
Answering Counting Queries over DL-Lite Ontologies

Meghyn Bienvenu1 , Quentin Manière1 and Michaël Thomazo2

1University of Bordeaux, CNRS, Bordeaux INP, LaBRI, Talence, France
2Inria, DI ENS, ENS, CNRS, University PSL, Paris, France

{meghyn.bienvenu, quentin.maniere}@u-bordeaux.fr, michael.thomazo@inria.fr

Abstract
Ontology-mediated query answering (OMQA) is
a promising approach to data access and integra-
tion that has been actively studied in the knowl-
edge representation and database communities for
more than a decade. The vast majority of work
on OMQA focuses on conjunctive queries, whereas
more expressive queries that feature counting or
other forms of aggregation remain largely unex-
plored. In this paper, we introduce a general form
of counting query, relate it to previous proposals,
and study the complexity of answering such queries
in the presence of DL-Lite ontologies. As it fol-
lows from existing work that query answering is in-
tractable and often of high complexity, we consider
some practically relevant restrictions, for which we
establish improved complexity bounds.

1 Introduction
Ontology-mediated query answering (OMQA) utilizes on-
tologies to provide a convenient vocabulary for query for-
mulation and to capture domain knowledge that is exploited
during the querying process to obtain more complete sets
of answers [Poggi et al., 2008; Bienvenu and Ortiz, 2015;
Xiao et al., 2018]. Much of the work on OMQA considers
ontologies formulated using description logics (DLs), a fam-
ily of knowledge representation languages that provide the
logical foundations of the OWL web ontology language. Par-
ticular attention has been to the DL-Lite family of DLs [Cal-
vanese et al., 2007], which were developed with OMQA in
mind and enjoy favorable computational properties.

The vast majority of work on OMQA supposes that user
queries are given as conjunctive queries (CQs). However,
there are many other kinds of database queries, beyond plain
CQs, that are relevant in practice. This motivates research
into the feasibility of adopting other database query lan-
guages for OMQA. While enriching CQs with either negated
atoms or inequalities has been shown to lead to undecidabil-
ity even in very restricted settings [Gutiérrez-Basulto et al.,
2015], the situation is more positive for navigational queries
(like regular path queries), which can be adopted without los-
ing decidability, sometimes even retaining tractable data com-
plexity [Bienvenu et al., 2015b].

Aggregate queries, which use numeric operators (e.g.
count, sum, max) to summarize selected parts of a dataset,
constitute another prominent class of database queries. Al-
though such queries are widely used for data analysis, they
have been little explored in context of OMQA. This may
be partly due to the fact that it is not at all obvious how to
define the semantics of such queries in the OMQA setting.
A first exploration of aggregate queries in OMQA was con-
ducted by Calvanese et al. (2008). They argued that the most
straightforward adaptation of classical certain answer seman-
tics to aggregate queries was unsatisfactory, as often values
would differ from model to model, leading to no certain an-
swers. For this reason, an epistemic semantics was proposed,
in which variables involved in the aggregation are required to
match to data constants. However, as discussed in [Kostylev
and Reutter, 2015], this semantics can also give unintuitive
results by ignoring ways of mapping aggregate variables to
anonymous elements inferred due the ontology axioms. For
instance, if no children of alex are listed in the data, then a
query that asks to return the number of children will yield
0 under epistemic semantics, even if it can be inferred (e.g.
due to a family tax benefit) that there must be at least 3 chil-
dren. This led Kostylev and Reutter to define an alternative
semantics for two kinds of counting queries (inspired by the
COUNT and COUNT DISTINCT in SQL) which adopts a
form of certain answer semantics but considers lower and up-
per bounds on the count value across different models. For
the two considered logics (DL-Litecore and DL-LiteR), only
the lower bounds on the count value are non-trivial, and a
complexity analysis shows that they are challenging to iden-
tify: coNP-data complexity for both logics, and Πp

2-hard
(resp. coNEXP-hard) in combined complexity for DL-Litecore
(resp. DL-LiteR). Several question were left unanswered by
their work, including the exact combined complexity, the dif-
ficulty of recognizing the optimal lower bound, and the im-
pact of allowing multiple aggregation variables.

This paper returns to the issue of handling counting queries
in OMQA and makes several important contributions:

1. We propose a new notion of counting CQ that general-
izes the two forms of queries from [Kostylev and Reutter,
2015] and allows arbitrarily many counting variables.

2. We show that existing complexity results for DL-Litecore
and DL-LiteR KBs continue to hold for our more general
notion of counting CQ, and provide an improved coNEXP

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1608

upper bound for the relevant case of finite-depth TBoxes.
3. We consider the impact of restricting the query structure,

focusing on the class of rooted queries, in which every
query variable must be connected to an answer variable
or individual in the query graph. A recent result, obtained
as part of a study of bag semantics for OMQA, identified
a case in which rootedness leads to tractable data com-
plexity for counting queries [Nikolaou et al., 2019]. This
motivates us to perform a more thorough investigation of
rooted counting queries, which yields several improve-
ments upon existing complexity bounds.

4. We prove that the problem of identifying the best certain
interval is DP-complete in data complexity.

Our results close some questions that were left open by the
work of Kostylev and Reutter and pave the way for further
study of counting and aggregate queries in the OMQA setting.

An appendix with full proofs can be found in the long ver-
sion of this paper, available on arXiv.

2 Preliminaries
We recall the basics of description logics (DLs), focusing on
DL-Lite, see [Baader et al., 2017] for more details.
Syntax and Semantics. A description logic vocabulary
consists of a set NC of atomic concepts (unary predicates), a
set NR of atomic roles (binary predicates), and a set NI of indi-
vidual names (constants). By role, we mean either an atomic
role P ∈ NR or an inverse role P− (where P ∈ NR). We let
N±R denote the set NR ∪ {P− | P ∈ NR} of roles and use the
notation R− to mean P− if R = P ∈ NR and P if R = P−.

A DL knowledge base (KB) is a pair K = (T ,A), con-
sisting of an ABox A that contains facts about particular in-
dividuals and a TBox T that expresses general knowledge
about the domain. Formally, an ABox is a finite set of con-
cept assertions A(b), with A ∈ NC and b ∈ NI, and role
assertions P (a, b), with P ∈ NR and a, b ∈ NI. We use
Ind(A) to denote the set of individuals in A. A TBox is a
finite set of axioms, whose syntax depends on the particular
DL. In DL-Litecore, axioms take the form of concept inclu-
sions B1 v (¬)B2, where each Bi is either A (for A ∈ NC)
or ∃R (with R ∈ N±R). DL-LiteR TBoxes additionally allow
role inclusions R1 v (¬)R2, where R1, R2 ∈ N±R .
Example 1. Our example KB talks about leading (LeadIn)
and supporting actors (SuppIn) in movies:

Aact = {ActsIn(doona, cloud), SuppIn(berry, cloud),

SuppIn(hanks, cloud), SuppIn(hanks, catch)}
Tact = {LeadIn v ActsIn, SuppIn v ActsIn,

∃SuppIn− v ∃LeadIn−}

An interpretation takes the form I = (∆I , ·I), where ∆I

is a non-empty set (the domain of I), and .I is a function that
maps each A ∈ NC to a subset AI ⊆ ∆I , each P ∈ NR to
a binary relation P I ⊆ ∆I × ∆I , and each a ∈ NI to an
element aI of ∆I . We make the unique names assumption
(UNA) by requiring that aI 6= bI for every a, b ∈ NI with
a 6= b. The function ·I naturally extends to complex concepts
and roles: (∃R)I = {d | ∃d′ : (d, d′) ∈ RI}, (P−)I =

{(d1, d2) | (d2, d1) ∈ P I}, (¬B)I = ∆I \ BI , (¬R)I =(
∆I ×∆I

)
\ RI . A (concept or role) inclusion F v G is

satisfied in I if F I ⊆ GI ; assertion A(b) is satisfied in I if
bI ∈ AI ; P (a, b) is satisfied in I if (aI , bI) ∈ P I . We call I
a model of K, written I |= K, if it satisfies all inclusions and
assertions in K. A KB is satisfiable if has at least one model.
Queries. We recall that a conjunctive query (CQ) takes the
form ∃y ψ(x,y), wherex and y are tuples of variables drawn
from an infinite set of variables V, and ψ is a conjunction of
atoms, which can be either concept atomsA(t1) or role atoms
P (t1, t2), where A ∈ NC, P ∈ NR, and terms ti are drawn
from NI ∪ x ∪ y. Consider an interpretation I and CQ q =
∃y ψ(x,y) with |x| = n. A tuple α ∈

(
∆I
)n

is an answer
to q in I, written I |= q(α), if there is a homomorphism of q
into I, i.e., a function σ that maps the terms of q to elements
of ∆I such that (i) σ(a) = aI for a ∈ NI, (ii) σ(t) ∈ AI for
every atom A(t) of q, and (iii) (σ(t1), σ(t2)) ∈ P I for every
atom P (t1, t2) of q. A tuple a ∈ Ind(A)n is a certain answer
to q w.r.t. the KB K iff I |= q(aI) for every model I of K.
Canonical Model. We recall the definition of the canonical
model CK of a DL-LiteR KB K = (T ,A). The domain of
CK consists of Ind(A) and all words of the form aR1 . . . Rn,
with a ∈ Ind(A), Ri ∈ N±R , and n > 1, such that:
• K |= ∃R1(a) and there is no R1(a, b) ∈ A;
• for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1.

We interpret individuals as themselves (aCK = a) and atomic
concepts and roles as follows:

ACK = {a ∈ Ind(A) | K |= A(a)}
∪ {aR1 . . . Rn ∈ ∆CK \ Ind(A) | T |= ∃R−n v A}

P CK = {(a, b) | P (a, b) ∈ A}∪
{(e1, e2) | e2 = e1R and T |= R v P}∪
{(e2, e1) | e2 = e1R and T |= R v P−}

The term ‘canonical model’ is motivated by the following
well-known property of CK (see e.g. [Calvanese et al., 2007]):
Lemma 1. Let K be a satisfiable DL-LiteR KB. Then CK |=
K and if I |= K, there is a homomorphism of CK into I.
A useful corollary is that the certain answers to a CQ q w.r.t.
K are the tuples from Ind(A) that are answers to q in CK.

Note that CK may be infinite. The depth of a TBox T is
defined as the maximal length of any word that appears in the
domain of CK for any KBK whose TBox is T . If this number
is finite, we say that T is a finite-depth TBox; such TBoxes
can be identified in polynomial time [Bienvenu et al., 2015a].

3 Counting Queries
We now introduce our formalization of counting queries. In
addition to the set V of (classical) variables, we assume a
second infinite set of counting variables Vc, disjoint from V.
Definition 1. A counting conjunctive query (CCQ) q takes the
form q(x) = ∃y∃z ψ(x,y, z), where x ∪ y ⊆ V, z ⊆ Vc,
and ψ is a conjunction of concept and role atoms whose terms
are drawn from NI ∪ x ∪ y ∪ z. We call x (resp. y, resp. z)
the answer (resp. existential, resp. counting) variables of q.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1609

We first define the semantics of counting queries on a sin-
gle interpretation I, by considering those pairs (a, n) such
that n is the number of possible ways to map z into I when
x is mapped to a. Such pairs are called the answers to q in I.
Definition 2. A match of a CCQ q(x) = ∃y∃z ψ(x,y, z) in
I is a homomorphism1 from q into I. If a match σ maps x to
a, then the restriction of σ to z is called a counting match (c-
match) of q(a) in I. The set of answers to q in I, denoted qI ,
contains all pairs (a, qIa), where qIa is the number of distinct
c-matches of q(a) in I.

As has been previously noted (see e.g. [Kostylev and Reut-
ter, 2015]), the exact count values of the answers in qI

are usually too specific to hold across models. Considering
bounds on the exact value provides more insight, while still
allowing unnamed elements to be counted. This motivates the
following notion of answer interval.
Definition 3. The set [q]I of answer intervals for a CCQ q in
I contains all pairs (a, [m,M]) with a ∈ Ind|x| and m,M
integers such that m ≤ qIa ≤ M . The set [q]K of certain
(counting) answers to q w.r.t. KB K is obtained by consid-
ering those answer intervals that hold in all models of K:
[q]K =

⋂
I|=K [q]I .

Note that (a, [m,M]) ∈ [q]K does not imply that for any
n ∈ [m,M] there exists a model I in which (a, n) ∈ qI .

Definition 1 is a proper generalization of the two forms
of counting query considered by Kostylev and Reutter.
Reusing their notations, a Cntd()-query q(x, Cntd(z)) =
∃y ψ(x,y, z) corresponds to the CCQ q(x) = ψ(x,y, z),
while a Count()-query q(x, Count()) = ∃y ψ(x,y) cor-
responds to the CCQ q(x) = ψ(x, ∅, ŷ) (with ŷ a tuple of
variables from Vc in bijection with y). We will use the term
exhaustive to refer to the latter CCQs, i.e. those in which ev-
ery non-answer variable is a counting variable.
Example 2. Reconsider the KB Kact = (Tact,Aact). We can
use CCQs to count the pairs of actors (leading role, support-
ing role) having acted together (q1), return movies together
with a count of their supporting actors (q2), and count the
number of actors having acted with Tom Hanks (q3):

q1 = ∃y∃z1∃z2 LeadIn(z1, y) ∧ SuppIn(z2, y)

q2(x) = ∃z SuppIn(z, x)

q3 = ∃y∃z ActsIn(hanks, y) ∧ActsIn(z, y)

According to our semantics, we have:
• (∅, [2,+∞]) ∈ [q1]Kact , since z2 can be mapped to either
berry or hanks, and z1 mapped to the lead actor (which
must exist due to Tact). As the lead actors of the two films
could be the same, (∅, [3,+∞]) 6∈ [q1]Kact .
• (cloud, [2,+∞]) ∈ [q2]Kact , mapping z to berry and hanks.
• (∅, 5) ∈ q

CKact
3 , since in CKact , we can map z to a named

actor or the two elements standing in for the lead actors.
• (∅, [5,+∞]) /∈ [q3]Kact , since the lead actors could possi-

bly be the same or one of the named actors.
The latter two points show that the canonical model does not
yield the minimal number of matches.

1The notion of homomorphism of a CCQ is defined in the same
way as for CQs, simply treating variables from Vc like those in V.

Data Combined
DL-Litecore coNP-c Πp

2-h, PP-h & in coNEXP

DL-LiteR coNP-c coNEXP-h & in coN2EXP
coNEXP-c (T of finite depth)

Table 1: Data and combined complexity of CCQ answering

4 General Counting CQs
We shall consider the following CCQ answering decision
problem: given a KB K = (T ,A), CCQ q, and candidate
answer (a, [m,M]), decide whether (a, [m,M]) ∈ [q]K.

As ontology languages, we will consider DL-LiteR (which
underlies OWL 2 QL) and its sublogic DL-Litecore. We know
from [Kostylev and Reutter, 2015] that in these DLs, the least
upper boundM can take one of three values (0, 1, or +∞) and
is easily computed. The argument2 transfers to our more gen-
eral notion of CCQ. We can therefore restrict our attention to
identifying certain answers of the form (a, [m,+∞]).

We will consider the two usual complexity measures: com-
bined complexity which is in terms of the size of the whole
input (T , A, q, a, m), and data complexity which is only in
terms of the size of A and m (T and q are treated as fixed).
We will assume that m is given in binary.

4.1 General Case
Table 1 displays complexity results for answering general
CCQs over DL-Litecore and DL-LiteR TBoxes (we use ‘-c’
and ‘-h’ as abbreviations for ‘-complete’ and ‘-hard’).

With the exception of the PP-hardness result (discussed in
Section 6.1), the lower bounds are inherited from [Kostylev
and Reutter, 2015]. We will thus concentrate on the upper
bounds from Table 1, which are obtained by generalizing and
clarifying the constructions of Kostylev and Reutter. We give
an overview of the proof both to give the flavor of the tech-
niques involved and to enable us to discuss the necessary
adaptations used to prove later results.

The proof constructs a decision procedure for the comple-
mentary problem of deciding whether (a, [m,+∞]) 6∈ [q]K.
The latter holds iff there exists a countermodel, i.e., a model
of K with fewer than m c-matches of q(a). The main ingre-
dient of the proof is the following theorem, which shows that
it is sufficient to consider countermodels of bounded size.
Theorem 1. For every DL-LiteR (resp. DL-Litecore) KB K =
(T ,A) and CCQ q, if there is a model of K with fewer
than m c-matches of q(a), then there exists one of size3

O(|A||T ||q|+1

) (resp. O(|A||q|)).
With Theorem 1 in hand, we can easily define non-

deterministic procedures that witness the complexity upper
bounds from Table 1: simply guess an interpretation of poly-
nomial / exponential / double-exponential size (depending on
the case) and verify whether it is a countermodel.

The proof of Theorem 1 starts with an arbitrary counter-
model I and modifies it in order to make it smaller, being

2Briefly, the upper bound is 0 if the tuple is not a certain answer;
otherwise, it is either 1 if z = ∅, else +∞.

3As usual, |T | (resp. |A|, |q|) denotes the size of T (resp. A, q).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1610

careful not to introduce any new c-matches of q(a). We first
identify a relevant subset ∆∗ of the domain of I, consisting
of the interpretations of all individual names from A and the
images of all c-matches of q(a). We then define a new in-
terpretation that intuitively preserves ∆∗ and replaces the rest
of I with parts of the canonical model, to introduce a more
regular structure. Formally, we fix a homomorphism f of CK
into I (see Lemma 1) and consider the following mapping
f ′ : ∆CK → ∆∗ ∪∆CK from [Kostylev and Reutter, 2015]:

f ′(d) =

{
f(d) if f(d) ∈ ∆∗

d otherwise

We define the interleaving4 I ′ of I as the image of CK by f ′,
i.e., with domain f ′(∆CK) and interpretation function f ′◦·CK .

It is not difficult to prove that the interleaving I ′ is a model
of K. Moreover, by exhibiting a homomorphism ρ from I ′ to
I, we can translate matches of I ′ into matches in I. As the
images of c-matches of q(a) are contained in ∆∗, which is
left unchanged in I ′, the homomorphism ρ is in fact a one-to-
one mapping of c-matches of q(a) in I ′ to those in I. This
shows that I ′ is also a countermodel.

The interleaving I ′ may be arbitrarily large, even infinite.
To reduce its size, an equivalence relation is introduced, and
elements from ∆I

′ \∆∗ that belong to the same equivalence
class are merged (elements from ∆∗ are retained). In the case
of DL-LiteR, there can be double-exponentially many equiv-
alence classes, as elements are grouped based upon the prop-
erties of their |q|-neighborhoods, while for DL-Litecore, we
can use a more refined relation with only exponentially many
classes. This means that the resulting models are either of
single- or double-exponential size w.r.t. combined complex-
ity, depending on the chosen DL.

A crucial final step is to show that the merging of elements
does not introduce any new c-matches of q(a), so the result-
ing model is still a countermodel. This part of the argument,
only sketched in [Kostylev and Reutter, 2015], requires a de-
tailed and technical analysis of the construction to ensure that
this property holds for our more general class of CCQs. We
show that this is indeed the case, which answers a question
left open by Kostylev and Reutter about counting CQs with
both existential variables and multiple counting variables.

4.2 Case of Finite-Depth TBoxes
We give an improved upper bound for finite-depth TBoxes
(which arguably cover many practical ontologies [Grau et al.,
2013]), pinpointing the exact combined complexity.
Theorem 2. For finite-depth DL-LiteR TBoxes, CCQ an-
swering is coNEXP-complete w.r.t. combined complexity.

Proof sketch. Fix a KB K = (T ,A). If T has finite depth,
then CK contains at most |Ind(A)| × |T ||T | elements, which
implies that, for every model I of K, the interleaving of I
is finite and of single exponential size in |K|. Since the inter-
leaving of a countermodel is itself a countermodel, this shows
that the smallest countermodel is of single-exponential size,
from which derives the improved coNEXP upper bound.

4We have slightly modified the definition of interleaving to cor-
rect a small bug in the definition from [Kostylev and Reutter, 2015].

We note that the proofs of the coNP and Πp
2 lower bounds

listed in Table 1 already use finite-depth TBoxes.

5 Rooted Counting CQs
We next explore whether structural restrictions on CCQs al-
low us to obtain lower complexity. As the lower bounds from
[Kostylev and Reutter, 2015] use disconnected counting vari-
ables, a natural idea is to consider the subclass of rooted
queries that were introduced in [Bienvenu et al., 2012] and
are believed to capture a large portion of real-world CQs.

Rooted CCQs can be defined analogously to rooted CQs.
The definition utilizes the notion of a Gaifman graph of a
CCQ, whose vertices are the query terms, and which has an
undirected edge {t1, t2} iff t1, t2 co-occur in a role atom.

Definition 4. A CCQ q(x) := ∃y∃zψ(x,y, z) is rooted if
every connected component of the Gaifman graph of q con-
tains at least one answer variable or individual name.

Example queries q2 and q3 are rooted, while q1 is not.
Rootedness has been shown to lower the complexity of rea-

soning in several settings. Most relevant to us is a recent re-
sult by Nikolaou et al. (2019) that rooted CQ answering under
bag semantics5 has tractable data complexity in DL-Litecore,
and furthermore, the same holds for rooted versions of the
Count()-queries of Kostylev and Reutter under suitable re-
strictions on the TBox. These techniques can be adapted to
show tractability for arbitrary DL-LitecoreTBoxes:

Theorem 3. (Implicit in [Nikolaou et al., 2019; Cima et al.,
2019]) In DL-Litecore, exhaustive rooted CCQ answering is
TC0-complete6 w.r.t. data complexity.

Proof sketch. Nikolaou et al. prove that answering rooted
CQs under bag semantics can be done via a rewriting to
BCALC, whose evaluation problem is known to be in TC0

due to [Libkin, 2001], see [Cima et al., 2019] for discussion.
Moreover, they further show that for a syntactically restricted
class of DL-Litecore TBoxes, it is possible to reduce exhaus-
tive rooted CCQ answering to rooted CQ answering under
bag semantics. To obtain TC0 membership for unrestricted
TBoxes, the BCALC rewriting can be adapted to set-based
rather than bag interpretations. In the long version, we pro-
vide an alternative self-contained proof which directly con-
structs a family of TC0 circuits. A matching lower bound
has not been stated, but can be shown by a simple reduction
(using an empty TBox) from the TC0-complete problem that
asks, given a binary string s and number k, whether the num-
ber of 1-bits in s exceeds k [Aehlig et al., 2007].

The preceding result naturally leads us to ask whether root-
edness also bring benefits for general CCQs. Unfortunately,
we show that restricting to rooted CCQs (without exhaustive-
ness) does not allow us to escape existing hardness results:

5Bag semantics, which underly practical database systems, inter-
prets relations using multisets rather than sets [Albert, 1991].

6We recall that TC0 is a circuit complexity class defined simi-
larly to AC0 but additionally allowing threshhold gates. It is known
that AC0 (TC0 ⊆ NC1 ⊆ LogSpace ⊆ PTime.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1611

Theorem 4. In DL-Litecore, rooted CCQ answering is coNP-
complete w.r.t. data complexity.

Proof sketch. The proof borrows some ideas from the proofs
of Lemmas 12 and 16 from [Kostylev and Reutter, 2015]. It
proceeds by reduction from the well-known coNP-complete
3COL problem: given an undirected graph G = (V, E), re-
turn yes iff G has no 3-coloring, i.e., a mapping from V to
{red, green, blue} such that adjacent vertices map to different
colors (equivalently: there is no monochromatic edge).

The reduction uses atomic roles Edge and Vertex to en-
code the graph and HasCol to assign colors. The TBox Tcol
has a single axiom: ∃Vertex− v ∃HasCol. The ABox AG
contains an individual v for each vertex v ∈ V and an as-
sertion Edge(u, v) for each edge {u, v} ∈ E . All vertices
are connected to a special root individual a: Vertex(a, u),
for each u ∈ V . The three colors are represented by in-
dividuals r, g and b. To ensure that the query has matches
in every model, we include a ‘dummy’ vertex individual av
and the following assertions: Vertex(a, av), Edge(av, av),
HasCol(av, r), HasCol(av, g), and HasCol(av, b).

The query q is the conjunction of the two subqueries:

qedge = ∃yc ∃z1 ∃z2 Vertex(a, z1) ∧Vertex(a, z2)∧
Edge(z1, z2) ∧HasCol(z1, yc) ∧HasCol(z2, yc)

qcol = ∃y ∃z Vertex(a, y) ∧HasCol(y, z)

serving respectively to detect monochromatic edges and to
check whether any additional colors have been introduced.

By construction, there are at least 3 c-matches for q(∅) in
any model of the KB Kcol = (Tcol,AG). Moreover, it can be
verified that (∅, [4,+∞]) is a certain answer to q w.r.t. Kcol

iff G is not 3-colorable.

Theorem 5. In DL-LiteR, rooted CCQ answering is
coNEXP-hard w.r.t. combined complexity.

Proof sketch. The proof adapts a reduction from the expo-
nential grid tiling problem (Lemma 18 from [Kostylev and
Reutter, 2015]), the key difference being the use of existential
query variables to access (and count) the colors and bits.

6 Exhaustive Rooted Counting CQs
We have seen in Section 5 that the rootedness restriction is
not by itself sufficient to lower the complexity of CCQ an-
swering, whereas imposing both rootedness and exhaustive-
ness can sometimes yield better results. This motivates us to
take a closer look at the case of exhaustive rooted CCQs. The
emerging complexity landscape is summarized in Table 2.

Note that exhaustive CCQs constitute a very natural form
of counting query, which ask for the number of different
query matches for a given answer tuple. The query q2 from
Example 2 is an exhaustive rooted CCQ.

6.1 Exhaustive Rooted CCQs in DL-Litecore
We first consider DL-Litecore KBs and pinpoint the precise
combined complexity, which had not yet been considered.

An essential ingredient is the following result that shows
that it is possible to focus on query matches in the canonical

Data Combined

DL-Litecore TC0-c PP-c
DL-LiteR coNP-c Πp

2-h, PP-h & in coNEXP

Table 2: Complexity results for exhaustive rooted CCQs

model. It can be obtained by adapting a similar result about
canonical bag interpretations [Nikolaou et al., 2019].

Theorem 6. For every DL-Litecore KB K and exhaustive
rooted CCQ q, it holds that [q]K = [q]CK .

Proof sketch. Exploiting the structure of DL-Litecore canoni-
cal models, one can show that if σ1, σ2 are distinct matches
of an exhaustive rooted CCQ q in CK, then there exists a vari-
able v such that σ1(v) 6= σ2(v) and σ1(v), σ2(v) ∈ Ind(A).
It follows that if we take an arbitrary model I of K, and let
f be a homomorphism of CK into I, then f injectively maps
query matches in CK to query matches in I.

We will also use the next lemma, implicit in [Bienvenu et
al., 2013], constraining the possible images of matches in CK:

Lemma 2. For every DL-Litecore TBox T and CCQ q, we can
construct in polynomial time a set of words Γq,T such that for
every KB K = (T ,A), match σ of q in CK, and variable v
of q: σ(v) = aw for some a ∈ Ind(A) and w ∈ Γq,T .

We are now ready to show that the problem is PP-complete
in combined complexity, and hence in PSpace.

Theorem 7. In DL-Litecore, exhaustive rooted CCQ answer-
ing is PP-complete w.r.t. combined complexity.

Proof sketch. The class PP contains all decision problems for
which there exists a non-deterministic Turing machine (TM)
such that, when the input is a ‘yes’ instance, then at least half
of the computation paths accept, while on ‘no’ instances, less
than half of the computation paths accept.

The lower bound is obtained by a reduction from the fol-
lowing PP-complete problem [Bailey et al., 2007]: given
a propositional formula ψ in CNF and number n, decide
whether ψ has at least n satisfying assignments.

We sketch the TM used to show PP membership, which
takes as input a DL-Litecore KB K = (T ,A), an exhaustive
rooted CCQ q(x), and candidate answer (a, [m,+∞]):

Phase 1. The TM constructs the set Γq,T from Lemma 2.

Phase 2. The TM guesses a mapping σ of the variables in q
to elements from {aw | a ∈ Ind(A), w ∈ Γq,T }. It then com-
pares m with the number C = |Γq,T ||q| of possible mappings
and proceeds accordingly:

• if m ≥ C
2 + 1, the TM guesses an integer i with 0 ≤ i ≤

2m− 3 and accepts iff σ is a c-match of q(a) and i < C;
• if m < C

2 + 1, the TM guesses an integer i with 0 ≤
i ≤ 2C − 2m+ 1 and accepts iff σ is c-match for q(a) or
i < C − 2m+ 2.

The guessed integer and comparisons ensure a suitable num-
ber of accepting paths. It can be verified that at least half of
the paths are accepting iff (a, [m,+∞]) ∈ [q]CK .

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1612

6.2 Exhaustive Rooted CCQs in DL-LiteR
We now turn to DL-LiteR KBs. Our first result is negative:
exhaustive rooted CCQs do not enjoy lower data complex-
ity. This is shown by another reduction from 3COL which
involves ideas from our proof of Theorem 4 and the proof of
Lemma 16 from [Kostylev and Reutter, 2015].
Theorem 8. In DL-LiteR, exhaustive rooted CCQ answering
is coNP-complete w.r.t. data complexity.

More positively, we can show an improved coNEXP upper
bound in combined complexity for exhaustive rooted CCQs.
We briefly sketch the proof, which involves highly non-trivial
modifications to the argument used for general CCQs.

We first introduce a more refined notion of interleaving,
which replaces the mapping f ′ by the following mapping f∗:

f∗(a) = f(a)

f∗(ωR) =

{
f(ωR) if f∗(ω), f(ωR) ∈ ∆∗

f∗(ω)R otherwise

It is possible to prove that when q is an exhaustive rooted
CCQ, this modified interleaving yields a countermodel.
Moreover, it has a very particular structure, essentially cor-
responding to the canonical model of the restriction of f(CK)
to ∆∗ (viewed as an ABox). Importantly, this means that in-
stead of guessing a whole countermodel, it suffices to guess
an initial, exponential-size portion (the |q|-neighborhood of
∆∗), providing the basis for a coNEXP decision procedure.
Theorem 9. In DL-LiteR, exhaustive rooted CCQ answering
is in coNEXP w.r.t. combined complexity.

7 Best Certain Answers
The definition of certain answers implies that if
(a, [m,M]) ∈ [q]K, then we also have (a, [m′,M ′]) ∈ [q]K

for every m′ ≤ m and M ′ ≥ M . It is naturally of interest
to focus on certain answers providing the best bounds, i.e.,
those of the form (a, [minI|=K q

I
a,maxI|=K q

I
a]).

In this section, we show that the problem of identifying
the best lower bound (minI|=K q

I
a) is DP-complete in data

complexity. It is easily seen that checking whether m is such
an optimal bound can be done in DP, by making a call to a
coNP oracle (is (a, [m,+∞]) ∈ [q]K?) and an NP oracle (is
(a, [m+1,+∞]) /∈ [q]K?). The DP-hardness of this problem
was left as an open question by Kostylev and Reutter.
Theorem 10. The following problem is DP-hard in data com-
plexity: given a DL-Litecore KB K = (T ,A), rooted CCQ q,
tuple a, and number m, decide whether m = minI|=K q

I
a .

Proof sketch. We give a reduction from the following prob-
lem (DP-complete due to [Garey et al., 1976]): given planar
graphs G1 and G2, decide if G1 ∈ 3COL and G2 /∈ 3COL.

Let the TBox Tcol and ABoxes AG1 ,AG2 be defined as in
the proof of Theorem 4. Rename the individuals to ensure
Ind(AG1) ∩ Ind(AG2) = ∅, then set K = (Tcol,AG1 ∪ AG2).
Let qcolor1 and qedge1 (resp. qcolor2 and qedge2) be defined as
before, but using disjoint variables and the root individual
from the AG1 (resp. AG2). The challenge is to make sure that
we can determine the 3-colorability status of the two graphs
solely by looking at the number of c-matches of the query. To

be able to distinguish G1 from G2, we introduce an asymme-
try by duplicating the color counter query for G1, i.e., create
a copy qcolor0 of qcolor1 that uses fresh variables but the same
root individual. We then take the query

q() := qcolor0 ∧ qcolor1 ∧ qedge1 ∧ qcolor2 ∧ qedge2 .

We claim (a∅, [36,+∞]) ∈ [q]K iff G1 ∈ 3COL and G2 6∈
3COL. This is proven by a case analysis, summarized here:

G1 ∈ 3COL G1 /∈ 3COL

G2 ∈ 3COL 27 (= 3× 3× 3) 48 (= 4× 4× 3)
G2 /∈ 3COL 36 (= 3× 3× 4) 64 (= 4× 4× 4)

Each of the four cells displays the least value of m such that
(a∅, [m,+∞]) ∈ [q]K, under different assumptions on the 3-
colorability of G1 and G2. To establish these values, one must
first prove that every model has at least this many c-matches,
and then exhibit a model that realizes the exact number. For
the latter, we utilize our assumption that the graphs are planar,
hence 4-colorable [Gonthier, 2008], which we use to show
that the minimal number of c-matches is realized in a model
that encodes proper 3- or 4-colorings of the graphs.

The preceding reduction can be adapted to show DP-
hardness also for the two kinds of CCQs from [Kostylev and
Reutter, 2015], but without the rootedness restriction.

8 Conclusion & Future Work
We have revisited the issue of counting queries in OMQA
and advanced our understanding of the complexity landscape,
both by extending existing results to a more general notion of
counting CQ and by exploring when structural restrictions on
the ontology and query can lead to improved complexity.

There are several natural avenues for future study. A first
challenging problem is to provide a full classification of the
data complexity of ontology-mediated queries (i.e. query-
ontology pairs), in order to identify further tractable cases. It
would also be relevant to extend the complexity study to DLs
with functional roles or quantified number restrictions, which
would allow for non-trivial upper bounds on the number of
matches. Tackling general CCQs for such DLs will likely
require wholly different techniques from the model manipu-
lations used in Section 4. However, a recent result by Cima
et al. (2019) shows that the canonical model property (The-
orem 6) holds also for DL-LiteF (which extends DL-Litecore
with functional roles), and hence both TC0 data complexity
(Theorem 3) and our PP-completeness result (Theorem 7) for
exhaustive rooted CCQs transfer to DL-LiteF .

Much remains to be explored for queries involving other
kinds of aggregate functions (min, max, sum, average), which
manipulate data values. Recent studies of bag semantics
for OMQA [Nikolaou et al., 2019; Cima et al., 2019] and
databases with incomplete information [Hernich and Kolaitis,
2017; Console et al., 2017] provide important formal founda-
tions for supporting such queries.

Acknowledgements
This work was partially supported by ANR project CQFD
(ANR-18-CE23-0003).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1613

References
[Aehlig et al., 2007] Klaus Aehlig, Stephen Cook, and

Phuong Nguyen. Relativizing Small Complexity Classes
and Their Theories. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[Albert, 1991] Joseph Albert. Algebraic properties of bag
data types. In Proceedings of the 17th International Con-
ference on Very Large Data Bases (VLDB), pages 211–
219, 1991.

[Baader et al., 2017] Franz Baader, Ian Horrocks, Carsten
Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

[Bailey et al., 2007] Delbert D. Bailey, Vı́ctor Dalmau, and
Phokion G. Kolaitis. Phase transitions of PP-complete
satisfiability problems. Discrete Applied Mathematics,
155(12):1627 – 1639, 2007.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-
dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Tutorial Lectures of
the 11th Reasoning Web International Summer School,
pages 218–307, 2015.

[Bienvenu et al., 2012] Meghyn Bienvenu, Carsten Lutz,
and Frank Wolter. Query containment in description log-
ics reconsidered. In Proceedings of the 13th International
Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR), 2012.

[Bienvenu et al., 2013] Meghyn Bienvenu, Magdalena Ortiz,
Mantas Simkus, and Guohui Xiao. Tractable queries for
lightweight description logics. In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence
(IJCAI), pages 768–774, 2013.

[Bienvenu et al., 2015a] Meghyn Bienvenu, Stanislav Kikot,
and Vladimir V. Podolskii. Tree-like queries in OWL 2
QL: Succinctness and complexity results. In Proceedings
of the 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 317–328, 2015.

[Bienvenu et al., 2015b] Meghyn Bienvenu, Magdalena Or-
tiz, and Mantas Simkus. Regular path queries in
lightweight description logics: Complexity and algo-
rithms. Journal of Artificial Intelligence Research (JAIR),
53:315–374, 2015.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. Journal
of Automated Reasoning (JAR), 39(3):385–429, 2007.

[Calvanese et al., 2008] Diego Calvanese, Evgeny Khar-
lamov, Werner Nutt, and Camilo Thorne. Aggregate
queries over ontologies. In Proceedings of the 2nd Interna-
tional Workshop on Ontologies and Information Systems
for the Semantic Web (ONISW), pages 97–104, 2008.

[Cima et al., 2019] Gianluca Cima, Charalampos Nikolaou,
Egor V. Kostylev, Mark Kaminski, Bernardo Cuenca Grau,

and Ian Horrocks. Bag semantics of dl-lite with function-
ality axioms. In Proceedings of the 18th International Se-
mantic Web Conference (ISWC), pages 128–144, 2019.

[Console et al., 2017] Marco Console, Paolo Guagliardo,
and Leonid Libkin. On querying incomplete information
in databases under bag semantics. In Carles Sierra, editor,
Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI), pages 993–999, 2017.

[Garey et al., 1976] M.R. Garey, D.S. Johnson, and
L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1(3):237 – 267,
1976.

[Gonthier, 2008] Georges Gonthier. Formal proof – The
four-color theorem. Notices of the American Mathemat-
ical Society, 55(11):1382–1393, 2008.

[Grau et al., 2013] Bernardo Cuenca Grau, Ian Horrocks,
Markus Krötzsch, Clemens Kupke, Despoina Magka,
Boris Motik, and Zhe Wang. Acyclicity notions for ex-
istential rules and their application to query answering
in ontologies. Journal of Artificial Intelligence Research
(JAIR), 47:741–808, 2013.

[Gutiérrez-Basulto et al., 2015] Vı́ctor Gutiérrez-Basulto,
Yazmin Angélica Ibáñez-Garcı́a, Roman Kontchakov, and
Egor V. Kostylev. Queries with negation and inequalities
over lightweight ontologies. Journal of Web Semantics
(JWS), 35:184–202, 2015.

[Hernich and Kolaitis, 2017] André Hernich and Phokion G.
Kolaitis. Foundations of information integration under bag
semantics. In Proceedings of the 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages
1–12, 2017.

[Kostylev and Reutter, 2015] Egor V. Kostylev and Juan L.
Reutter. Complexity of answering counting aggregate
queries over DL-Lite. Journal of Web Semantics (JWS),
33(1):94–111, 2015.

[Libkin, 2001] Leonid Libkin. Expressive power of SQL.
In Proceedings of the 8th International Conference on
Database Theory (ICDT), pages 1–21, 2001.

[Nikolaou et al., 2019] Charalampos Nikolaou, Egor V.
Kostylev, George Konstantinidis, Mark Kaminski,
Bernardo Cuenca Grau, and Ian Horrocks. Foundations of
ontology-based data access under bag semantics. Artificial
Intelligence (AIJ), 274:91 – 132, 2019.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo,
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies.
Journal of Data Semantics, 10:133–173, 2008.

[Xiao et al., 2018] Guohui Xiao, Diego Calvanese, Roman
Kontchakov, Domenico Lembo, Antonella Poggi, Ric-
cardo Rosati, and Michael Zakharyaschev. Ontology-
based data access: A survey. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence
(IJCAI), pages 5511–5519, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1614

	Introduction
	Preliminaries
	Counting Queries
	General Counting CQs
	General Case
	Case of Finite-Depth TBoxes

	Rooted Counting CQs
	Exhaustive Rooted Counting CQs
	Exhaustive Rooted CCQs in DL-Litecore
	Exhaustive Rooted CCQs in DL-LiteR

	Best Certain Answers
	Conclusion & Future Work

