two cases to draw
t/2 red balls: (i) the number of drawn red balls is ¢/2 — 1
and the final ball is red or (ii) the number of drawn red balls
is /2 and the final ball is black. Thus the event occurs with
probability at most

t/2+1 t/2 M-—1
1-— <
maX{M—eH’ M—€+1} M
since { < M —t/2andt/2 > 1. O

B Additional Experiments

In practice, not all workers answer all questions. We ran-
domly remove 50% of the answers of each test question for
each trial in the experiment of Table 2. Table 3 shows that
the performance regularization still contributes to the perfor-
mance gain.
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