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Abstract

Strategy representation and reasoning has recently
received much attention in artificial intelligence.
Impartial combinatorial games (ICGs) are a type of
elementary and fundamental games in game theory.
One of the challenging problems of ICGs is to con-
struct winning strategies, particularly, generalized
winning strategies for possibly infinitely many
instances of ICGs. In this paper, we investigate
synthesizing generalized winning strategies for
ICGs. To this end, we first propose a logical frame-
work to formalize ICGs based on the linear integer
arithmetic fragment of numeric part of PDDL. We
then propose an approach to generating the winning
formula that exactly captures the states in which the
player can force to win. Furthermore, we compute
winning strategies for ICGs based on the winning
formula. Experimental results on several games
demonstrate the effectiveness of our approach.

1 Introduction

Strategy representation and reasoning has recently received
much attention in artificial intelligence, particularly, multi-
agent systems and game theory [Chatterjee er al., 2010;
Zhang and Thielscher, 2015; Xiong and Liu, 2016]. In
the area of game theory, one class of the elementary
and fundamental games is impartial combinatorial games
(ICGs) where two players alternate moving with per-
fect information [Ferguson, 2018]. Various ICGs (e.g.,
Nim [Bouton, 19011, Wythoff [Wythoff, 1907], Chomp
[Schuh, 1952] and Empty-and-Divide [Ferguson, 1998]),
and their variants and extensions [Liu and Zhao, 2015;
Ahn et al., 2017] have been proposed and analyzed. The
following is the 2-rowed Chomp game.

Example 1. Cookies are laid out on 2 rows each of which
contains an arbitrary number of cells. The cookie in the
leftmost-topmost position (1,1) is poisoned. At each move,
a player has to eat a remaining cookie, together with all
cookies to the right and above it. The loser is the player who
has no choice but to eat the poisoned cookie.
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One of the challenging problems of ICGs is to synthesize
the winning strategy for one player. Given an instance, that
is, an ICG together with an initial state, one winning strategy
can be computed via the backward search algorithm [de
Jonge and Zhang, 2016]. However, this strategy holds for
only some instances but not (infinitely) many instances. This
is illustrated in the 2-rowed Chomp game as follows. Assume
that the number v, and v, of cookies at the first and second
row are both initially 2. In the first round, the first player
eats the cookie at (2,2). If the other player eats the cookie
at (1,2) (resp. (2,1)), then she chooses to eat the cookie at
(2,1) (resp. (1,2)) in the next round. Following the above
strategy, the first player finally wins no matter how the other
player does. But for another instance where the initial state is
v1 = 3 A vy = 1, it is impossible that the first player eats the
cookie at (2, 2) since no cookie is at such position. It has been
proved that the first player can force to win in all instances
where v1 # wvo + 1 initially [Zeilberger, 2001]. Hence, the
above strategy does not work for some of these instances.

Synthesizing a generalized winning strategy that works for
possibly infinitely many instances is of utmost importance.
However, this problem is notoriously difficult even for simple
games, and undecidable in general [Luo and Liu, 2019].

In this paper, we concentrate on ICGs, and investigate
synthesizing generalized winning strategies. The contribu-
tions of this paper are as follows: (1) We propose a logical
framework to formalize ICGs via the linear integer arithmetic
fragment of Planning Domain Definition Language (PDDL)
[Fox and Long, 2003]. (2) We propose an approach to syn-
thesizing the arithmetic formula, called the winning formula,
which exactly captures the states in which the player forces to
win. To do this, we propose three constraints for the winning
formula, then the synthesis of the winning formula is reduced
to searching an arithmetic formula that is consistent with
these constraints. We implement the searching process via
adapting the enumerative approach proposed in [Udupa et
al., 2013]. (3) We give a method to synthesize generalized
winning strategies for impartial combinatorial games. To this
end, we divide the winning formula into several arithmetic
formulas through a series of syntactic operations. For each
formula, we then choose a suitable action together with its
parameters via the enumerative approach. (4) Finally, we
evaluate our approach on several games, and experimental re-
sults demonstrate the effectiveness of the proposed approach.
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2 Impartial Combinatorial Games

In this section, we briefly introduce impartial combinatorial
games (ICGs). A game that satisfies the following conditions
is called an ICG [Ferguson, 2018]: (1) There are two players
and many states such that the player can move from one state
to another one. (2) Two players alternate moving and have
the same choice of moving. (3) The game ends when it moves
to an ending state in which no player has a possible move. (4)
The game always ends in a finite number of moves, and the
last player to move wins. An instance of an ICG is the ICG
together with an initial state. In general, an ICG may contain
infinite states, and hence it may have infinite instances.

Each instance of an ICG is a finite two-player game with
perfect information and no-chance move where the players
take turns moving. In addition, this game does not end in a
draw. By Zermelo’s Theorem [Zermelo, 1913], there always
exists a winning strategy for one player in an ICG.

It can be easily observed that the player cannot guarantee
to win in all states. To distinguish states in which the player
can forces to win from those in which she cannot, we classify
states into two types: winning and losing states.

Definition 1 ([Ferguson, 2018]). In an ICG, winning and los-
ing states are recursively defined as follows:

1. All ending states are losing states.

2. All states such that there is at least one move to a losing
state are winning states.

3. All states such that the only possible moves are to win-
ning states are losing states.

We hereafter introduce the concept of strategy. ICGs are a
special case of Gale-Stewart games, and so are determined by
memoryless strategies [Gale and Stewart, 1953]. In addition,
it is impossible to obtain a winning strategy for the player in
a losing state, there is no need to consider how to choose a
move in this case. We hence define a strategy as a function
from winning states to moves.

3 A Logical Framework

In this section, we present a logical framework for describing
ICGs. The framework we adopt is a slight modification of the
linear integer arithmetic fragment of the PDDL 2.1 language
defined in [Fox and Long, 2003].

Traditionally, arithmetic formulas allow the occurrence of
multiplication. In this paper, we use the decidable fragment:
linear integer arithmetic (LIA). An arithmetic formula is
LIA-definable if it is defined by LIA. The syntax of LIA is
defined as follows. Let A/ be the set of integers, V a set of
variables and X C V a finite set of state variables. The sets
of arithmetic expressions (Exp), literals (Lit) and formulas
(Form) is defined by the following grammar:

e,/ €Expuclv|ete |e—¢

leLit e=¢€'|e#£e |e<e |e>e |e<e |e>e€ |e=ycleZoc

¢, ¢ €Form 1| oA G | dV P | Vvg | Jup
where ¢,¢’ € N andv € V.
We remark that formulas defined by the above syntax
are negation-free. For the sake of simplification, when we
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use the negation symbol —¢, we refer to the negation-free
formula equivalent to —¢, obtained in the obvious way.
The literal e =, ¢ denotes that e — ¢ are divisible by ¢/,
and its negation is e Z. ¢. We use |¢| (resp. le|) for
the size of an arithmetic formula ¢ (resp. an arithmetic
expression e). It is well-known that LIA admits quantifier
elimination, i.e., any arithmetic formula can be equiva-
lently transformed into a quantifier-free one [Cooper, 1972;
Monniaux, 2010]. We use Form® for the set of quantifier-free
formulas (qf-formulas). We use Exp, for the set of expres-
sions over X, and say e is semi-ground if e € Exp,. We
use Formy for the set of formulas of which free variables are
state variables, and say ¢ is semi-ground if ¢ € Formy. The
notation ForijYf is similar. We say an arithmetic formula is
an arithmetic term, if it is a conjunction of arithmetic literals.
A state s is a valuation function X — N. Given a state s,
we evaluate a semi-ground expression e into an integer e(s)
to which the expression simplifies when substituting every
state variable v with their respective value s(v). The Boolean
value ¢(s) of a semi-ground formula ¢ can be determined in
a similar way. We say a state s satisfies a formula ¢, denoted
by s E ¢, if ¢(s) = T. We say a formula ¢ entails another
one ¢, denoted by ¢ = ¢, if for all states s s.t. s = ¢,
we have s = ¢'. A numeric effect is a triple (¢, v, e) where
¢ € Form, v € X, and e € Exp. Intuitively, it means that if
¢ holds in a state s, then the value of v becomes e(s) after
performing the action; otherwise, it remains unchanged.

Definition 2. An ICG is defined as a tuple IT = (X, A,C, E)
where

e X': afinite set of state variables.

e A: a finite set of actions. Each action a())) € A can
be parameterized by a vector ) of variables. An action
a()) is defined by a tuple (pre, eff) where pre € Form
denotes the precondition, and eff is the effect repre-
sented by a set of numeric effects.

e (C: aformula of Formy denoting all legal states.
e &: aformula of Formy denoting all ending states.

Let X be a vector of semi-ground expressions. A semi-

ground action a[)/X] is an action whose the i-th parameter
y; of Y is replaced by the i-th semi-ground expression e; of
.. For simplicity, we sometimes use a to denote semi-ground
actions. Given a semi-ground action a, we say a is applicable
over a state s, if s = pre(a). The result of applying an
applicable action a over s is a state, written do(a, s), which
results from s by replacing s(v) with e(s) when s |= ¢ for
all (¢,v,e) € eff(a).
Example 2. The formalization of the 2-rowed Chomp game
is given as follows. Two state variables v; and v, denote the
number of cookies in the first and second row respectively.
Any legal state is such that (1) the first row contains at least as
many cookies as the second one, (2) the first row contains at
least one cookie, and (3) the number of the cookies in the sec-
ond row is non-negative (i.e., C = v > vaAvy > 1Avg > 0).
The ending condition £ is v; = 1 A v = 0. The action
eatl(k) (resp. eat2(k)) means eating the cookie at (1, k)
(resp. (2, k)) together with all cookies to the right and/or
above it. The following are descriptions of actions.
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1. pre(eatl(k)) =v1 > k Ak >1;

2. pre(eat2(k)) =ve > k Nk > 0;

3. eff(eatl(k)) = {(T,v1,k — 1), {va > k,vo,k — 1} };
4. eff(eat2(k)) = {(T,vo,k — 1)} O

To obtain the finite representation of winning states, we
use an arithmetic formula to exactly capture this notion,
called the winning formula.

Definition 3. Let IT = (X, A,C,&) be an ICG and ¢ €
Formy. We call ¢ a winning formula of II, if

1. For any ending state s, we have s = —¢;

2. For any winning state s, there is an action a s.t. a is

applicable in s and do(a, s) = —¢;
. For any losing state s and action a where a is applicable
in s, we have do(a, s) | ¢.

For an ICG, the winning formula is unique up to equiv-
alence as the set of winning states is unique. Since the sets
of winning states and losing states are disjoint, —¢ is the
symbolic representation of losing states. Each condition
illustrated in the definition of winning formulas corresponds
to each rule given in the definition of winning states (cf.
Definition 1). In this paper, we restrict winning formulas to
be LIA-definable. The winning formulas for some games are
not LIA-definable. For example, the winning formula of the
Wythoff game [Wythoff, 19071 is vy # |g-n| Vv # | g% n|

for any positive integer n where g is the Golden ratio 1+2‘/g

and |r] is the integer part of the real number r. We leave

the investigation of synthesizing winning formulas for these

games requiring more expressive language to future work.
We hereafter define winning strategies as a set of pairs of

semi-ground formulas and actions.

Definition 4. Let II = (X, A4,C, £) be an ICG, and ¢ a win-

ning formula of II. A winning strategy ¢ is a set of pairs

{(¥1,a1), -, (¥n, an)} where each 1); € Formy and a; is
a semi-ground action, if

2. wi [#’(ﬁj for ¢ 75]
3. For any winning state s and a € d(s), we have do(a, )
is a losing state.
Here, 6(s) = {a; | s E ¥}

Conditions 1 and 2 together guarantee that the formulas
1;’s form a cover of the winning formula ¢. That is, (1) ¢ is
covered by all of the 1);’s; and (2) any formula v); can not en-
tail another one ;. Condition 3 requires the successor state,
resulting from a winning state by executing the action accord-
ing to the strategy, be a losing state. Condition 3 together with
the fact that £ = —¢ (Item 1 of Definition 3) implies that the
strategy 0 defined in Definition 4 is winning.

4 Synthesis of Winning Strategies

In this section, we provide a synthesis approach to winning
strategies. Our approach consists of three steps: (1) synthe-
sizing the winning formula (Sec. 4.2), (2) refining the winning
formula (Sec. 4.3), and (3) synthesizing the winning strategy
(Sec. 4.4). The first and third steps are based on the enumer-
ative algorithm proposed in [Udupa er al., 2013] (Sec. 4.1).
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Algorithm 1: Synthesize(O)

Input: © : (01, - ,0,): aset of specifications.
Output: Q : (obj1, - ,0bj,): a vector of expression and
formula satisfying ©.

1 Initialize the set E of examples

2 while true do

3 Q < Enumerate(F)

sat < true

(in, sat) < Verifiy(Q, ©)

if sat = falsethen /x The specification is
not satisfied x/

E TN

7 Compute the output (outy, - - - , out,) according to
the input in

8 e < (in, (outy, - ,outy))

9 E+— EUe

10 else /* € is correct */

| return

4.1 The enumerative algorithm for multiple objects

The task of the original enumerative algorithm is to synthe-
size a single object satisfying a set of specifications [Udupa
et al., 2013]. The object is an expression or a formula, and
each specification is expressed by an formula. In this paper,
we need to consider identifying a vector of expressions and
formulas. We hereafter extend the original algorithm to be
suitable for multiple objects.

As Algorithm 1 illustrates, the algorithm aims to synthe-
size n objects (2 satisfying the specifications ©. It maintains
a set I/ of examples. An example e consists of an input
in(e) and an output out(e). The input is a state while the
output is a vector of Boolean values and/or integers with the
same length of the vector of objects. The i-th element of the
output is a Boolean value (resp. integer) if the i-th object is
a formula (resp. expression). The main idea of this algorithm
is to iteratively enumerate candidates consistent with the set
FE of examples, and then return the correct ones via verifying
them against the set © of specifications.

The enumeration process generates the candidate expres-
sions (or formulas) by induction on size according to the
grammar illustrated in Section 3. In the first step, only
arithmetic expressions of size 1 (i.e., state variables and
integers) are considered. As the set of integers is infinite,
the integers considered in the first step are 0, 1 together
with the constants explicitly occurring in the formalization
of games. Firstly, this restriction does not affect visiting all
integers since any positive integer ¢ can be represented by the
addition of ¢ 1’s, and the negative integer —c equals to 0 — c.
Furthermore, we observe that some integers occurring in
the winning formula and winning strategy are close to some
explicit constants of appearing in the formalization. Hence,
supplementing these constants can accelerate the synthesis
process. In the k-th step, we generate arithmetic expressions
and formulas of size k. The enumeration process terminates
when it finds candidates that are consistent with the set of
examples. Formally, a vector of objects (0bji,- -+ ,0bj,) is
consistent with a set F/ of examples, if for any 1 < ¢ < n and
any example e € F, we have obj;(in(e)) = out;(e).
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To improve the efficiency of the enumeration process, we
remove expressions and formulas based on the notion of
indistinguishability. Formally, two formulas ¢; and ¢, are
indistinguishable w.r.t. a set S of states, if ¢1(s) = ¢2(s)
for every s € S. The definition of indistinguishability
between two expressions is similar. For example, suppose
that S = {(v1:1,v2:2), (v1:2,v9:2)}. Ttis easily verified
that the two formulas v; # vy and v; + 1 = v hold in the
first state and does not hold in the second one. Therefore, the
two formulas are indistinguishable w.r.t. S. Suppose that we
are generating expressions and formulas of size k. Let I be
the collection of the inputs of the set of examples e € E. If
¢1 and ¢, are indistinguishable w.r.t. I, then it is sufficient
to carry forward only one of ¢; and ¢ to the next iteration
k + 1. Based on the notion of indistinguishability, we can
prune the search space of candidates.

When desired candidates are generated by the enumeration
process, they will be sent to the verification process for
checking against the correctness of given specifications. The
verification process can be executed by an SMT solver. If the
candidates are correct, then we succeed in finding the correct
expressions and formulas. Otherwise, the SMT solver returns
a state that distinguishes the correct expressions and formulas
and the candidates generated by the enumeration process.
For each state s, we construct a new example e with the state
and a suitable output, and enlarge the set E' of example by e.
Then, the enumeration process restarts. The whole enumer-
ative algorithm repeats until it searches correct candidates.

The enumerative algorithm is a general approach to
synthesizing multiple objects. To adopt this algorithm, three
factors should be designed: (1) what is the type of each
object and the constraints for objects, (2) how to initialize
the set E of examples (Line 1), and (3) how to compute the
output for the state generated by the SMT solver (Line 7).
The details will be illustrated in Sections 4.2 and 4.4.

4.2 Synthesizing the winning formula

In this subsection, we introduce the idea of synthesizing the
winning formula via adopting the enumerative algorithm.
Firstly, the search object is a semi-ground gf-formula.
Each ouput of all examples of F contains a single Boolean
value. Secondly, the set E initially contains only examples
whose inputs are ending states. The output is L as each
ending state is a losing state. This can be done by finding
states satisfying the ending condition £ via the SMT solver.
Thirdly, the Boolean value of a state s, denoting if s is a
winning state is determined by a recursive way according to
the definition of winning and losing states (cf. Definition 1).
In the following, we introduce the notion of transition
formulas and global transition formulas that are ingredient
components of the constraints. The following construction of
transition formulas is a numerical generalization of the exist-
ing boolean encoding for the planning problem which focuses
on transition systems over finite states [Hoffmann and Braf-
man, 2006; Rintanen, 2012]. For an action a, the transition
formula of a reflects the relation between predecessor and
successor states. In order to express these two notions, we
consider two versions v and v’ for all v € X. The unprimed
version v denotes the state variable before performing an
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action, and the primed one v’ denotes the one after.

Definition 5. Let a be an action. The transition formula 7 (a)
of a is the conjunction of the following formulas:

1. pre(a);
2 /\<¢,v,e>eeff(a)(¢ — v =e);

3. At}EV[(v(qb,v,e)»Eeff(a) ¢) Vo' = U].

The first formula is the precondition of action a. The
second one is the effect axiom meaning that the value of v
becomes e(s) if the condition ¢ holds in the state s. The third
formulas is the frame axiom meaning that if no condition ¢
s.t. (¢,v,e) € eff(a) holds, then the value of v remains
unchanged.

The global transition formula denotes the state transition
system of the whole game. The definition is as follows:

Definition 6. Let A be a set of actions. The global transition

formula 7'(A) of ILis V) 4 V[T (a(P))].

The following example illustrates the construction of
transition formulas from the definition of actions.

Example 3. Let us continue the 2-rowed Chomp game. We
construct the transition formula 7 (eat1(k)) as follows. The
precondition is v; > k A k > 1. The effects contain two
elements: (T,v;,k—1) and (ve > k,v3,k —1). Hence,
Formula 2 of T (eatl(k))is (T = vf =k—1)A(v2 > k —
vh = k—1). We now consider Formula 3 of T (eat1(k)). For
the variable vy, the formulais T V v} = v; as vy only occurs
in the first element of eff (eat1(k)). Similarly, we obtain the
formula vy > k V v} = vy for the variable vy. Conjoining
the above formulas and simplifying the conjunction lead to
the transition formula 7 (eatl(k)) = (v1 > kA k> 1) A
(Wi=k—1)A(ve >k —=>vhb=k=1)A(va > kVvh =v9).
Similarly, we get that 7 (eat2(k)) = vy > kAk > 0Avh =
k — 1 Awv] = v1. By Definition 6, the global transition
formula 7 (A) = 3k[T (eatl(k)) V (T (eat2(k))]. O

With the global transition formula in hand, we are ready to
give the constraints for the winning formula.

Definition 7. Let II = (X, A,C,E) be an ICG. The con-
straints for the winning formula ¢ of II are as follows:

1. &€ — ¢
2. (CN¢) = IX[T(A) A —oX/X']];
3. (CA=¢) = VX' [T(A) = o[X/X']].

where ¢[X/X’] is the formula obtained by replacing every
occurrence of v € X in ¢ with v'.

The three constraints correspond to Items 1 - 3 of Defini-
tion 3 respectively. When the enumeration process generates
a candidate ¢, we check if the constraint is valid via the
SMT solver. If it is the case, then ¢ is the winning formula.
Otherwise, the SMT solver returns a state s that can be used
to construct a new example e. However, the state s may be
not suitable to improve the candidate ¢. Suppose that s is
a winning state and s = ¢. The example e we construct is
(s, T). In this case, even if we add this example into E, the
new candidate may be equivalent to the previous one. This
phenomenon may also happen when s is a losing state and
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Candidates of Examples
winning formulas Inputs Outputs
- (v1:1,v2:0) 1
v1 # U1 (v1:1,v2:1) T
v2 £ 0 (v1:2,v2:1) 1
V1 = V2 (v1:2,v2:2) T
V1 = V2 (v1:3,v2:1) T
U1 75 v2 + 1 - -

Table 1: A run of synthesizing the winning formula

s | —¢. To repair this defect, we enumerate states in an
increasing order of the sum of values of all state variables
until we find a state s matches the two requirements: (1) the
state s is not the input of an existing example (i.e., s # in(e)
for all e € F); (2) s is a winning state and s = —¢, or s
is a losing state and s |= ¢. Finally, we add the example
(s, (out)), where out denotes if s is a winning state, into E,
and the enumeration process restarts.

We show the working of the process of synthesizing the
winning formula on the 2-rowed Chomp game.

Example 4. Table 1 shows the candidates constructed by
the enumeration process and the corresponding examples
obtained from the verification process. Initially, the set E
contains an example ((v1 : 1,v2 : 0), (L)). The enumeration
process constructs a candidate v; # w;, and sends it to
the verification process. The latter finds that v; # v
is not the winning formula, and enlarges the set F by
((v1 : 1,09 : 1),(T)). The enumeration process then submits
the formulas vy # 0 and v; = w9 to the verification process.
The SMT solver returns a losing state (v; : 2,v2 : 1) and
a winning state (v; : 2,v9 : 2), respectively, as counterex-
amples to the above two formulas. Since the winning state
(v1 : 2,09 : 2) satisfies the formula v; = vs, it is a state that
is not suitable to construct an example. At this iteration, we
generate a winning state (vq : 3,vq : 1) that falsifies the can-
didate v; = v. Finally, the enumeration process succeeds in
finding the winning formula vy # vy + 1 which is certified by
the verification process, and the whole algorithm terminates.

Next, we state two important properties of the enumerative
algorithm to synthesize the winning formula.

Theorem 1. Let II = (X, A,C,E) be an ICG.

Soundness [f Algorithm 1 synthesizes the formula ¢ satisfy-
ing the constraints illustrated in Definition 7, then ¢ is
the winning formula of T1.

Relatively Completeness If the winning formula of 11 is
LIA-definable, then Algorithm 1 terminates with a win-
ning formula.

Proof. Soundness Suppose that ¢ is the formula that Algo-
rithm 1 returns. It satisfies the constraints illustrated in Defi-
nition 7. It follows that ¢ satisfies the requirements illustrated
in the definition of winning formulas.

Completeness Suppose that ¢ is the winning formula of
II with the smallest size. According to Algorithm 1, the enu-
meration process generates the formula ¢, and the verification
process guarantees the correctness of ¢ according to the con-
straints illustrated in Definition 7. O
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Although our synthesis algorithm of winning formulas
is sound and relatively complete on LIA, this algorithm is
non-terminating and incomplete. This is because some linear
ICGs (i.e., ICGs formalized in LIA) have no LIA-definable
winning formula, e.g., the Wythoff game.

4.3 Refining the winning formula

Although we obtain the winning formula from the above step,
it is not sufficient to synthesize winning strategies. We illus-
trate this with the following example. The winning formula
for the 2-rowed Chomp game is v; # vo+ 1. For the first case
v1 < vy + 1, the player should perform the action eat2(vq)
so as to reach a losing state. For the other case v1 > vy + 1,
she should execute eatl(vy + 2). It can be observed that the
player chooses two different actions eatl and eat2 in differ-
ent cases. Therefore, the winning formula should be divided
into a set of formulas satisfying the meticulous condition.

Definition 8. Let IT = (X, A,C, &) be an ICG. Let ¢ be the
winning formula of II, and ¥ a formula entailing ¢. The for-
mula ¢ is meticulous, if there is a semi-ground action a[)/ X]
s.t. the following condition holds

C Atp—{pre(aly/ X)) AVX'[T(alY/X]) = ~¢[X/X]]}.

Intuitively, the above formula says that a[) /%] is appli-
cable over every legal state s satisfying ¢, and performing
a]Y /%] from these states satisfying ¢ leads to a losing state.

We say a cover U of the winning formula is meticulous, if
every formula ¢ € W is meticulous.

We hereafter present a syntactic method to refine the cover
of the winning formula ¢ facilitating synthesis of winning
strategies. The method involves two syntactic operations. We
first obtain an equivalent formula ¢’ by replacing in ¢ every
occurrence of numeric literals of the form e; # es, e1 < e,
e; > ey and e; #., ez by the disjunction of arithmetic
literals as follows.

1. e1 #£ea = e1 <ea Ve > e
2. e1<ey=> e <ey Ve = eog;
3. e1>e3=> e >ey Vel =eog;
4. €1 7_é€3 €2 = \/Oge’geg and e’ #eq €1 Zey €.

We then transform ¢’ into the form \/]"_, ¢; where v; is a
arithmetic term via the distributive law and removing contra-
dictory arithmetic terms. It can be verified that {11, - , ¥, }
forms a cover of the winning formula.

We remark that this step may cause an exponential blowup
in the size of the original winning formula. The experimental
results in Section 5 show that the runtime of the refining step
can be ignored. Another noteworthy point is that it is not
guaranteed that the cover constructed by the method meet
the meticulousness condition. Fortunately, our method does
work on all benchmarks of games considered in this paper.

4.4 Synthesizing the winning strategy

Finally, we synthesize the winning strategy from the cover of
the winning formula as follows.

Algorithm 2 gives the pseudo-code of the synthesis
process. For each 1 of the cover, we need to find a semi-
ground action a[) /3] satisfying the constraint illustrated in



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Algorithm 2: SynthesizeWinningStrategy(Il, ¥)

Input: IT: an description of impartial combinatorial game;
W: a cover of the winning formula ¢ of the ICG II.
Output: §: a winning strategy for II.
1 foreach € Vdo /+ Traverses each formula ¥
of the cover ¥ «/
2 found + false
3 foreach a()) € Ado /+ Find a vector X of
semi-ground expressions s.t. a[Y/X]
is winning for t; */
4 0 < C ANy — {pre(alY/Z])A
s VX' [T (alY/X]) = —oX/ X'}
6 (X, found) + Synthesize({6})
7 if found = true then
; 56U (1, aly/x))
9 L break

0 | return NULL

Definition 8. To do this, we will identify the vector X of
semi-ground expressions for each action a()) € A via the
enumerative algorithm satisfying the constraints illustrated in
Definition 8. Suppose that we are considering an action a(})).
If the enumerative algorithm succeeds in finding a desired
vector X, then a[Y /Y] is the semi-ground action that is win-
ning for v. Initially, the set £ of examples is empty. Finally,
the output of a state s is constructed as follows. The output is
a vector I of integers such that the formula VX {Form(s) —
[pre(aly/I)) A VX'[T(a[V/1]) — o[X/X']]]} is valid.
The subformula Form(s) = A cy[v = s(v)] is a formula
representing the state s. Intuitively, the above formula means
that in the state s, the ground action a()/I) is applicable
and executing it results in a losing state. The vector I can be
computed via a SMT solver. To let the enumerative algorithm
to be terminating, we restrict the maximal size of expressions
to be m. If no such expression satisfies the constraints,
then we consider that the action a is not appropriate, and
continue to choose another action. If we succeeds in finding
the semi-ground action a[Y/X] that is winning for ¢, we
continue to handle another formula of the cover. If no action
is suitable for the formula ), then we consider that 1) is not
meticulous, and terminate the synthesis process.

Similarly to the step of synthesizing the winning formula,
we obtain the soundness and completeness theorem for
synthesizing the winning strategy.

Theorem 2. Let I1 = (X, A,C,E) be an ICG. Let ¢ be the
winning formula of 11, ¥ the cover of ¢, and m the maximal
size of expressions generated in the enumeration process.

Soundness If Algorithm 2 synthesizes the strategy 0, then ¢
is the winning strategy of 11.

Bounded Completeness Suppose that for each ; €
U, there is a semi-ground action a;[Y;/%;] s.t.
each expression of X; is of at most size m and
{1, a1(01/20)), - (Wn, an [V /E0])} is the win-
ning strategy of 1I. Then, Algorithm 2 terminates with
a winning strategy 0.

Proof. Soundness Suppose that ¢ is the strategy that Algo-

1708

rithm 2 returns. For each pair (¢, a[Y/X)]) of §, we get that
it satisfies the constraints illustrated in Definition 8. Hence, §
satisfies the requirements illustrated in the definition of win-
ning stratigies.

Bounded Completeness Suppose that § : {(¢1,a1[V1 /21
Dy s (Ynyan[Vn/Xn])} is the winning strategy where for
each ¢; € U, there is a semi-ground action a;[);/%;] s.t.
each expression of ¥; is of at most size m. According to Al-
gorithm 2, the enumeration process in the Synthesize({0})
process can generate the vector XJ; of expressions of at most
size m for each ¢/; € U. In addition, the verification process
guarantees the correctness of X; according to the constraints
illustrated in Definition 8. Hence, Algorithm 2 returns a win-
ning strategy s.t. each expression for the parameter of semi-
ground actions is of at most size m. O

Now, we discuss the decidability of the problem of strategy
synthesis for ICGs. Given a fixed ICG, we have (1) the prob-
lem of strategy synthesis is undecidable [Luo and Liu, 2019]
since it requires the entailment of arithmetic theory contain-
ing multiplication, which is undecidable; (2) the problem of
the existence of a LIA-definable strategy is decidable remains
open; (3) although the problem that synthesis LIA-definable
strategy is decidable if the given ICG has a LIA-definable
strategy, Algorithm 2 only computes a LIA-definable strat-
egy under the condition that the cover generated by refining
winning formula satisfies the meticulous condition.

Finally, we end with an example of refining the winning
formula and synthesizing the winning strategy.

Example 5. We now synthesize the winning strategy of the
2-rowed Chomp game from the winning formula vy # vo+1.
We first refine the cover of the winning formula as {v; < vo+
1,v1 > vy 4 1}. Then, according to Algorithm 2, we choose
the action eat2(v; ) for the first case, and eat1(vy + 2) for the
second case. We combine all results, and obtain the winning
strategy {(v1 <vo+1, eat2(vy)), (v1 >va+1, eatl(vy+2))}.

5 Experimental Evaluation

We have implemented our approach, proposed in the pre-
vious section, to a system by using Python and Z3 [de
Moura and Bjgrner, 2008]. We evaluate our system on the
following games: 2-rowed and L-shaped Chomp [Schuh,
1952], Empty-and-Divide [Ferguson, 1998], 2-piled Nim
[Bouton, 1901], the monotonic variation of 2-piled Nim [Ahn
et al., 2017], Take-away [Ferguson, 2018], and Subtraction
[Yaglom, 2001]. All experiments were conducted on a
machine with an Intel Core i5 2.50 GHz CPU and 8GB
RAM under Windows 10. We let the maximal size m of
expressions in the step of synthesizing winning strategies be
9, and use timeout of 300s for each synthesis task.

Although there are some related work about strategy
synthesis [Beyene er al., 2014; Farzan and Kincaid, 2018],
they cannot solve the above games in a fully-automated way.
This will be explained in Section 6. Hence, we do not make
a comparison with their work.

2-rowed Chomp: The winning formula is v; # vy + 1,
meaning that the number of cookies in the first row is not
equal to the number of cookies in the second row plus 1. The
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Figure 1: Runtimes for impartial combinatoral games.

winning strategy is as follows: the player eats the cookie at
(2,v1) (resp. (1,v2 4+ 2))if v1 < v + 1 (resp. v; > vy + 1).

L-shaped Chomp: The L-shaped Chomp game is the
Chomp game with an L-shaped board with vertical and hor-
izontal lines. The state variables v; and vy denote numbers
of chips on the vertical and horizontal lines respectively. The
winning formula is v; # vs, and the winning strategy is that
the player eats the cookie at (2,v1 + 1) (resp. (1,v2 + 1)) if
vy < vg (resp. v > v2).

Empty-and-divide: There are two piles containing v; and
v9 chips respectivley. Each player can empty one of the piles,
and then divides the chips of the other into two piles such that
at least one chip is in each pile. This game ends when both of
two piles contains only one chip. The winning state is a state
such that the number of chips in any pile is divided by 2 (i.e.,
v1 =2 0V vy =5 0). The winning strategy for the case vy =2
0 is to empty the second pile, then to move vy — 1 chips into
the first pile, and finally to keep only one chip in this pile if
v1 =9 0. The winning strategy for the case vy =5 0 is similar.

2-piled Nim: There are two piles of chips containing v,
and vy chips respectivley. Each player can choose one from
these two piles, and then take arbitrary chips from it. Each
player cannot remove chips from both piles in one turn.
If both piles are empty, then the game ends. The winning
formula is v; # wvo. The winning strategy is to take vo — vq
(resp. v1 — wvg) chips from the second (resp. first) pile, if
vy < vg (resp. v > vyp).

Monotonic 2-piled Nim: This game is a monotonic
variant of 2-piled Nim. The player can take arbitrary number
of chips from one pile, given that the resulting sequence is
non-decreasing. That is, the second pile always contains at
least as many chips as the first pile (v; < vy). The winning
formula is vo > v;. The winning strategy is to take vy — v1
chips from the first pile at any winning state.

Take-away: There is a pile that contains v chips. Let n be
the parameter of this game, denoting the maximum of chips
that the player can take. At least one chip must be taken. This
games ends when no chip is in the pile. For any parameter n,
the winning formula is v =,, 1 0, meaning that the number
of the remaining chips is not divided by n, and the winning
strategy is to take chips such that v =,4; 0 holds. We test
28 testcases for this game where 3 < n < 30. As Figure 1(b)
shows, the maximal time of computing winning strategy is
238s, and is able to scale up reasonably well.
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Subtraction: The Subtraction game is a generalization
of the Take-away game. Let S be a finite set of positive
integers. In this game, each player can take k chips from
the pile where £ € S. The ending state is that no player
can execute the taking action. The winning formula and
winning strategy varies for the games with different sets. Due
to space reason, we only present the results our approach
obtain for the game with {1,4,6}. The winning formula is
v #5 0 A v #5 2. The winning strategy is to take 1 (resp. 4)
chip(s) if v =5 1 Vv =5 3 (resp. v =5 4). We test 11 cases
for this game. Our approach can solve all cases in 192s, and
solves 6 cases in a very short time (< 1.5s).

Finally, we close this section by summarizing experimental
results. The runtimes of our approach in the above games are
reported in Figure 1. Our approach is able to solve all games
in a reasonable amount of time (< 250s). This shows the
effectiveness and scalability of our approach on a wide range
of games. Hence, our approach provides an effective way to
constructing winning formulas and winning strategies.

6 Related Work

Strategy Synthesis in LTL Games. A well-known class
of games, called Linear Temporal Logic (LTL) Games, is
proposed in [Pnueli and Rosner, 1989]. These games are rep-
resented by an automaton, and the goals are expressed by an
LTL formula. The method proposed in [Pnueli and Rosner,
1989] is an automaton-based approach causing a doubly ex-
ponential time complexity. To lower the complexity, Asarin
et al. [1998] restrict the goal to be some fragments of LTL
formulas so as to obtain polynomial synthesis approaches,
e.g., the safety and reachability games whose goal is of the
form O¢ and O¢ respectively where ¢ is propositional.
The above methods only focus on games over finite states.
In general, it is undecidable for the synthesis problem of
infinite-state games [de Alfaro ef al., 2001]. Some decidable
restricted classes of infinite-state games are identified, e.g.,
games on automatic graphs [Neider and Topcu, 2016],
pushdown graphs [Cachat, 2002; Chatterjee and Fijalkow,
2013], and prefix-recognizable graphs [Cachat, 2003].
Besides automatons, arithmetic formulas are an al-
ternative to formalization for games. Compared to the
former, the latter are easier to understand, and hence
being more suitable for human beings to give a com-
plete description. Recently, arithmetic formulas are used
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to represent infinite-state games [Beyene et al, 2014;
Farzan and Kincaid, 2018]. Our representative framework is
also based on arithmetic formulas, and close to their work.
Beyene er al. [2014] devise a sound and relatively com-
plete proof rules for computing winning strategies for safety,
reachability and LTL games over infinite states. All impartial
combinatorial games considered in this paper are a reachabil-
ity game over infinite states. The rules for reachability games
rely on winning formulas and well-founded relations that are
used to guarantee the correctness and termination of the win-
ning strategy respectively. The generation of winning formu-
las and well-founded relations is solved by the EHSF solver
[Beyene et al., 2013]. Our approach finds the winning for-
mula via an enumerative approach, and does not generate the
well-founded relation as an impartial combinatorial game al-
ways ends in a finite number of moves. One major drawback
of Beyene et al.’s approach is that it requires users to provide
hints in the form of templates to synthesize winning strate-
gies, and hence it is not a full mechanization. By contrast,
our approach succeeds in computing winning strategies for
all games considered in this paper in a fully automated way.
Farzan and Kincaid [2018] propose a fully automated
method, called SimSynth, for synthesizing winning strategies
for reachability games over infinite states. SimSynth firstly
unrolls games as a bounded variation. Then it reduces the
problem of synthesizing the winning strategy for the bounded
variation to the linear arithmetic satisfiability problem
[Farzan and Kincaid, 2016]. Finally, it attempts to generalize
the strategy so as to hold for all states. The insight of our ap-
proach is different from SimSynth. Instead, we first construct
the winning formula, and then generate the winning strategy
from the cover of the winning formula. SimSynth does not in-
volve the winning formula, which precisely describes the set
of winning states. In practice, SimSynth is only able to syn-
thesizes the winning strategy of an ICG instance, and does not
scale up well. For example, it fails to solve the 2-piled Nim
game for the state v; = 6/Avy = 6 within 10 minutes. By con-
trast, our approach succeeds in computing generalized win-
ning strategies, which works for not only one state but also
all winning states, for the 2-piled Nim game in 3.91 seconds.
Another closely related work is the verification of strate-
gies proposed in [Luo and Liu, 2019]. They extend the
situation calculus for describing combinatorial games, and
use finite state automaton (FSA) to represent generalized
winning strategy. The key insight of their approach is to
find an invariant for the FSA strategy, which is similar to
the notion of winning formulas. Hence, their approach has a
few ideas in common with those proposed in this paper and
[Beyene et al., 2014]. Their approach only verifies if an FSA
is a winning strategy, but cannot generate a winning strategy.
Generalized planning. A related problem is generalized
planning that aims to construct a general plan that works for
possibly infinitely many planning instances sharing the simi-
lar structure [Levesque, 2005; Srivastava et al., 2011]. In this
paper, we concentrate on ICGs that is more complex than the
planning domain. The former involves two players while the
latter only focuses on the single-agent case. Hence it is neces-
sary to consider not only how the current player chooses ac-
tions, but also how the other player responds when we synthe-
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size winning strategies. Recently, De Giacomo et al. [2016]
study the translation from generalized planning under partial
observability to two-player games with perfect information.
In the case there are no additional fairness assumptions,
the former corresponds to two-player games with imperfect
information. By adapting the belief-state construction, De
Giacomo et al. remove imperfect information from games,
and hence obtain a two-player game with perfect information
corresponding to the given generalized planning problem.
However, they do not provide an approach to synthesizing
winning strategies for the games with perfect information
corresponding to the given generalized planning problem.

7 Conclusions and Future Work

We have devised an effective approach to computing general-
ized winning strategies that works for possibly infinite many
instances of ICGs. The key insight of our approach is to
synthesize the winning formula and winning strategy by ex-
tending the enumerative algorithm to learn multiple objects.
To exploit the extended enumerative algorithm, we have pro-
vided constraints that are the specifications of the winning
formula and winning strategy. In theory, our algorithm for
synthesizing the winning formula (Alg. 1) is proven to be
sound and relatively complete on LIA, and our algorithm for
synthesizing the winning strategy (Alg. 2) is proven to be
sound and bounded complete. We have implemented our ap-
proach and experimental results show the effectiveness and
scalability of our proposed approach.

Our approach have some limitations, and hence leading to
several avenues for future work. Firstly, the ICGs considered
in this paper are formalized in LIA. For other ICGs, their for-
malization involves real numbers, existential quantifiers, mul-
tiple operator, rounding operator, exclusive-disjunction oper-
ator and so on. We would also like to consider the games
whose formalizations require more expressive language. Sec-
ondly, the enumerative algorithm is a simple algorithm for the
syntax-guided synthesis problem (SyGuS). It would like to
design the solution to strategy synthesis based on more effi-
cient algorithms for SyGuS [Alur et al., 2017; Reynolds et al.,
2019]. Finally, we focus on ICGs under the normal rule. It is
also interesting to apply our approach to other categories of
games, e.g., ICGs under the misere rule (i.e., all ending states
are losing states), and partizan combinatorial games (i.e.,
some moves are available to one player and not to the other).
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