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Abstract
Existing schemes cannot assign complex tasks to
the most suitable workers because they either can-
not measure skills quantitatively or do not consider
assigning tasks to workers who are the most suit-
able but unavailable temporarily. In this paper, we
investigate how to realize optimal complex task as-
signment. Firstly, we formulate the multiple-skill-
based task assignment problem in service crowd-
sourcing. We then propose a weighted multi-skill
tree (WMST) to model multiple skills and their
correlations. Next, we propose the acceptance ex-
pectation to uniformly measure the probabilities
that different categories of workers will accep-
t and complete specified tasks. Finally, we propose
an acceptance-expectation-based task assignmen-
t (AE-TA) algorithm, which reserves tasks for the
most suitable workers even unavailable temporar-
ily. Comprehensive experimental results demon-
strate that our WMST model and AE-TA algorithm
significantly outperform related proposals.

1 Introduction
Service crowdsourcing provides a convenient platform to col-
laboratively perform complex tasks (i.e., macrotasks) [Haas
et al., 2015], such as literature translation, document editing
and product design, besides traditional simple tasks like la-
beling [Liu et al., 2018]. These macrotasks usually require
multiple skills [Alon et al., 2015] and have specified dead-
lines. Specialized translation, for example, requires not only
ability in at least two languages but also domain knowledge.

The most desirable goal of macrotask assignment is to “as-
sign tasks to the most suitable workers” [Zheng et al., 2015;
Qiu et al., 2016]. However, it is very challenging in multi-
worker and multi-task service crowdsourcing. Essentially,
there are two key challenges. The first is how to precisely
measure multiple skills of workers because different workers
usually possess different skills and diverse degree of profi-
ciency in the same skill [Xu et al., 2018]. The second is how
to assign tasks to the most suitable workers in the case that
states of workers are uncertain, i.e., some of more suitable
workers may be temporarily unavailable at the time of task
assignment. In realistic scenarios, although the most suitable

workers often are not available during task assignment, they
potentially can complete tasks before tasks’ deadlines.

Some researchers have proposed skill models [Roy et al.,
2015; Salek et al., 2013]. However, these models have not
solved the above first challenge because they cannot reflec-
t correlations among multiple skills. The existing hierarchi-
cal skill models also cannot quantitatively capture multi-
ple skills. On the other hand, few existing proposals con-
sidered workers who are more suitable for specified tasks
but unavailable currently. In [Boutsis and Kalogeraki, 2013;
Boutsis and Kalogeraki, 2014], for example, the authors only
estimated whether the currently available workers can com-
plete tasks. In summary, from either precise skill estimation
or optimal task assignment point of view, existing work can-
not achieve to “assign tasks to the most suitable workers”.

In this paper, we propose a multi-skill-based assignmen-
t approach for complex macrotasks in service crowdsourc-
ing, which addresses the above both challenges simultaneous-
ly. Firstly, we propose a Weighted Multi-Skill Tree (WMST)
to model multiple skills of workers and correlations among
these skills, and define the match quality to capture how well
works fit for tasks quantitatively. To assign tasks to the most
suitable workers, we divide workers into three categories:
available, busy and offline workers, and then quantitatively
estimate their acceptance-and-completion expectation. Based
on this expectation, we propose an adaptive algorithm that
dynamically decides how many tasks should be reserved for
workers more suitable but temporarily unavailable.

We focus on real macrotask-oriented service crowdsourc-
ing systems with the following features. Firstly, these macro-
tasks, e.g., translating a book on Java programming, have pro-
fessional skill requirements and should be finished before giv-
en deadlines. Secondly, workers have professional skills and
their workloads are relatively stable even predictable. Obvi-
ously, senior software engineers can provide higher transla-
tion quality than taxi drivers. So, if workers with more related
skills but unavailable temporarily have enough time to com-
plete tasks, it is more desirable to assign such tasks to them.
Our main contributions can be summarized as follows.
• We formally define the MS-TA (Multi-Skill-based Task

Assignment) problem in service crowdsourcing systems,
with the objective of maximizing global task assignment
quality. We then prove that this problem is NP-hard.
• We propose the multi-skill model WMST (Weighted

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1563



Multi-Skill Tree) that can quantitatively capture multiple
skills and correlations among them.
• We propose a new acceptance expectation model and de-

sign an Acceptance-Expectation-based Task Assignmen-
t (AE-TA) algorithm. Experimental results demonstrate
the high performance of our MS-TA and AE-TA.

2 Related Work
2.1 Online Task Assignment
Push-based task assignment currently is predominant meth-
ods. In [Ho and Vaughan, 2012], the authors proposed a two-
phase exploitation assignment algorithm. [Ho et al., 2013]
proposed a near-optimal algorithm. In [Goel, Nikzad, and S-
ingla, 2014], the authors modeled the task-to-worker assign-
ment as a bipartite graph matching problem and proposed a
mechanism for maximizing the utility. In [Assadi, Hsu, and
Jabbari, 2015], the authors extended the problem by consider-
ing the online aspect. To increase the efficiency of task com-
pletion, [Yuen, King, and Leung, 2011] proposed a match-
ing mechanism that keeps workers working over the long run.
[Chandra et al., 2015] proposed an interaction model in which
workers are strategic about service cost.

2.2 Knowledge-Intensive Skill Models
Most expert crowdsourcing platforms are both time-sensitive
and skill-related [Tang, 2019]. [Desmarais and Baker, 2012]
proposed a review of techniques for learner skill assessmen-
t. Few work on crowdsourcing has discussed workers’ skills
in details. Most of them used keyword vectors as a simple
representation of the skills [Fan et al., 2015; Cheng et al.,
2016]. As an alternative, [El Maarry et al., 2014] proposed an
ontology-based skill model. [Mavridis et al., 2016] proposed
a skill model with a hierarchical structure, but this model can
only cope with tasks related to single skill and cannot reflect
proficiency degree.

3 System Model and Problem Statement
3.1 System Model
Let the service crowdsourcing system run in a set of equal
timeslots Q = {qk|1≤k≤NQ}. There are a set of workers
W = {wi|1≤i≤NW } and a set of tasks T = {tj |1≤j≤NT },
where NW and NT are the number of workers and tasks en-
tering the system during NQ timeslots, respectively.

Each worker wi∈W possesses a set of attributes
{Swi

,Vwi
}, where Swi

is the set of skills of wi and

Vwi =<v
(q1)
wi , ...,v

(qNQ
)

wi > is a vector of states. v(qk)wi is the
state of wi in qk such that v(qk)wi =1 if wi is online in qk;
otherwise, v(qk)wi =0. A worker is allowed to accept multiple
tasks simultaneously. We use L(qk)

wi to represent the list of
current tasks that wi has accepted but has not yet complet-
ed in qk. Each task tj∈T is associated with an attribute set
{btj , dtj , gtj , Rtj}, where btj and dtj respectively are the s-
tarting time and deadline of tj with q1≤btj<dtj≤qNQ

; gtj is
the number of workers required for tj ; and Rtj denotes the
set of skills required for tj . Note that gtj and Rtj are prede-
termined by task requesters. e(wi, tj) refers to the execution
time of tj with wi. Finally, ||X|| denotes the size of a set X .

3.2 Problem Formulation
Let a(qk)wi,tj denote a match that tj is assigned to wi in

qk. We propose a general model match quality m(a
(qk)
wi,tj )

to measure the degree of task matching, which will be
discussed in the next section. The global assignmen-
t A={a(qk)wi,tj |∀qk∈Q, ∀wi∈W, ∀tj∈T} specifies the set of
matches in all timeslots [Tang et al., 2019]. Accordingly, the
global assignment quality Ψ(A) can be defined as

Ψ(A) =
∑

∀a(qk)
wi,tj

∈A

m(a
(qk)
wi,tj ) (1)

We now formulate the MS-TA problem as follows
max Ψ(A) (2)

s.t.
v(qk)wi

= 1, ∀a(qk)wi,tj ∈ A (3)

(a
(qk1)
wi,tj ∈ A) ∧ (a

(qk2)
wi,tj ∈ A) = false, qk1 6= qk2 (4)

‖{a(q)w,t ∈ A|t = tj , w ∈W, q ∈ Q}‖ ≤ ntj , ∀tj ∈ T (5)

qk + e(wi, tj) ≤ dtj , ∀a
(qk)
wi,tj ∈ A (6)

(2) defines the optimization objective. Constraint (3) en-
sures that any wi can be assigned tasks only in timeslots qk
when he is available. (4) ensures that a worker cannot be as-
signed tasks that he has already worked on, and (5) ensures
that the number of workers assigned to any task cannot ex-
ceed the number ntj required for that task. Finally, (6) guar-
antees that when a task is assigned to a worker, he will have
sufficient time to complete it.
Theorem 1. The MS-TA problem is NP-hard.

Proof. We prove the above theorem by reducing the multi-
ple knapsack problem to the MS-TA problem. The former is
a more complex version of the 0-1 knapsack problem, and
both problems have been proofed to be NP-hard [Magazine
and Chern, 1984]. The multiple knapsack problem can be de-
scribed as follows. Given x items, each item has an associated
value vp and a weight cp such that p<x. Let m knapsack-
s have a set of capacities Cq such that q≤m. The problem
is to put items into those knapsacks such that the total val-
ue among all knapsacks is maximized without exceeding any
knapsack’s capacity.

The above multiple knapsack problem is just a special case
of our MS-TA problem. Specifically, for any task, the execu-
tion times and match qualities for all workers are assumed to
be equal; i.e.,m(a

(qk)
wi,tj )=vj and e(wi, tj)=cj for anywi∈W ,

tj∈T and qk∈Q. Let workers be available at consecutive
times; we denote the length of available time by Ci. More-
over, let btj=q1, dtj=qNQ

, and gtj=1 for all tj∈T , mean-
ing that all tasks can be assigned only once. We regard the
workers as analogous to knapsacks and the tasks as analo-
gous to items, and we wish to find an assignment that max-
imizes the total match quality

∑
∀(w,t)∈W×T m(a

(qk)
wi,tj ) sub-

ject to
∑
tj∈T e(wi, tj) ≤Ci for every wi∈W .

The above reduction demonstrates that the MS-TA prob-
lem is more complex than the multiple knapsack problem.
Therefore, the MS-TA is a NP-hard problem.
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4 Multiple Skill Model
4.1 Weighted Multi-Skill Tree (WMST)
Hierarchical structure can effectively describe multiple skills
of a worker [Mavridis et al., 2016]. We define the weighted
multi-skill tree WMST S= {s, [S[1], S[2], ..., S[k]]} to model
not only multiple skills but also their correlations of a worker,
where s is a root node and S[1], S[2], ..., S[k] are sub-trees
at lower levels. Each node s∈S corresponds to a key-value
pair <key(s),d(s)>, where key(s) is a skill and d(s) is the
weight of that skill. Let dep(s) be the depth of a node s in
the WMST. We use fth(n)(s) (0≤n≤dep(s)) to denote a up-
level node that is n levels higher than s. We set fth(0)(s)=s.
Finally, chd(s) denotes the set of child nodes of s.

Our WMST can model multiple skills for complex tasks.
Here, a leaf node denotes an atomic skill (e.g., Java language
skill), and a middle node captures a composite skill (e.g., cod-
ing skill). Each worker wi∈W has an associated WMST Swi

.
Weights represent the proficiency of skills of a worker. The

weight of any node except a leaf node is the sum of weights
of its child nodes. Let dwi(s) denote the weight of s for wi.
We have

dwi(s) =
∑

∀s′∈chd(s)

dwi (s′) (7)

4.2 Match Quality
Workers with required skills are more suitable for a given
task [Roy et al., 2015]. However, other related skills also con-
tribute to the task execution [Choi, Yoo, and Lee, 2018].

Complexities of tasks and skill proficiency of workers are
unobserved random variables. Instead, observed variables are
responses from workers. We employ the Rasch model [Rasch,
1993] to estimate initial skill in leaf nodes of a WMST, us-
ing questionnaire as a pre-test. The weights of middle nodes
are calculated using (7). We update weights in a WMST of a
worker whenever he finishes a new task. So, the WMST can
capture the proficiency degree more and more accurately.

Each task tj∈T is associated with a set of skill re-
quirements Rtj={rtj (s1), ..., rtj (sn)}, where si represents
a non-root skill node in the WMST, with the constraints
that fth(x)(sj) 6= si for any x>0 and dep(si)<dep(sj) for
si, sj∈S. rtj (si) is the proportion of the total skill require-
ment for tj that is associated with si, under the constraint
such that

∑
∀si rtj (si)=1. The values of these proportions

are determined by the task requester.
We use the match quality,m(a

(qk)
wi,tj ), to represent how well

a worker wi is fit for a task tj , considering both the required
skill and related skills. The principle is that the larger the
distance between a required skill and a related skill is, the
less contribution the related skill will have. For example, a
software engineer is more suitable for a software develop-
ment than a good driver, however, a software engineer adept
to both programming languages (required skill) and software
engineering methodology (related skill) will be more quali-
fied than that only adept to a programming language. So, we
can formulate the match quality as

m(a
(qk)
wi,tj ) =

∑
∀s∈Rtj

rtj (s)×

dwi
(s)+

dep(s)−1∑
n=1

σn(dwi(fth
(n)(s))−dwi(fth

(n−1)(s)))

‖chd(fth(n)(s))‖ − 1


(8)

where σ (0<σ<1) is the attenuation coefficient. All influ-
ences are exerted through common ancestors.

5 Adaptive Task Assignment Algorithm
5.1 Acceptance Expectation
We propose the acceptance expectation model, which calcu-
lates the expected number of workers who will accept and
complete a task before its deadline. We estimate the execu-
tion time for a task using a power law distribution [Boutsis
and Kalogeraki, 2014; Ipeirotis, 2010]. Here, we assume that
workers be permanent, like [Kobren et al., 2015].

Let pwi,tj (x) be the probability that wi will spend an
amount of time x on tj . The corresponding CDF Pwi,tj (x)
represents the probability that wi will spend time more than

x. Mathematically, we have pwi,tj (x) = α−1
xmin

(
x

xmin

)−α
,

where α>0 is a constant and xmin is a lower time bound, and

Pwi,tj (x) = Pr(X > x) =
∫∞
x
p(X)dX =

(
x

xmin

)−α+1

,

where α=1+n
(∑n

i=1 ln xi

xmin

)
. For each worker, we initial-

ly set xmin to his lowest previous execution time.
We divide workers U (qk) into three pairwise disjoint sub-

sets: available workers U (qk)
A who are online and free, i.e.,

v
(qk)
wi =1 and ||L(qk)

wi ||=0; busy workers U (qk)
B who are online

but working, i.e., v(qk)wi =1 and ||L(qk)
wi ||≥1; and offline work-

ersU (qk)
O who are offline, i.e, v(qk)wi =0. Note that in any times-

lot qk, we have U (qk)= U (qk)
A ∪U (qk)

B ∪U (qk)
O .

We use P̃U,wi,tj to denote probability that wi∈U will can
complete tj before its deadline, where U is a set of workers.
ρtj denotes probability that tj will be accepted. The accep-
tance expectation E(qk)

U,tj
of workers in U for tj in qk will be

E
(qk)
U,tj

=
∑
wi∈U

ρtj P̃U,wi,tj (9)

Available Workers
The probability that tj will be completed by available workers
before its deadline is calculated by

P̃UA,wi,tj = 1− Pwi,tj (dtj − qwi,tj ), (10)
where qwi,tj is the time when tj is assigned to wi.

Busy Workers
Let wi be busy on tb∈L(qk)

wi . We call the list exclusive of
the first element as pending task list L

′(qk)
wi . The probability

P̃
(qa,qb)
UB ,wi,tj

that wi completes tj during [qa, qb] such that btj≤
qwi,tj ≤qa <qb ≤ dtj is

P̃
(qa,qb)
UB ,wi,tj

=Pr
(
qa − qwi,tj < X < qb − qwi,tj

)
=
Pwi,tj

(
qa − qwi,tj

)
−Pwi,tj (qb − qwi,tj )

1− Pwi,tj

(
qa − qwi,tj

) (11)
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When a new task tj is assigned to a busy worker wi, he has
to have sufficient time to complete tj after he has completed
all the previous tasks in his current list. Therefore, we have

P̃UB ,wi,tj =

dtj−1∑
ql=qk

P̃
(ql,ql+1)
UB ,wi,tb

P̃
(ql′ ,dtj )

UB ,wi,tj
(12)

where ql′ = ql + 1 + ewi ||L
(qk)
wi − tb|| and ewi is the average

execution time of wi, with P̃
(ql′ ,dtj )

UB ,wi,tj
=0 if ql′>dtj .

Offline Workers
We use a binary state vector to represent a worker’s s-
tate, where 0 and 1 represent the offline and online s-
tates, respectively. We estimate the probability using Markov
model. Let M (qk) denote the transition matrix from qk
to qk+1, where 1≤k<n. We assume a period of timeslot-
s Q̃={q1, q2, ..., qm}⊆Q such that M (qk)=M (qk+m) for any

1≤k<n−m. Formally, we have M (qk)=

(
p
(qk)
00 p

(qk)
01

p
(qk)
10 p

(qk)
11

)
,

where p
(qk)
ij is the probability from state i in qk to j in

qk+1. This probability can be computed by counting the fre-
quency of state transitions from i in qk to j in qk+1. Let
I
(qk)
wi =[p(qk)(x=0), p(qk)(x=1)] denote the initial state of wi

in qk. We use the l previous states to estimate the future states.
The probability of a given state in qk+s can be formulated as

I(qk+s)
wi

=

l∑
n=0

ζnI
(qk−n)
wi

s−1∏
m=−n

M (qk+m) (13)

where ζn is the weight of the state in qk−n subject to the con-
straint

∑l
n=0 ζn=1. We use P̂ (qk,qk+s)

UO,wi
to denote probability

that an offline worker wj will login during [qk, qk+s], using

P̂
(qk,qk+s)
UO,wi

= p(qk+s)(x = 1)
s−1∏
m=0

p(qk+m)(x = 0) (14)

There are two possible situations for any offline worker:
the current task list is empty, or there may be one or more
tasks in his current task list. So, we have P̃UO,wi,tj=

dtj−qk∑
s=1

P̂
(qk+s)
UO,wi

P̃
(qk+s+1,dtj )

UO,wi,tj
, ||L(qk)

wi
||=0

dtj−qk∑
s=1

P̂
(qk+s)
UO,wi

dtj−1∑
ql=qk+s̃

P
(ql,ql+1)
UO,wi,tb

P̃
(ql′ ,dtj )

UO,wi,tj
, ||L(qk)

wi
||≥ 1

(15)
Combining the formulas (9)-(15), when we assign tj to

workers U (qk)⊆W in qk, the acceptance expectation of tj is

E
(qk)
U,tj

= E
(qk)
UA,tj

+ E
(qk)
UB ,tj

+ E
(qk)
UO,tj

(16)

5.2 Task Assignment Algorithm (AE-TA)
We define the concept of task urgency degree u(qk)tj = g

(qk)
tj /

(g
(bj)
tj (dtj−qk)), where g(qk)tj is the number of remaining po-

sitions for tj in qk. u(qk)tj is proportional to the remaining

Algorithm 1: AE-TA Algorithm

Input: W,T,Q, {ρ
(btj )

tj |tj ∈ T}
Output: the set of matches A and rejected matches A′
1: for qk = q1 to qn:
2: Clear pending task lists for all wi∈W ;
3: T (qk)← ∀tj ∈ T with btj < qk < dtj , g

(qk)
tj > 0;

4: sort T (qk) by u(qk)tj ;
5: for tj ∈ T (qk):
6: W

(qk)
tj ← {w|a(qs)w,tj /∈ A, qs < qk};

7: sort W (qk)
tj by m(a

(qk)
w,t );

8: Utj←arg min‖U‖

(
E

(qk)
U,tj
≥ g(qk)tj

)
, Utj∈W

(qk)
tj

9: for wi ∈ Utj : /* Utj=UA,tj∪UB,tj∪UO,tj */
10: A = A ∪ a(qk)wi,tj if wi ∈ UA,tj ;
11: L

(qk)
wi ← L

(qk)
wi ∪ tj ;

12: end for
13: for all w′i rejects tj : /* after feedback */
14: A′ ← A′ ∪ a(qk)wi,tj ; L

(qk)
wi ← L

(qk)
wi − tj ;

15: end for
16: g

(qk+1)
tj ←max(g(qk)tj −||UA,tj ||+||A

′
tj ||, 0);

17: ρ
(qk+1)
tj ←

∑qk
q=btj

||U(q)
A,tj
||−||A′tj ||∑qk

q=btj
||U(q)

A,tj
||

;

18: end for
19: end for

number of required workers and inversely proportional to the
remaining time. We propose the two types of assignments.

The first is actual assignment for available workers. In this
case, we directly assign each of them a suitable task. If he ac-
cepts a task, his state will change to busy. Instead, the second
is dummy assignment for busy and offline workers. Here, a
task is added to the pending task list. Possibly, a busy worker
completes his task more slowly than expected and an offline
worker maybe login later than expected. So, the pending task
list is updated at the beginning of every timeslot.

Our AE-TA is presented in Algorithm 1. In every timeslot,
tasks are sorted by their urgency degrees in lines 3-4 before
assignment. For each task, AE-TA finds the group of workers
who are the most suitable for that task (lines 6-8) and assigns
the task to them (lines 9-12). This process includes both actu-
al assignment (line 10) and dummy assignment (line 11). The
key point is to find the minimum set Utj of workers who are
the most suitable for tj ; then, AE-TA directly assigns the task
to the workers inUA,tj . In this way, AE-TA reserves positions
for the workers who are the most suitable but temporarily u-
navailable. After feedback, AE-TA records rejected matches
in lines 13-15 and updates parameters in lines 16-17.

6 Performance Evaluations
6.1 Compared Algorithms and Skill Models
We compare our AE-TA with the four task assignment algo-
rithms: (1) Random, which randomly assigns tasks to avail-
able workers only; (2) MatchParticipantFirst [Mavridis et al.,
2016], in which tasks are assigned firstly to the workers with
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Figure 1: Ψ(A) vs. time Figure 2: Ψ(A) with the number of workers Figure 3: Ψ(A) with task generating speed

the fewest skills; (3) TAS-Online [Lykourentzou and Schmitz,
2015], which finds the maximum-weight bipartite match a-
mong tasks and available workers; and (4) g-D&C [Cheng et
al., 2016], which decomposes tasks and workers into g groups
and greedily chooses the maximum task-to-worker pairs.

Moreover, we compared our WMST with (1) Taxonomy-
based skill model [Mavridis et al., 2016] based on a non-
weight tree structure, where each task is associated with only
one main skill, and (2) Keyword-based skill model [Fan et al.,
2015], where skills are modeled as a set of keywords.

6.2 Performance on Synthetic Data
The timeslot was set as one hour. We simulated 1500 work-
ers, and built one WMST for each worker. In each WMST,
weights of skills in leaf nodes were randomly set in [0, 1] and
weights of non-leaf nodes were computed using formula (7).
All WMSTs had the same structure, with a maximum depth
of 5, and each node except the leaf nodes had five children.

Tasks were generated at an average speed of µ=10 tasks
/hour. The required number gt of workers for each task twas
randomly initialized such that gt∈[5, 50]. The deadline dt was
set by adding bt with a time drawn from a normal distribution
with a mean of 50 and a variance of 20. Any task randomly
requires 1 to 5 skills in leaf nodes of WMSTs of the workers
who involved in this task.

Let task execution time follow the power law distribu-
tions p(x)=cx−α, where c and α were randomly selected
in c∈[10, 30] and α∈[1.5, 2.5]. To obtain the distribution of
active workers, we extracted the active time of 300 worker-
s from Weibo within one week. Following this distribution
of active workers, we generated worker state vectors. We set
ρtj=0.8 for all tasks. Four thousand tasks were randomly
generated over 15 days. The experiment ended when all tasks
had expired, after 18 days in total.

We tested how global assignment quality Ψ(A) changes
with time. Figure 1 shows that after 280 hours, our AE-TA al-
gorithm can achieve the highest Ψ(A) among all algorithms,
although its Ψ(A) is lower in the early stage. The reason is
that our AE-TA algorithm reserves tasks for workers who are
more suitable but currently unavailable, whereas the other al-
gorithms always assign tasks to available workers only.

To evaluate how Ψ(A) is affected by the number of work-
ers, we changed the worker pool size from 100 to 6000 with
the fixed task generating speed (µ=10 tasks/hour) and exe-
cution time (18 days). As shown in Figure 2, Ψ(A) increases

with the number of workers if there are not enough worker-
s. When the number of workers reaches saturation, howev-
er, Ψ(A) tends to be stable. The results demonstrate that our
AE-TA algorithm always outperforms the other algorithms in
terms of global assignment quality. Similarly, Figure 3 illus-
trates how Ψ(A) changes with the number of tasks. Here, we
fixed the number of workers as 1500 and generated tasks with
a speed distribution of µ∈[0.5, 75] tasks/hour. As illustrated
in Figure 3, saturation is eventually reached as tasks increase.

6.3 Performance on Real Data
To evaluate real performances of our task assignment algo-
rithm AE-TA and skill model WMST, we recruited workers
with different skills, conducted one-shot and long-run eval-
uations. In the one-shot evaluation, the workers were asked
to complete a questionnaire consisting of single-option ques-
tions. For the long-run evaluation, we designed specialized
translation tasks and assigned them over 7 days. In both part-
s of evaluations, WMSTs of all the workers have the same
structure with different weights and a maximum depth of 5.

One-Shot Performance
For this evaluation, we designed a questionnaire that consist-
s of 70 single-option questions. Each question is associated
with 4 alternative answers, which requires 1 to 5 atomic skill-
s described by leaf nodes of the WMST. To built WMSTs of
80 recruited workers, we carefully selected and assigned 20
questions for initial estimation of skill weights of these work-
ers. In case that a worker did not finish all 20 questions, the
corresponding weights in his WMST were set as 0.

Based on these WMSTs, we then evaluated the relationship
between the proposed match quality and the correctness of
the answers to demonstrate the effectiveness of our approach.
Here, we asked the 20 workers with individual WMSTs built
above to complete the remaining 50 questions, which gener-
ated 1000 answers. Figure 4 presents histograms showing the
numbers of correct and incorrect answers. Among these an-
swers, the average match quality scores for correct and incor-
rect answers are 3.46 and 2.12, respectively. The results also
reveal that these workers have different fields of expertise,
and the workers who perform higher match quality achieve
higher correct ratios of answers.

Next, we arranged other 60 workers to evaluate different
assignment algorithms and skill models, using the 50 ques-
tions. We set gt=5 for all tasks. Since the tasks were assigned
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Figure 4: Match quality with answers Figure 5: One-shot performance Figure 6: Long-run performance of models

in a batch in each timeslot, every worker was regarded as
available and could only be assigned one task. Therefore, not
all tasks could be fully completed, but we counted the num-
ber of correct answers and computed the corresponding ratio
of correct answers with respect to the number of questions
answered. According to Figure 5, our WMST always signif-
icantly outperforms the taxonomy- and keyword-based skill
models. The taxonomy-based model exhibits the worst per-
formance, indicating that it is not suitable for the multi-skill
scenario. The keyword-based model cannot capture the corre-
lations among skills so that it cannot ensure that workers are
assigned the most suitable tasks. By contrast, our WMST is
designed to consider multiple skills and their correlations.

From Figure 5, we also find that our AE-TA algorithm
can achieve higher correct answer ratios except TAS-Online.
TAS-Online strives to achieve the maximum-weight bipartite
match, which corresponds to the theoretical maximum perfor-
mance; however, it is only suitable for application in a single
timeslot. Real-world scenarios are more complex, and work-
er states can change over time. Meanwhile, it is easy to see
that both the one-shot version of AE-TA and g-D&C perform
greedy matching so that they achieve similar performances.

Long-Run Performance
We also conducted long-run experiments over 7 days. 84
workers were recruited for the long-run performance tests.
They were evenly divided into four groups in MatchPartici-
pantFirst, TAS-Online, g-D&C and our AE-TA. Their WM-
STs were built by the 20 above single-option questions.

We chose 70 articles, which varied in length from 500 to
5000 words. Each article translation was treated as a task.
We equally partitioned each article into several parts with
500 words. These tasks were released randomly at an aver-
age speed of µ=10 tasks/day and were set to expire in 1 to 3
days. In Figure 6, we used AE-TA as the common assignmen-
t algorithm to evaluate different skill models. Based on the
common skill model WMST, we then tested four task assign-
ment algorithms, as shown in Figure 7. We requested more 20
independent experts to evaluate every translation with a score
from 0 to 100. Since all tasks have almost the same length,
the payment depends on only the quality of translations.

As shown in Figure 6, where we combined our AE-TA
with the three skill models respectively, our WMST model al-
ways outperforms Taxonomy-based and Keyword-based skill
models in multi-skill scenarios. Further, Figure 7 shows the
average translation scores over 7 days. The results are sim-
ilar to those in the synthetic experiments: our AE-TA ex-

Figure 7: Long-run performance of algorithms

hibits the overall best performance among all four task as-
signment algorithms. Although TAS-Online has better per-
formance in the first two days, its average score declines in
subsequent days. The reason is that this algorithm assigns
tasks to all available workers; and during the first few days,
there are more available workers, whereas in later timeslots,
not enough suitable workers are available. Consequently, AE-
TA outperforms over TAS-Online. Thus, the long-run evalua-
tion indicates that the AE-TA algorithm assigns tasks to more
skill-qualified workers, thereby ensuring that more tasks are
completed by workers with more suitable skills.

7 Conclusion and Future Work
We investigated the problem of multi-skill-based optimal
complex task assignment in service crowdsourcing. We pro-
pose a WMST model to capture correlations among skills, and
a match quality model to provide a comprehensive and quan-
titative description of how well a worker is suitable for a task.
We design the AE-TA algorithm based on the proposed ac-
ceptance expectation. Among the most related task assign-
ment algorithms and skill models, our AE-TA algorithm and
WMST model exhibit the best performance on both synthetic
and real data sets. We will investigate how to solve and prove
the task assignment problem theoretically.
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