
Switch-List Representations in a Knowledge Compilation Map

Ondřej Čepek and Miloš Chromý
Charles University, Faculty of Mathematics and Physics, Department of Theoretical Computer Science

and Mathematical Logic, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
{cepek, chromy}@ktiml.mff.cuni.cz

Abstract
In this paper we focus on a less usual way to repre-
sent Boolean functions, namely on representations
by switch-lists. Given a truth table representation
of a Boolean function f the switch-list represen-
tation (SLR) of f is a list of Boolean vectors from
the truth table which have a different function value
than the preceding Boolean vector in the truth ta-
ble. The main aim of this paper is to include the
language SL of all SLR in the Knowledge Compi-
lation Map [Darwiche and Marquis, 2002] and to
argue that SL may in certain situations constitute a
reasonable choice for a target language in knowl-
edge compilation. First we compare SL with a
number of standard representation languages (such
as CNF, DNF, and OBDD) with respect to their rel-
ative succinctness. As a by-product of this analy-
sis we also give a short proof of a long standing
open question from [Darwiche and Marquis, 2002],
namely the incomparability of MODS (models) and
PI (prime implicates) languages. Next we analyze
which standard transformations and queries (those
considered in [Darwiche and Marquis, 2002]) can
be performed in poly-time with respect to the size
of the input SLR. We show that this collection is
quite broad and the combination of poly-time trans-
formations and queries is quite unique.

1 Introduction
A Boolean function on n variables is a mapping from {0, 1}n
to {0, 1}. There are many different ways in which a Boolean
function may be represented. Common representations in-
clude truth table (TT), list of models (MODS), Boolean for-
mulas (such as CNFs and DNFs), binary decision diagrams
(BDDs, FBDDs, OBDDs), and negational normal forms
(NNF, DNNF, d-DNNF). The task of transforming one rep-
resentation of a given function f into another representation
of f (e.g. transforming a DNF into an OBDD or a DNNF into
a CNF) is called knowledge compilation. For a comprehen-
sive review paper on knowledge compilation see [Darwiche
and Marquis, 2002], where a Knowledge Compilation Map
(KCM) is introduced. KCM systematically investigates dif-
ferent representation languages with respect to their relative

succinctness, and the complexity of common transformations
and queries.

In [Le Berre et al., 2018] the autors included Pseudo-
Boolean constraint (PBC) and Cardinality constraint (CARD)
languages into KCM by showing succinctness relations and
the complexity of all queries and transformations introduced
in [Darwiche and Marquis, 2002]. In this paper we aim at
achieving exactly the same goal for the SL language.

Let f be a Boolean function with a fixed order of its n
variables. The input binary vectors can be now thought of
as binary numbers (with bits in the prescribed order) rang-
ing from 0 to 2n − 1. An interval representation (IR) of f
is then an abbreviated TT or MODS representation, where
instead of writing out all the input vectors (binary numbers)
with their function values, we write out only an ordered list
of pairs [x, y] of integers, each pair specifying one interval
of models. Interval representation of Boolean functions was
introduced in [Schieber et al., 2005], where the input was
considered to be a function f represented by a single interval
(two n-bit numbers x, y) and the output was a DNF of f on n
variables, i.e. a DNF which is true exactly on binary vectors
(numbers) from the interval [x, y]. This knowledge compi-
lation task originated from the field of automatic generation
of test patterns for hardware verification [Lewin et al., 1995;
Huang and Cheng, 1999].

In [Čepek et al., 2008] the reverse knowledge compilation
problem was considered. Given a DNF, test if all models form
a single interval under some permutation of variables, and
in the affirmative case output the permutation and the two
n-bit numbers defining the interval (note, that changing the
order of variables may dramatically change the length of in-
terval representations from O(n) to Ω(2n)). This problem is
co-NP hard in general (it contains DNF tautology testing as
a subproblem), but was shown to be poly-time solvable for
tractable classes of DNFs (here tractable means that DNF fal-
sifiability can be decided in poly-time). Recently, this result
was extended to k-interval functions for arbitrary k (a func-
tion is k-interval if there exists a permutation of variables for
which the interval representation consist of at most k inter-
vals). The paper [Čepek and Hušek, 2017] presents a recog-
nition algorithm which runs in polynomial time in the length
of the input DNF for any constant k (the complexity is expo-
nential in k).

In fact, [Čepek and Hušek, 2017] departs from interval rep-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1651

resentations and introduces switch-list representations which
we shall use in this paper. A switch is a vector (binary num-
ber) x such that f(x− 1) 6= f(x). A switch-list is an ordered
list of all switches of a given function. A switch-list of f
together with the function value f(0) forms a switch-list rep-
resentation (SLR) of f . It is important to keep the switch-lists
ordered (instead of just keeping sets of switches) as this helps
to keep the complexity of algorithms that work with SLR low.

SLR has an added advantage over interval representation,
namely that a function and its negation have the same switch-
lists and the two representations differ only by the opposite
values of f(0). The ease of taking a negation for SLR allows
a trivial translation of any result relating SLR and DNF to a
result relating SLR and CNF (and vice versa). For this reason,
we shall use the SLR throughout this paper. It is not a limiting
assumption in any way: clearly, an interval representation can
be easily compiled in linear time to a SLR, and vice versa.

The language SL of all SLRs may be in some situations
quite a good choice as a target compilation language. In the
succinctness map SL is placed strictly above TT and MODS,
incomparable to prime implicates (PI) and prime implicants
(IP), and strictly below CNF, DNF, and OBDD languages.
However, compared to CNF, DNF, and OBDD (and even IP
and PI) the SL language has a wider set of supported queries
and transformations.

SL supports all the queries from [Darwiche and Marquis,
2002] in poly-time, which is of course better than CNF and
DNF languages but also better than IP and PI languages
which do not support model counting. It is also better than
the language of all OBDDs which do not support sentential
entailment if the input OBDDs respect different orders of
variables. The only language considered in [Darwiche and
Marquis, 2002] with the same set of supported queries is the
language of OBDDs with a fixed order of variables. Hence,
the advantage of SL is, that it does not require the same order
of variables for all inputs to guarantee poly-time performance
for all queries. Moreover, an added advantage of SL lies in
the computational simplicity of answering most queries - see
Section 5 for details.

The biggest advantage of SL over the strictly more succinct
languages such as CNF, DNF, and OBDD rests in the col-
lection of supported transformations. SL supports negation
in constant time (CNFs, DNFs, and MODS do not support
negation in poly-time). SL also supports conditioning (but all
common representations do, so this is not an advantage) and
more importantly (general) forgetting which distinguishes it
from OBDD. SL also supports unbounded conjunction and
disjunction under the additional restriction that all input SLRs
share the same set and order of variables. It should be noted
here that OBDDs and even OBDDs with prescribed variable
order fail to support unbounded conjunction and disjunction
already in this restricted case. Of course, DNFs do not sup-
port unbounded conjunction, and CNFs do not support un-
bounded disjunction.

The collection of supported queries and transformations
suggests that SL may be a very good choice in cases when
many queries (such as model counting) have to be answered
under many different additional assumptions such as partial
substitution of binary values to subsets of variables (i.e. con-

ditioning) or existential quantification of subsets of variables
(i.e. forgetting). None of the above mentioned more succinct
representations would support such a scenario in polynomial
time. An obvious problem for this approach is a lack of com-
pilation algorithms with SL as a target language. The only
interesting example is the recognition algorithm from [Čepek
and Hušek, 2017], which may be in this context viewed as
a compilation algorithm from tractable classes of DNF into
SL (and by symmetry from tractable classes of CNF into SL).
Note that the algorithm has a parameter k on its input, and
the compilation which runs in time exponential in k is suc-
cessful if and only if there exists a target SLR with at most k
switches. Another representation which is also easy to com-
pile into SL are binary decision trees with a fixed order of
variables on all branches. By traversing the leaves of such a
tree from left to right one can easily construct a SLR of the
given function.

This is a theory paper which establishes the properties of
the SL language and places it in KCM. We hope that the
proven properties of SL will motivate an interest to find other
classes of CNF, DNF, OBDD, or other representations, which
can be efficiently compiled into SL.

2 Definitions and Notation
A Boolean function f in n variables can be represented by a
truth table, which is a list of all 2n vectors together with their
function values. Rather then listing all vectors, one can list
only models of f (all vectors x for which f(x) = 1). The
language of all such representations of all Boolean functions
is called MODS, and each list of models for a particular
function is called a sentence of the MODS language. Simi-
larly we can consider sentences of non-models (all vectors x
for which f(x) = 0) which define the language ¬MODS.

Other languages considered in this paper are CNF (con-
sisting of all CNF sentences on the set PS of all proposi-
tional variables), DNF (consisting of all DNF sentences), PI
(CNF sentences consisting of all prime implicates of a given
function), IP (DNF sentences consisting of all prime impli-
cants), OBDD< (ordered binary decision diagrams that re-
spect some fixed total order < on the set PS), and OBDD
(all ordered binary decision diagrams). For precise defini-
tions of these languages we refer the reader to [Darwiche and
Marquis, 2002]). Two sentences (possibly from two differ-
ent propositional languages) are called logically equivalent if
they represent the same function. Let us now define the prin-
cipal language of this paper.

Definition 1. Let < be a total order on the set PS of all
propositional variables, let X ⊆ PS of size n, and let f
be a Boolean function on variables from X . Consider vector
x ∈ {0, 1}n where the bits of x correspond to the variables of
X in the prescribed order <. Each such vector x can be in a
natural way identified with a binary number from [0, 2n − 1],
so for every x > 0 the vector x−1 is well defined. We call x ∈
{0, 1}n a switch of f with respect to <, if f(x − 1) 6= f(x).
The list of all switches of f with respect to < is called the
switch-list of f with respect to <. The switch-list of f with
respect to < together with the function value f(0) is called
the switch-list representation (SLR) of f with respect to <.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1652

A function is k-switch iff it has a SLR with respect to some
ordering < with at most k switches. The set of SLRs of all
functions with respect to any < forms the language SL.

Definition 2. A propositional language L is at least as suc-
cinct as a propositional language K (L ≤ K) if and only
if there exists a polynomial p such that for every sentence
α ∈ K there exists a logically equivalent sentence β ∈ L
such that |β| ≤ p(|α|). If L ≤ K holds and K ≤ L does not
(K 6≤ L), we write L < K.

CNF

PI

DNF

IP

MODS¬MODS

NNF

DNNF

d-DNNF

FBDD

OBDD

OBDD<

PBC

CARD

Figure 1: A directed arc A −→ B means that A is strictly more
succinct than B, i.e. A < B.

The diagram in Figure 1 summarizes the succinctness rela-
tions of many commonly used propositional languages. The
main aim of the next section is to add the language SL into
the framed part of the diagram in Figure 1.

3 Succinctness of Switch-list Representations
In this section we prove the succinctness relations for the SL
language described in Figure 2.

CNF

PI

¬MODS

DNF

IP

MODS

OBDD<

SL

Figure 2: Solid arrows correspond to strict succinctness results,
dashed lines to incomparability results, and dotted lines to known
strict succinctness relations from Figure 1 which do not follow from
transitivity using the solid arrows.

Proposition 3. CNF < SL and DNF < SL

Proof. Let us start by proving DNF ≤ SL. It was shown
in [Schieber et al., 2005] that any 1-interval function (i.e. any

function with at most two switches) on n variables can be
compiled into a DNF with at most 2n − 4 terms, thus con-
structing an O(n2) size output for an O(n) size input. Now
assume we have an SLR of function f with k switches on the
input, which means that f has bk/2c or bk/2c + 1 intervals
of models. By taking a disjunction of DNFs constructed for
these individual intervals we get an O(kn2) size DNF repre-
senting f for an O(kn) size input. CNF ≤ SL follows by
taking a negation both on the input and output.

SL 6≤ DNF follows by contradiction from the fact that as-
suming SL ≤ DNF together with CNF ≤ SL would imply
CNF ≤ DNF, which is known not to be true [Darwiche and
Marquis, 2002]. The proof of SL 6≤ CNF is symmetric.

Proposition 4. SL <MODS and SL < ¬MODS

Proof. The number of switches is clearly at most twice the
number of models. On the other hand, function

∨n
i=1 xi has

one switch and 2n−1 models (similary for non-models).

The last strict succinctness relation in Figure 2 between
SL and OBDD< is the most difficult to prove and requires
several definitions and supporting lemmas.
Definition 5. Let f(x1, . . . , xn) be a Boolean function. A
vector (y1, . . . , yl) ∈ {0, 1}l where l < n is called a
relevant vector for f of length l if there exist two vec-
tors (xl+1, . . . , xn), (x′l+1, . . . , x

′
n) ∈ {0, 1}n−l such that

f(y1, . . . , yl, xl+1, . . . , xn) 6= f(y1, . . . , yl, x
′
l+1, . . . , x

′
n).

Relevant vectors are prefix vectors (for the given order of
variables) which are not sufficient for determining the value
of f . The motivation behind the above definition is the easily
verifiable fact that a k-switch function (i.e. a function which
has k switches with respect to the prescribed order of vari-
ables) has at most k relevant vectors of any length.
Lemma 6. Let f(x1, . . . , xn) be a k-switch function and 1 ≤
l ≤ n an arbitrary number. Then there are at most k relevant
vectors for f of length l.

Proof. Let yi = (yi1, . . . , y
i
n), 1 ≤ i ≤ k be the switch vec-

tors for f and let us assume these vectors are lexicograph-
ically ordered. That is ∀i ∈ {1, . . . , k − 1} : yi < yi+1 if
we identify switch vectors with binary numbers. Consider the
vectors pi = (yi1, . . . , y

i
l), 1 ≤ i ≤ k, that is the prefixes of

the switch vectors of length l. There are at most k distinct
vectors in this set as some pairs of prefixes may coincide.
We claim that no other vector (different from p1, . . . , pk) is
a relevant vector for f of length l. Let z = (z1, . . . , zl)
be any such vector. Since z differs from all pi’s, there is
no switch vector among vectors (z1, . . . , zl, xl+1, . . . , xn) for
(xl+1, . . . , xn) ∈ {0, 1}n−l and thus

f(z1, . . . , zl, xl+1, . . . , xn) = f(z1, . . . , zl, x
′
l+1, . . . , x

′
n)

for any two vectors (xl+1, . . . , xn) ∈ {0, 1}n−l and
(x′l+1, . . . , x

′
n) ∈ {0, 1}n−l, which proves that z is not rel-

evant for f .

Remark 7. Note that in the above proof vectors p1, . . . , pk
are the only candidates for relevant vectors of length l, how-
ever not all of them have to be relevant for f , since the “de-
cision” determining the value of f may be taken at an earlier

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1653

index than l. A trivial example is a 1-switch function where
f(0, x2, . . . , xn) = 0 and f(1, x2, . . . , xn) = 1 for all vec-
tors (x2, . . . , xn). Here no (non-empty) prefix of the single
switch vector (1, 0, 0, . . . , 0) is a relevant vector for f .
Definition 8. Let f(x1, . . . , xn) be a Boolean function. A rel-
evant vector (y1, . . . , yl) for f of length l is called maximal
relevant for f if neither (y1, . . . , yl, 0) nor (y1, . . . , yl, 1) are
relevant vectors for f of length l + 1.
Lemma 9. Let f be a k-switch function. Then there are at
most k maximal relevant vectors for f .

Proof. As we have seen in the proof of Lemma 6, only pre-
fixes of the switch vectors are candidates to relevant vectors.
Moreover for each switch vector at most one length of pre-
fix can be a maximal relevant length, which proves the claim.
(Note that for some switch vectors no prefix is relevant so
there is also no maximal relevant prefix - see Remark 7.)

Lemma 10. Let f(x1, . . . , xn) be a Boolean function and let
I ⊆ {x1, . . . , xn} be a subset of variables of size |I| = i.
Let xm be the variable with the smallest index in I and let us
assume that f has at most k maximal relevant vectors for f
of length at least m. Then there are at most (ik+ 1) different
Boolean functions that originate from f by fixing the values
of variables in I .

Proof. If k = 0, that is there is no relevant vector for f of
length m or larger, then f does not depend on variables from
I . That means that all substitutions for the variables of I lead
to the same function of (n− i) variables and the claim holds
((ik + 1) = (i · 0 + 1) = 1).

If k ≥ 1 we shall proceed by induction on |I| = i.
Base case (i = 1). By fixing the single variable in I
to 0 or 1 we get at most two different functions of n −
1 variables, namely f(x1, . . . , xm−1, 0, xm+1, . . . , xn) and
f(x1, . . . , xm−1, 1, xm+1, . . . , xn). Since i = 1 and k ≥ 1
we get ik + 1 ≥ 2 and the base case is verified.
Induction step. Let us assume that i > 1 and the statement
of the lemma is true for 1, 2, . . . , i− 1. Let

V = {pi|1 ≤ i ≤ l}
be the set of all maximal relevant vectors for f of length at
least m (by assumption l ≤ k). Consider the partition of V
depending on the value of xm into

V0 = {pi|pim = 0}
V1 = {pi|pim = 1}

and denote |V0| = l0 and |V1| = l1. Clearly l0 + l1 = l.
Denote I ′ = I \ {xm} and let xm′ be the variable with the

smallest index in I ′ (of course m′ > m). Consider functions
of (n− 1) variables

f0(x1, . . . , xm−1, xm+1, . . . , xn) = f|xm=0

f1(x1, . . . , xm−1, xm+1, . . . , xn) = f|xm=1

There are at most l0 maximal relevant vectors for f0 of length
at least m′ (and similarly for f1). Indeed, such maximal rel-
evant vectors can originate from vectors in V0 (or V1 respec-
tively) by deleting pim, if those vectors are long enough (have
length at leastm′). Thus we may use the induction hypothesis
for f0, f1 and I ′ of size |I ′| = i− 1. We get that

1. there are at most (i−1)l0+1 different Boolean functions
originating from f0 by fixing the values of variables in
I ′

2. there are at most (i−1)l1+1 different Boolean functions
originating from f1 by fixing the values of variables in
I ′

This altogether implies that there are at most

(i− 1)l0 + 1 + (i− 1)l1 + 1 = (i− 1)(l0 + l1) + 2 =

= (i− 1)l + 2 ≤ (i− 1)k + 2 = ik − k + 2 ≤ ik + 1

different Boolean functions that originate from f by fixing
the values of variables in I , which finishes the proof.

Corollary 11. Let f(x1, . . . , xn) be a k-switch function and
I ⊆ {x1, . . . , xn} a subset of its variables of size |I| = i.
Then there are at most (ik + 1) different functions that origi-
nate from f by fixing variables in I .

Proof. This claim is a consequence of Lemmas 9 and 10.

Let us consider a k-switch function f(x1, . . . , xn), and let
us consider an arbitrary reordering of the variables given by
some linear order <. If we start branching on variables in the
order given by <, then Corollary 11 states that after branch-
ing on the first i variables, we get at most (ik + 1) different
Boolean functions of the remaining variables (as opposed to
at most 2i for general functions). This is sufficient for a bound
on the size of a minimal OBDD representation of f due to the
following theorem.
Theorem 12 (3.2.2 [Wegener, 2000]). Let f be a function on
variables X = {x1, . . . , xn} and let < be a linear order on
X . Then the minimal-size OBDD representation of f respect-
ing order < contains as many xi-nodes as there are different
subfunctions |f|{xj |xj<xi}|.
Proposition 13. OBDD< < SL

Proof. Let f(x1, . . . , xn) be a k-switch function and< some
linear order of the variables. By Theorem 12 and Corollary 11
a minimum size OBDD respecting< contains at most (ik+1)
nodes on branching level i+ 1 for 0 ≤ i ≤ n− 1. Therefore
such an OBDD has at most

∑n−1
i=0 (ik+1) = 1

2kn(n−1)+n
nodes which is polynomial in the size of the input switch-list
for f of size kn. This proves OBDD< ≤ SL.

On the other hand, it is easy to see that SL 6≤ OBDD<,
e.g. by considering the parity function.

The existential proof of Proposition 13 can be extended
into a compilation algorithm, which for an input SLR of size
kn outputs an OBDD of size O(kn2). This follows from the
fact that conditioning (for any variable) can be done in poly-
time on a SLR (see Section 4), and so the output OBDD can
be efficiently built level by level. The complexity bottleneck
on each level is to check whether a node corresponding to a
given subfunction already exists (in that case the algorithm
just adds an arc to such a node) or not (in which case a new
node must be created). If the SLRs for nodes on the current
level (the one being built) are cached in an intelligent way to
allow such equivalence checks, the overall complexity of the
compilation algorithm can be bounded by O(k2n3).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1654

To close this section, let us study the last missing succinct-
ness relation in Figure 2.

Proposition 14. SL is incomparable with both PI and IP

Proof. SL 6≤ PI (SL 6≤ IP) follows from the fact that
SL ≤ PI (SL ≤ IP) and OBDD ≤ SL (proved in Proposi-
tion 13) would imply OBDD ≤ PI (OBDD ≤ IP) which
are both known not to be true [Darwiche and Marquis, 2002].

To show PI 6≤ SL consider f on 2n variables x1, ..., xn
and y1, ..., yn. The models of f are vectors {vi|i = 1, ..., n}
where vi assigns only variables xi and yi to 1, and all other
variables to 0. Thus f has exactly n models and the size of
its SLR is O(n2) regardless of the order of variables. On the
other hand, for an arbitrary subset of indices S ⊆ {1, ..., n}
clause CS = (

∨
i∈S xi ∨

∨
i/∈S yi) is a prime implicate of f ,

and therefore f has at least 2n prime implicates, showing the
claim. IP 6≤ SL follows by symmetry.

Note, that function f from the proof of Proposition 14 has
an exponential number of prime implicates with respect to the
number of models, so PI 6≤MODS. Since MODS 6≤ PI
is trivial, this gives a short proof of the long standing open
problem from [Darwiche and Marquis, 2002].

Corollary 15. PI is incomparable with MODS

4 Transformations
Transformations from [Darwiche and Marquis, 2002] include
negation (¬C), bounded (∧BC) and unbounded (∧C) con-
junction, bounded (∨BC) and unbounded (∨C) disjunction,
conditioning (CD), singleton forgetting (SFO), and forget-
ting (FO). We also consider ∧C∗ and ∨C∗ which assume
that all input SLRs are defined on the same set of variables
and respect the same order of these variables, see Table 1.

¬C �C∗ �BC �C CD SFO FO
X X ? ? X X X

Table 1: Transformations for the SL language, where Xmeans the
existence of a poly-time algorithm and � ∈ {∧,∨}.

¬C: SLR can be trivially negated in constant time.
∧C∗: Let f and g be two SLRs defined on the same set

of variables and respectingthe same order of variables (the
switches in both SLRs are vectors of the same length with
coordinates indexed by the same variables). Observe that if x
is neither a switch of f nor a switch of g it cannot be a switch
of f ∧ g. Hence the SLR of f ∧ g is a subset of the union
of the two input SLRs. Since both input SLRs are ordered,
they can be easily merged into an ordered list and during the
merge each switch can be checked whether it is a switch of
f ∧ g or not. This can be done in linear time in the size of
the input, and moreover this idea can be easily extended to
any number of conjuncts and hence to the unbounded case.
It is interesting to note that neither OBDD< nor OBDD
languages support ∧C∗ [Darwiche and Marquis, 2002].
∧BC and ∧C: If SLRs f and g have different order of

variables and/or different sets of variables, then the complex-
ity of constructing a SLR of f ∧ g remains open.

∨C∗, ∨BC, ∨C: The complexity status for disjunctions is
the same as for conjunctions due to constant time negation.

CD: Let f be a function on variables x1, . . . , xn and let xi
be an arbitrary variable. We interpret an assignment of vari-
ables x1, . . . , xi−1 as a binary number `, 0 ≤ ` ≤ 2i−1 − 1,
and denote the corresponding block of consecutive vectors
sharing the same prefix ` in the truth table of f as B`. Fur-
thermore, we split B` into B0

` and B1
` depending on the

value of xi. We shall show how the SLR of f1 = f|xi=1

can be obtained from the SLR of f by a single pass through
the input switch-list (the process for f0 = f|xi=0 is simi-
lar). We will write the vectors from the truth table of f as
triples (`, ∗, q) where ∗ ∈ {0, 1} represents the value of xi
and 0 ≤ q ≤ 2n−i − 1 = 1 is a binary number representing
xi+1, . . . , xn. Similarly, we will write the vectors from the
truth table of f1 as pairs (`, q).

When processing a switch of the type (`, 0, q) we just count
the parity p of the number of switches having the same prefix
(`, 0), i.e. the parity of the number of switches in the block
B0

` . After we pass the last switch in B0
` , let us inspect the

next switch in the list. If it differs from s = (`, 1,0) (the first
vector in B1

`), p is odd, and ` > 0, we output s′ = (`,0).
In this case s′ which originates from s by removing the xi
coordinate becomes a switch of f1, replacing the odd number
of switches inB0

` . This is because f1(s′) = f(s) differs from
f1(` − 1,1) = f(` − 1, 1,1). Note that (` − 1, 1,1) is the
last vector in B1

`−1 and so (`− 1,1) is a predecessor of s′ in
the truth table of f1. If p is even or ` = 0, then the switches
in B0

` “disappear” without creating any switch for f1.
When processing a switch of the type s = (`, 1, q) where

q > 0 we simply output s′ = (`, q) (all such switches of
course “survive” the conditioning xi = 1). If s = (`, 1,0)
(switch s is the first vector in B1

`), we output s′ = (`,0) only
if p obtained from B0

` is even (this includes the case if there
are no switches in B0

`) and ` > 0. Clearly, also in this case
s′ is indeed a switch of f1 because its function value differs
from the last vector in B1

`−1 which becomes its predecessor
in the truth table of f1. On the other hand, if p is odd or ` = 0
then s “disappears” without creating a switch for f1.

If the input SLR has k switches, the above described pro-
cess of conditioning on xi takes O(n) time per switch (and
each switch is processed exactly once), and therefore can be
implemented to run in O(kn) time. Since the output SLR has
at most as many switches as the input SLR, we can repeat
the process |S| times to achieve conditioning on any set S of
variables in O(kn2) time. However, the O(kn) time com-
plexity can be maintained even in this case. If we divide the
truth table of f into blocks with respect to the least signifi-
cant variable in S (the rightmost one in the truth table), then
instead of the alternating pattern of disappearing and surviv-
ing blocks for |S| = 1 (as described above) we get a pattern
of possibly many disappearing blocks followed by a single
surviving block. However, the idea of conditioning can re-
main the same. We count the parity of the number of switches
in between two surviving blocks, treat the first vector in the
next surviving block accordingly, then output the remaining
switches in the surviving block.

SFO and FO: Let f be a function on variables x1, . . . , xn
and let xi be an arbitrary variable. We shall show how the

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1655

SLR of fi = ∃xif can be obtained from the SLR of f in
polynomial time. The procedure can be implemented directly
on SLRs, but we find it more understandable if explained on
interval representations (IRs) which actually motivated the in-
troduction of SLRs. We first compile the SLR of f into an IR
of f , then transform this into an IR of fi, and finally compile
back into an SLR of fi. The first and third steps take lin-
ear time, so it remains to describe the second step. We again
(as for CD) consider the block structure B` = B0

` ∪ B1
` for

0 ≤ ` ≤ 2i−1 − 1 of the truth table of f and also use the
(`, ∗, q) notation for the vectors from the truth table of f and
(`, q) for the vectors from the truth table of fi.

When passing through the ordered list of intervals in IR of
f , an interval [a, b] is processed depending on whether a ∈
B0

` or a ∈ B1
` (for some `) as follows. For a = (`, 0, q) if

(a) b = (`, 0, r) output [(`, q), (`, r)],
(b) b = (`, 1, r) output [(`,0), (`, r)] and [(`, q), (`,1)],
(c) b = (k, 0, r) for k > ` output [(`,0), (k, r)],
(d) b = (k, 1, r) for k > ` output [(`,0), (k,1)].

On the other hand, for a = (`, 1, q) if
(e) b = (`, 1, r) output [(`, q), (`, r)],
(f) b = (k, 0, r) for k > ` output [(`, q), (k, r)],
(g) b = (k, 1, r) for k > ` output [(`, q), (k,1)].

It is easy to check in each of the above seven cases that the
models of f in the interval [a, b] really translate to models
of fi in the specified output intervals. However, the output
intervals may of course overlap (or even be identical, e.g. a
pair of intervals obtained from (a) and (e) may be identical)
so another “consolidation” pass through the output is nec-
essary, which replaces any set of overlapping intervals with
their union.

The above considerations imply that forgetting a single
variable SFO can be performed in polynomial time. To see
that the same is true for FO, we must analyze more carefully
case (b), which is the only one when a single interval [a, b] of
f may produce two intervals of fi. If it does, we will call [a, b]
a splitting interval. Note that if q ≤ r, the two output intervals
merge in the consolidation pass, so [a, b] = [(`, 0, q), (`, 1, r)]
is splitting if and only if q > r. Hence q 6= 0 and r 6= 1 are
necessary conditions for [a, b] = [(`, 0, q), (`, 1, r)] to be a
splitting interval.

Observe also, that for a = (`, ∗,0) the interval [a, b] pro-
duces only such intervals [a′, b′] where a′ = (`,0), and for
b = (k, ∗,1) the interval [a, b] produces only such intervals
[a′, b′] where b′ = (k,1).

Putting the facts from the previous two paragraphs together
implies, that if we forget the variables in the decreasing or-
der of significance (most significant variables first), neither
of the two intervals generated by a splitting interval [a, b] can
become a splitting interval when forgetting subsequent vari-
ables. Indeed, either the suffix of the left margin of the gen-
erated interval is all zeros (and stays all zeros from then on in
subsequent forgetting), or the suffix of the right margin of the
generated interval is all ones (and stays all ones). Thus, for-
getting any subset of variables may altogether at most double
the number of intervals on the output, which implies that FO
can be done in poly-time by repeating SFO.

5 Queries
Standard queries from [Darwiche and Marquis, 2002] include
consistency (CO), validity (VA), implicant check (IM),
clausal entailment (CE) , sentential entailment (SE), equiv-
alence check (EQ), model counting (CT), and model enu-
meration (ME). Since all these queries can be answered in
poly-time for the OBDD< language, the same is true for
SL which can be compiled into OBDD< in poly-time (see
Section 3).

It is clear that for most queries direct algorithms using
SLR are more efficient than indirect algorithms that first com-
pile the input SLR into an OBDD. Obviously, CO and VA
checks take constant time. If the input SLR has k switches,
IM and CE can be implemented to run in O(kn) time using
conditioning and a validity check. SLRs are also very well
suited for model counting (O(k) subtractions on n-bit num-
bers suffice) and for model enumeration, which takes linear
time w.r.t. the output size. Also SE and EQ take linear time
if both inputs share the same set and order of variables as
they can be answered using negation, disjunction, and validity
check. The only queries that are expensive are SE and EQ in
case the two inputs have different variable orders. We do not
have direct algorithms that manipulate SLRs for these queries
at the present moment, instead we compile both input SLRs
into OBDDs (both respecting the same order of variables) and
run the query algorithms for these OBDDs. Finding direct al-
gorithms for SE and EQ which would avoid compilation into
OBDDs may be a good research topic.

6 Conclusions
The main aim of this paper is to include the SL language
into KCM [Darwiche and Marquis, 2002] and to argue that
it may constitute a reasonable target language. This aim is
justified by completing three subtasks: (1) derive the relative
succinctness of SL compared to the languages already con-
sidered in [Darwiche and Marquis, 2002], (2) establish the
complexity status of common transformations for SL, and
(3) do the same for common queries. This goal is achieved
with few open problems remaining, namely the complexity
of conjunctions and disjunctions of SLRs on different sets of
variables.

The results in this paper are crucially dependent on the
chosen order of vectors in the truth table (the natural lexi-
cographic order). There are other orders which are quite nat-
ural as well. For instance, one can order vectors based on the
number of ones and complement this by some natural order
on the sets of vectors with the same number of ones. Such
a “cardinality” order has quite different properties, note that
e.g. the parity function which has only exponentially large
SLRs with respect to the lexicographic order of vectors has
a linear size SLR with respect to the “cardinality” one. Ex-
amining the properties of SLRs with respect to non-standard
orders of vectors may be the subject of a future study.

Acknowledgements
The authors gratefully acknowledge a support by the Czech
Science Foundation (Grant 19-19463S).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1656

References
[Čepek and Hušek, 2017] Ondřej Čepek and Radek Hušek.

Recognition of tractable dnfs representable by a constant
number of intervals. Discrete Optimization, 23:1–19,
2017.

[Čepek et al., 2008] Ondřej Čepek, David Kronus, and Petr
Kučera. Recognition of interval Boolean functions. An-
nals of Mathematics and Artificial Intelligence, 52(1):1–
24, 2008.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. Journal Of Arti-
ficial Intelligence Research, 17:229–264, 2002.

[Huang and Cheng, 1999] Chung-Yang Huang and Kwang-
Ting Cheng. Solving constraint satisfiability problem for
automatic generation of design verification vectors. In
Proceedings of the IEEE International High Level Design
Validation and Test Workshop, 1999.

[Le Berre et al., 2018] Daniel Le Berre, Pierre Marquis, Ste-
fan Mengel, and Romain Wallon. Pseudo-boolean con-
straints from a knowledge representation perspective. In
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI’18, page 1891–1897. AAAI
Press, 2018.

[Lewin et al., 1995] Daniel Lewin, Laurent Fournier, Moshe
Levinger, Evgeny Roytman, and Gil Shurek. Constraint
satisfaction for test program generation. In IEEE 14th
Phoenix Conference on Computers and Communications,
pages 45–48, 1995.

[Schieber et al., 2005] Baruch Schieber, Daniel Geist, and
Ayal Zaks. Computing the minimum DNF representation
of boolean functions defined by intervals. Discrete Applied
Mathematics, 149:154–173, 2005.

[Wegener, 2000] Ingo Wegener. Branching Programs and
Binary Decision Diagrams: Theory and Applications. So-
ciety for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1657

	Introduction
	Definitions and Notation
	Succinctness of Switch-list Representations
	Transformations
	Queries
	Conclusions

