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Abstract
We consider the setting of asynchronous opinion
diffusion with majority threshold: given a social
network with each agent assigned to one opinion,
an agent will update its opinion if more than half
of its neighbors agree on a different opinion. The
stabilized final outcome highly depends on the se-
quence in which agents update their opinion. We
are interested in optimistic sequences—sequences
that maximize the spread of a chosen opinion. We
complement known results for two opinions where
optimistic sequences can be computed in time and
length linear in the number of agents. We analyze
upper and lower bounds on the length of optimistic
sequences, showing quadratic bounds in the gen-
eral and linear bounds in the acyclic case. More-
over, we show that in networks with more than
two opinions determining a spread-maximizing se-
quence becomes intractable; surprisingly, already
with three opinions the intractability results hold in
highly restricted cases, e.g., when each agent has at
most three neighbors, when looking for a short se-
quence, or when we aim for approximate solutions.

1 Introduction
Analyzing the diffusion of opinions in social networks is an
important topic with obvious applications to marketing, dis-
ease spreading, and news propagation (we refer to a recent
survey by Grandi [2017] for a comprehensive overview on
the general topic of opinion diffusion in social networks).

As up-to-date social network data is becoming more and
more readily available, as urgent is attaining an understand-
ing for diffusion processes, as well as having algorithms that
help to predict how opinions change over time. In particular,
being interested in a specific opinion, answering the follow-
ing questions is critical, and the main focus of our paper.

(1) What is the maximum possible spread of the opinion
in the network? (2) How many update steps are needed to
reach a stable state with maximum spread of some opinion?
(3) What is the computational complexity of computing the
maximum spread of the opinion in the network?
∗Contact Author

Exhaustive work was done with respect to these three ques-
tions with main focus on the case of two opinions (in the fol-
lowing called black and white) and when agents update their
opinions according to the majority of their neighbors. Goles
and Olivos [1980] showed that a sequence of synchronous up-
dates always converges to a stable state or cycles with period
two. Moreover, their analysis provides an upper bound of
O(n2) on the number of updates with n being the number of
agents. Frischknecht et al. [2013] showed that this quadratic
bound is essentially tight, both for the synchronous model and
for the asynchronous model. Note that the number of update
steps for the synchronous update only depends on the network
and the initial opinions. For the lower bound on the number of
asynchronous update steps, one assumes that the sequence of
updates is selected adversarially. In the synchronous model it
is NP-hard to decide if there exists an initial opinion assign-
ment for some given network such that convergence (to the
two-periodic stable state) takes more than k rounds [Kaaser
et al., 2016]. Kralovic [2001] studies a variant where changes
from black to white are irreversible and where the social net-
work is acylic. He develops an algorithm that tests whether
a given configuration on an arbitrary tree evolves into an all-
black state; the algorithm runs in time O(t log t), where t is
the number of black nodes.

Probably closest to our work is that of Bredereck and
Elkind [2017], in which all three questions are answered for
the binary case. In particular, they show that one can compute
an asynchronous update sequence that maximizes the number
of black nodes inO(n) time. The sequence computed by their
algorithm is of length at most 2n. Moreover, to maximize the
number of black nodes, every agent needs to change its opin-
ion at most twice.

Opinions have been modeled binary [Goles and Olivos,
1980], ternary [Auletta et al., 2019], as arbitrary finite set
with a distance metric between the opinions [Chierichetti et
al., 2013], via continuous values from the interval [0, 1] [Clif-
ford and Sudbury, 1973], by rankings of alternatives [Brill et
al., 2016], or even via collections of propositional formulas
[Grandi et al., 2015; Slavkovik and Jamroga, 2016]. With
respect to our three questions, however, little is known be-
yond the case of binary opinions. The result of Goles and
Olivos [1980] for synchronous updates was subsequently ex-
tended to more general settings including an arbitrary num-
ber of opinions as well as weights on opinions and rela-
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tions between agents [Goles and Tchuente, 1983]. Auletta
et al. [2019] have considered the case of three opinions and
showed that computing a sequence that maximizes the spread
a specific opinion becomes more involved with a third opin-
ion. They show, first, that a greedy algorithm as used in the
binary case may fail dramatically, and second, that finding an
update sequence that maximizes the number of black nodes
is NP-hard.

In this paper we contribute to our three main questions
with the following results. First, we extend the results of
Frischknecht et al. [2013] and show that an update sequence
is of length at most quadratic in the number of agents even if
there are more than two opinions. Further we show that the
lower bound of Ω(n2) on the number of updates holds even
for spread-maximizing update sequences. Moreover we show
that in acyclic influence networks, the length of a spread-
maximizing update sequence may be linear in the number
of agents, and there may exist an agent whose opinion is
changed a linear number of times. Towards the third ques-
tion, we show multiple hardness results: First of all we show
that there is (presumably) no efficient algorithm for finding
a spread-maximizing update sequence on influence networks
with more than two opinions, even if we require the sequence
length to be short, or if we want to find an approximate
spread-maximizing update sequence, or if every agent has at
most three neighbors.

2 Model and Notation
An (undirected) k-opinion influence network (InfNet) is a
pair (G, ◦) whereG = (V (G), E(G)) is a simple, undirected
graph and ◦ : V (G) → {0, . . . , k − 1} is an opinion map-
ping that describes the initial opinions of all nodes. We set
n = |V (G)| and m = |E(G)|. Without loss of generality
we only consider InfNets (G, ◦) where G is connected.1 For
simplicity of illustration, if k = 3, then we say node v is
black if ◦(v) = b = 0, white if ◦(v) = w = 1 and gray
if ◦(v) = g = 2. For a non-black opinion x ∈ {w, g} we de-
note by x ∈ {w, g} \ {x} the non-black opinion opposing x.

For a node v ∈ V (G), we denote byN(v) := {u ∈ V (G) |
{u, v} ∈ E(G)} the (open) neighborhood of v, that is, the set
of all nodes that are connected to v by an edge. The degree of
a node is the number of its neighbors. The maximum degree
of G is the highest degree of a node in G.

During an update step, a node v in an influence network G
changes its opinion if more than half of the nodes in its neigh-
borhood N(v) have the same opinion which differs from the
opinion of v. Updates are performed asynchronously, that is,
the updates are performed one after another. We describe the
order of updates by a sequence σ of nodes; the i-th node con-
siders changing its opinion at step i. We denote by ◦[G, σ, z]
the opinion mapping resulting from ◦ after z updates follow-
ing the sequence σ. We use ◦[G, σ] as shortcut for the final
outcome ◦[G, σ, |σ|]. A node v is stable if not more than half
of the nodes in the neighborhood agree on a different opinion,
and unstable otherwise. An opinion mapping ◦ is stable in a

1If the InfNet consists of more than one connected component,
we can find an optimistic sequence for each InfNet separately and
concatenate them in an arbitrary order.

network G if every node is stable. A sequence is stable if the
corresponding final outcome is stable. A node v is perma-
nently stable if there exists no sequence such that the opinion
of v is changed. We say that an update sequence is optimistic
if it is stable and maximizes the number of black nodes in the
final outcome.

3 Lengths of Optimistic Sequences
This section deals with bounds on the lengths of optimistic
update sequences. First, we provide upper bounds on the
length of stable update sequences (which, of course, also
bound the length of optimistic sequences). Second, we show
lower bounds on the length of optimistic sequences. We pro-
vide a tight linear bound for acyclic influence networks and a
tight quadratic bound for general influence networks.

3.1 Upper Bounds

As a warm-up we generalize two sequence length bounds pro-
vided by Frischknecht et al. [2013]. We first show that no
sequence can be longer than the number of edges, essentially
following the proof line of Frischknecht et al. [2013].

Proposition 1. A k-opinion InfNet on m edges reaches sta-
bility after at most m updates.

Frischknecht et al. proved the existence of 2-opinion
InfNets that do not admit stable update sequences shorter
than Ω(n) (clearly this holds for k > 2 as well). We pro-
vide an algorithm to match this lower bound for any k.

Proposition 2. For a k-opinion InfNet one can compute a
stable update sequence of length at most n in O(kn) time.

Proof. We start with a greedy sequence σ: For i =
0, 1, . . . , (k − 1), in that order, update all nodes that can be
updated to opinion i. Observe that nodes being updated to i
either could have updated to i at any prior point in σ (this
is always true for the first node to update to i), or can up-
date to i only after some of their neighbors updated to i. We
call these nodes fixed, resp. loose. Now we do the following
for i = (k − 1), . . . , 0, for every loose node v being updated
to i, for every opinion j < i: If v is updated to j, then re-
move this update, and remove all updates of nodes v′ that
cannot be updated to j due to this removal. Note that v′ in-
deed is stable in this point of the sequence. After completing
this for i, the nodes that are updated to j ≥ i are updated at
most once and are all stable at the end of the sequence. As
their update can only depend on updates of nodes to j, they
are not affected by the following iterations. After having iter-
ated through all i, every node was updated at most once; thus
the sequence length is at most n. The claimed running time
follows trivially.

Note that Proposition 2 does not show a linear upper bound
for optimistic update sequences. Indeed, in the next section,
we show that to maximize the number of black nodes, one
may indeed need to update a quadratic number of nodes.
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Figure 1: The construction of the acyclic influence network for which every optimistic update sequence requires Ω(n) updates, and in which
the node x is updated Ω(n) times. Thick lines represent multiple edges to multiple subtrees and the edge label gives the multiplicity.

3.2 Lower Bounds
We now focus on optimistic update sequences and show lower
bounds on the required number of updates on general and
acyclic influence networks. For both results we only require
three opinions, so throughout this section we assume that the
opinion mapping maps to the opinions black, white and gray.

We start showing a tight linear lower bound on the min-
imum length of optimistic sequences for acyclic influence
networks. While just a linear lower bound for acylic influ-
ence networks easy to see, our construction has the interest-
ing property that it contains one node that needs to update its
opinion a Ω(n) times.

Theorem 1. There exists a family of acyclic 3-opinion
InfNets on O(n) nodes for which every optimistic update se-
quence updates at least one node Ω(n) times.

Proof sketch. Let c ∈ N. We construct an acyclic InfNet with
O(c) nodes. First, we introduce a root node xwith ◦(x) = w.
Attached to x are c + 1 absorbing gadgets with opinion g, c
absorbing gadgets with opinion w and two emitting gadgets.

An absorbing gadget with opinion z is constructed as fol-
lows. The root has opinion z, and two children: one path on
two nodes with opinion z and one child with opinion z. The
latter also has two children: one path on two nodes with opin-
ion z and one child with opinion b. Attached to the latter is a
path on two nodes with opinion z.

An emitting gadget is constructed as follows. The root has
opinion g, and 2c children with opinion g, each of which have
two paths on two nodes with opinion w attached to them, as
well as 2c + 2 children with opinion w, each of which have
two paths on two nodes with opinion g attached to them. Fig-
ure 1 shows the construction of the influence network.

Observe first that the black opinion cannot spread within
this network. Next, note that in order to make the black node
within an absorbing gadget with opinion z stable, the opinion
of the two ancestors with opinion z must be changed to z. In
order to do so, node x must acquire opinion z. Note though
that only one absorbing gadget with opinion z can be updated
at a time, since otherwise, x cannot update to z and the black
nodes of all absorbing gadgets with opinion z cannot be made
stable. Thus, x must change its opinion to white c times, and
to gray c times. The task of the emitting gadgets is to change
the opinion of their respective root node such that the major-
ity of neighbors of x can be shifted from opinion z to z. In
order to change the opinion of the root of an emitting gadget
from z to z, two of its children with opinion z must update
their opinion (recall that these children have two children on
their own with opinion z).

Note that, since in acyclic InfNets we have n = m− 1, the
lower bound in Theorem 1 is tight up to a constant.

We now present a family of influence networks for which
the length of any shortest optimistic update sequence is
quadratic in the number of nodes. One component of our
network is the two-opinion network (called snake graph
in the following) introduced by Frischknecht et al. [2013]
(Lemma 2) to show that there exists a (not necessarily op-
timistic) update sequence whose length is quadratic in the
number of its nodes. Our goal is to enforce that every op-
timistic update sequence must have Ω(n2) updates. To this
end, we add synchronization gadgets to the snake graph. We
first present the construction of the two parts.

Snake graph. Let n ∈ N. We construct the following
graph G on 6n nodes v0, . . . , v6n−1: If i ≤ 2n − 1, then
we connect vi to vj for all j whose parity is different from
the parity of i. For all even i ≤ 2n − 2 we connect vi to the
nodes {v0, v2, v4, . . . , v6n−2i−2}. For all odd i ≤ 2n− 1 we
connect vi to the nodes {v1, v3, v5, . . . , v6n−2i−3}. Finally,
the nodes vi with even 2n ≤ i ≤ 6n − 2 form a clique, as
do the nodes vi with odd 2n + 1 ≤ i ≤ 6n − 1. Initially,
◦(vi) = g if i is even, otherwise ◦(vi) = w.

For a node v we define the potential P (v) as

P (v) = max
x∈{b,w,g}\{◦(v)}

|{u ∈ N(v) | ◦(u) = ◦(x)}|

− |{u ∈ N(v) | ◦(u) = ◦(v)}|.

In our InfNet we initially have P (vi) = i + 1 if i is even,
and P (vi) = i+ 2 otherwise. Since the nodes v0, . . . , v2n−1
induce a complete graph we can observe the following.

Observation 1. Let 0 ≤ i ≤ 2n − 1. If vi changes its opin-
ion to x ∈ {w, g}, then for all 0 ≤ j ≤ 2n − 1, j 6= i,
P (vj) increases by two if ◦(vj) 6= x and decreases by two
otherwise.

Synchronization gadgets. The adversary sequence pre-
sented by Frischknecht et al. performs 2n2 + n updates
on v0, . . . , v2n−1 in a snake-like order. We now present the
construction of the synchronization gadgets that ensure that
every optimistic update sequence has at least Ω(n2) updates.

For 0 ≤ i ≤ n − 1 we introduce a white synchronization
gadget SGw

i and a gray synchronization gadget SGg
i .

Let x ∈ {g, w}. Then, for 0 ≤ i ≤ n − 1 the synchro-
nization gadget SGx

i is constructed as follows: We introduce
two main nodes axi and bxi with ◦(axi ) = x and ◦(bxi ) = x.
Both axi and bxi have edges to the nodes inNi = c0∪ci−1∪ci
(thus N0 = c0, N1 = c0 ∪ c1, and for i ≥ 2, |Ni| = 6). We
add |Ni|+ 4 paths on two nodes with opinion x, and connect
one endpoint of each of the paths to axi . Analogously, we
add |Ni| paths on two nodes with opinion x, and connect one
endpoint for each of the paths to bxi . Next, we add a path on
three nodes with one black endpoint and the other two nodes
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Figure 2: The synchronization gadgets SGi(w) and SGi(g) for 0 ≤ i ≤ 2. Numbers on edges depict the number of copies of the branch
attached to the nodes ai and bi, i.e., there are six paths of length two attached to aw1 .

having opinion x, and add an edge between the black end-
point and aix. We do the same for bwi , but the two non-black
nodes have opinion x. Lastly, we add two edges that start
in bxi . If x = g then we add edges to bwi and to awi . If x = w
then we add edges to bgi−1 and to agi−1. For the special case
of bw0 , we add a path on two nodes with opinion g and a path
on two nodes with opinion w, and connect one endpoint of
each to bw0 . Finally, we add one path on two nodes with opin-
ion g and connect one endpoint to bgn−1. Figure 2 shows the
first six synchronization gadgets for i ≤ 2.
Sequence length. The general idea of the synchronization
gadgets is the following. Observe first that the black opinion
cannot spread within our network. In order to save the two
black nodes of a synchronization gadget SGxi for x ∈ {w, g}
and 0 ≤ i ≤ n− 1, the node axi must change its opinion to x,
and the node bxi must change its opinion to x. If bxi is up-
dated to x, then we say that the synchronization gadget SGx

i
is fulfilled. But this is only possible if all neighbors of bxi
in the snake graph have opinion x, and if all synchronization
gadgets are updated in the correct order.

We first show that there actually exists an update sequence
that preserves all black nodes in our constructed InfNet.
Lemma 1. There is an optimistic update sequence that keeps
all black nodes stable.

Proof sketch. We denote by σ the reverse of the sequence σ.
The sequence is the concatenation

σw0 ◦(bw0 , a
w
0 )◦σg0 ◦(bg0, a

g
0)◦σw1 ◦(bw1 , a

w
1 )◦σg1 ◦(bg1, a

g
1)◦

· · · ◦ σwn−1 ◦ (bwn−1, a
g
n−1) ◦ σgn−1 ◦ (bgn−1, a

g
n−1),

where σw0 = (v0),
σgi = (v2i−1) ◦ σwi , for 0 ≤ i ≤ n− 1, and

σwi = (v2i) ◦ σgi−1, for 0 ≤ i ≤ n− 1.

We now show that the black nodes can only be rescued
completely only if all synchronization gadgets are fulfilled in
the correct order. For that we introduce some auxiliary no-
tation: Let Y = {axi , bxi | 1 ≤ i ≤ n − 1, x ∈ {w, g}}.
Next, for 1 ≤ i ≤ n − 1 and x ∈ {w, g} we denote
by NY (bxi ) = N(bxi ) ∩ Y the set of “a” and “b” nodes that
are neighbors of bxi .
Lemma 2. Every optimistic update sequence updates agi
and bgi to white, resp. gray, after awi and bwi are updated to
gray, resp. white, for 0 ≤ i ≤ n− 1. Every optimistic update
sequence updates awi′ and bwi′ to gray, resp. white, after agi′−1,
and bgi′−1 are updated to white, resp. gray, for 0 < i′ ≤ n−1.

Proof sketch. We prove this lemma by proving the following
two statements for a fixed j, 2 ≤ j ≤ n− 1:

(1) If awj and bwj must be updated after agj−1 and agj−1,
then agj−1 and bgj−1 must be updated after awj−1 and bwj−1.

(2) If agj and bgj must be updated after awj and bwj , then awj
and bwj must be updated after agj−1 and bgj−1.

We show how to prove (1) only; the correctness of state-
ment (2) can be proven analogously. We first postulate first
that, if bwj−1 is updated before bgj−1, then awj−1 must be up-
dated before bgj−1, and agj−1 must be updated after bgj−1:
In order to set ◦(bgj−1) = g we require that all but one
of the nodes in Nj−1 ∪ NY (bgj−1) are gray (this holds
since |NY (bgj−1)| = 4, and bgj−1 has |Nj−1| stable white
neighbors, and a black neighbor). Note that, by assump-
tion, ◦(bwj−1) = w; thus we must have ◦(u) = g for all u ∈
Nj−1 ∪ NY (bgj−1) \ {bwj−1}, and specifially the nodes agj−1
and awj−1 must be gray (we know ◦(bwj = g) by assumption
of statement (1)). So agj−1 must have already been updated,
and awj−1 can only be updated after bgj−1.

So to prove the correctness of (1), it suffices to show
that bgj−1 is updated after bwj−1. Assume towards a contra-
diction that this is not the case. In order to set ◦(bwj−1) = w
we require that all but one of the nodes in Nj−1 ∪NY (bwj−1)

are white. But ◦(bgj−1) = g; thus the rest of the nodes
in Nj−1 ∪NY (bwj−1) must be white; specifically, ◦(awj−1) =

◦(agj−2) = ◦(bgj−2) = w. But then, after the update of bwj−1,
its neighbor bgj−2 must be updated to gray. Again, for this
we require that al but one of the nodes in Nj−2 ∪ NY (bgj−2)

are gray. Observe that the two nodes in the latter set, agj−2
and bwj−1 are both white. Clearly, the former of the two is
stable, and from this it follows that the latter is stable as well.
Hence, bgj−2 is stable and cannot be updated to gray; thus the
update sequence is not optimistic—a contradiction.

We use the two statements as steps of an induction, the
base case of which is that agj−1 and bgj−1 must be updated af-
ter awj−1 and bwj−1. The correctness of the base case is similar
to the correctness of statement (1) with j = n; note that bgn−1
does not have a neighbor bwn , but it does have a stable gray
neighbor in its place. The last step of the induction (showing
that aw0 and bw0 are updated before all other nodes in Y ) uses
statement (2) with j = 1; note that bw0 does not have neigh-
bors ag−1 and bg−1, but it does have a stable gray neighbor and
a stable white neighbor in their place.
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Let us introduce the notion of phases. For 0 ≤ i ≤ n − 1,
phase i ends with the update of bwi , that is, when SGw

i is
fulfilled. Phase 0 starts before the first update of the update
sequence. For 1 ≤ i ≤ n − 1, phase i starts after the last
update of phase i− 1.

Lemma 3. In phase i there are Ω(i) many updates within the
snake graph.

Proof sketch. Throughout this proof we assume that node axi
was updated immediately after bxi . Then, within the snake
gadget, the potential of the nodes v0, . . . , v2n−1 is not af-
fected by the opinions of the nodes in the snake gadgets. Note
though that if axi is updated at another point in the sequence,
this changes the number of required updates in phase i only
by a constant.

Let nx = |{vi | 0 ≤ i ≤ 2n− 1∧◦(vi) = x}| be the num-
ber of nodes within v0, . . . , v2n−1 with opinion x. We take a
close look at v2i−1 just after phase i−1 ended. Note that at the
end of phase i − 1, the nodes v0, v1, v2i−2, v2i−1, v2i, v2i+1

must have opinion white. Let x = P (v2i−1) = 2i + ng −
nw + 1 Note that nw − ng = 2i+ 1− x. So

P (v2i−2) = −(2i− 2 + nw − ng + 1)

= −(2i− 2 + 2i+ 1− x+ 1) = −4i+ x.

We consider three cases and show that in each case we re-
quire Ω(i) updates during phase i.
(1) Suppose x ≤ 1. Then P (v2i−2) ≤ −4i+x, and in order to
update v2i−2 to gray (which is required to fulfill SGi(g)), at
least 2i = Ω(i) nodes must be updated to gray to make v2i−2
unstable, that is, to make the potential of v2i−2 positive.
(2) Suppose x = 4i − c > 1, where 0 ≤ c ≤ 4i is an odd
integer number. It suffices to consider odd c since the degree
of all nodes in the snake graph is odd; thus their potential is
odd as well. Observe that P (v2i−2) ≤ −4i+ x = −c, and in
order to update v2i−2 to gray, at least (c + 1)/2 nodes must
be updated to gray in order to make v2i−2 unstable.

Note that in order to fulill SGg
i we must have updated v2i−2

as well as at least (c + 1)/2 other nodes (including v2i−1) to
gray. Suppose that we did this; more specifically, suppose
that between the end of phase i − 1 and fulfilling SGg

i we
updated y ≥ 0 nodes to white and z ≥ (c + 1)/2 + y + 1
nodes to gray. Then ng increases by z − y and nw increases
by y− z. Thus nw−ng increases by 2(y− z) ≤ 2y− 2((c+
1)/2 + y + 1) = −c− 1 + 2. Then

P (v2i−1) = −2i+ nw − ng + 1

= −2i+ 1 + (2i+ 1− x+ 2(y − z))
< −4i+ c+ 2− c− 1 + 2 = −4i+ 3,

and in order to fulfill SGw
i+1 and thus to end phase i, we re-

quire at least 2i− 1 = Ω(i) updates from gray to white.
(3) Suppose x = 4i + c where c ≥ 0 is an odd integer num-
ber. Observe that P (v2i−2) ≤ −4i + x = c. Then, in or-
der to fulfill SGg

i , the six nodes controlled by said synchro-
nization gadget must be updated from white to gray. Sup-
pose that between the end of phase i − 1 and fulfilling SGg

i
we updated y ≥ 0 nodes to white and z ≥ y + 6 nodes to
gray. Then ng increases by z − y and nw increases by y − z.

Thus nw − ng increases by 2(y − z) ≤ −12. Then

P (v2i−1) = −2i+ nw − ng + 1

= −2i+ 1 + (2i+ 1− x+ 2(y − z))

< −4i− c+ 2− 12 = −4i− c− 10,

and in order to fulfill SGi+1(w) and thus to end phase i, we
require at least (4i+c+10+1)/2 = 2i+5+(c+1)/2 = Ω(i)
updates from gray to white.

Thus, overall, an optimistic update sequence must be of
length at least

∑n−1
i=0 Ω(i) = Ω(n2).

Theorem 2. There exists a family of 3-opinion InfNets on n
nodes for which every optimistic update sequence updates at
least one node Ω(n) times, and is of length Ω(n2).

4 Computing Optimistic Sequences
In this section, we analyze the computational complexity of
computing a optimistic update sequence. Formally, we con-
sider the following decision problem.

k-OPTIMISTIC UPDATE SEQUENCE (k-OPT-SEQ)
Given an InfNet (G, ◦), with k opinions, and a positive
integer q, is there a stable update sequence σ such that the
final number of black nodes is at least q, i.e., |{v ∈ V (G) |
◦[G, σ](v) = 0}| ≥ q?

Auletta et al. [2019] have shown NP-hardness for a very
related problem. The main difference is that in their diffu-
sion model, an agent might even update its opinion when only
a weak majority of neighbors agrees on a different opinion.
Moreover, they assume that every agent updates its opinion
only a constant number of times (and this constant is given as
a parameter to their problem name). We remark that it seems
possible to adapt their hardness proof for our model so that
general NP-hardness of 3-OPT-SEQ is not surprising.

What might, however, be unexpected is that we can show
intractablity of 3-OPT-SEQ for highly restricted cases. In
the next theorem, we show this problem remains intractable
even if the InfNet has few black nodes, few initially unstable
nodes, and short optimistic update sequences, while aiming
only for an approximate solution.

Theorem 3. 3-OPT-SEQ is NP-hard and W[2]-hard param-
eterized by sequence length |σ|. Both holds even if the num-
ber of black nodes in the given InfNet is two and the number
of initially unstable nodes is three.

Proof. We show W[2]-hardness using a parameterized reduc-
tion from SET COVER, which is defined as follows: Given a
finite set U = {u1, . . . , ut}, a family S = {S1, . . . , Sr} of
subsets of U , and a nonnegative integer h, SET COVER asks
whether there is a set cover of size h, that is, whether there is
a size-h set S ′ ⊆ S such that

⋃
S∈S′ S = U . Let (U,S, h) be

a SET COVER instance. We construct an equivalent 3-OPT-
SEQ instance as follows (see Figure 3 for an illustration).

For each element ui ∈ U , create an element node vi with
opinion ◦(vi) = g. For each subset Sj ∈ S , create one subset
node wj with opinion ◦(wj) = w. For each i ∈ [t], j ∈ [r]
with ui ∈ Sj add the edge {vi, wj}.
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Figure 3: Illustration of the reduction from SET COVER to OPTI-
MISTIC UPDATE SEQUENCE to show W[2]-hardness wrt. sequence
length |σ|. We set xi = #(ui) − 2 for i ∈ [t] and yj = |Sj | − 1
for j ∈ [r]. Thick lines represent multiple edges to multiple stable
leaves and the edge label gives the multiplicity. Dashed lines repre-
sent possible edges (depending on the SET COVER input instance).

We create two covering nodes c1 with ◦(c1) = b and c2
with ◦(c2) = g as well as two budget nodes b1 with ◦(b1) = b
and b2 with ◦(b2) = w. Finally, we create four activator
nodes a0, a′0, a1, and a′1 with ◦(a0) = g and ◦(a′0) = g,
◦(a1) = w, and ◦(a′1) = g.

We connect the covering node c2 with every element
node vi, the budget nodes b2 as well as activator nodes a1
and a′1, with every subset node wj , as well as c1 with c2, b1
with b2, and c1 with b1. The activator nodes a0 and a′0 are
both connected to every element node. The subset node wj is
connected to element node vi if and only if ui ∈ Sj .

Each node has a certain number of stable leaf nodes. Tech-
nically, a stable leaf node ` with opinion ◦(`) = x attached to
some node v in fact has a second neighbor `′ (besides neigh-
bor v) with the same opinion ◦(`′) = x. In effect, both `
and `′ are permanently stable.

To describe the leaf nodes, let #(ui) := |{Sj ∈ S | ui ∈
Sj}| be the number of occurrences of element ui. Node c1 has
one stable leaf with opinion w and node b1 has one stable leaf
with opinion g. Node c2 has t stable leaves with opinion w,
node a0 has t + 1 stable leaves with opinion w, node a′0 has
t + 1 stable leaves with opinion g, node a1 has r + 1 stable
leaves with opinion g, and node a′1 has r + 1 stable leaves
with opinion w. Every element node vi has #(ui)− 2 stable
leaves with opinion g and every subset node wj has |Sj | − 1
stable leaves with opinion w. Finally, node b2 has r−h stable
leaves with opinion g and h leaves with opinion w.

Setting q := 2 finishes the construction which can clearly
be performed in polynomial time.

Let us sketch the idea and basic observations of the cor-
rectness. Observe that no node can change its opinion to
black. So we need to ensure that c1 and b1 remain black.
For this we must ensure that c2 and b2 will also keep their
opinions. However, node c2 can only keep its opinion if all
element nodes keep their opinion, which in turn is only pos-

sible if every element node has at least one neighboring sub-
set node that changes its opinion to g (corresponding to a set
cover). Moreover, if more than h subset nodes change their
opinions, then b2 must also change. Initially, only a0, a1 and
a′1 are unstable. At some point, a0 must change its opinion
to w so that, every element node, to keep opinion g, needs
at least one neighboring subset node that changes its opinon
to g. Nodes a1 and a′1 will swap their opinions. If we update
a1 before a′1, we can change the opinion of arbitrary subset
nodes to g between the two updates, while we require for our
graph to update at most h subset nodes such that every ele-
ment node is neighboring one of the updated ones. Further, to
keep the chosen subset nodes stable, at least one of the neigh-
boring leaves has to update at any later point eventually as we
require these subset nodes to be of opinion gray at the end of
the update sequence, also requiring them to be stable.

Chen et al. [2006] show that, unless the Exponential Time
Hypothesis (ETH) breaks, there is no f(h)ro(h)-time algo-
rithm for SET COVER. Consequently we obtain:

Corollary 1. There is no f(|σ|)no(|σ|)-time algorithm for
3-OPT-SEQ unless ETH breaks.

We can actually show that the reduction behind Theorem 3
still works when setting q = 1. This excludes approximation
algorithms even if they may use f(|σ|) · no(|σ|) time.

Corollary 2. Let (G, ◦) be an InfNet. Finding a stable update
sequence σ with |{v ∈ V (G) | ◦[G, σ](v) = 0}| ≥ 1 is NP-
hard and W[2]-hard with respect to |σ|.

Finally, using a reduction from MAX 2-SAT we show that
3-OPT-SEQ remain hard even if every node has degree three.

Theorem 4. 3-OPT-SEQ is NP-hard, even if the maximum
degree of G is at most three.

5 Conclusion
This paper essentially shows that few steps are not enough for
optimistic update sequences, first in the sense that computing
(even approximate) optimistic update sequences is highly in-
tractable, and second in the sense that in general networks
optimistic sequences may have to be of quadratic length and
that even in acylic networks single nodes may have to update
their opinions many times. The last result is of particular in-
terest since it answers an open question implied by Auletta
et al. [2019]: They formulated a polynomial-time algorithm
for finding a spread-maximizing update sequence on acyclic
three-opinion influence networks in which agents may change
their opinion a constant number of times. Thus, our result
shows that this algorithm cannot be used on acyclic networks
in general, and whether one can find optimistic sequences on
acyclic networks efficiently remains open.
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