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Abstract
The chase is a famous algorithmic procedure in
database theory with numerous applications in
ontology-mediated query answering. We consider
static analysis of the chase termination problem,
which asks, given a set of TGDs, whether the chase
terminates on all input databases. The problem was
recently shown to be undecidable by Gogacz et al.
for sets of rules containing only ternary predicates.
In this work, we show that undecidability occurs
already for sets of single-head TGD over binary vo-
cabularies. This question is relevant since many real-
world ontologies, e.g., those from the Horn frag-
ment of the popular OWL, are of this shape.

1 Introduction
The chase [Maier et al., 1979] is a fundamental family of al-
gorithms used to solve issues involving the tuple-generating
dependencies [Fagin, 2018] TGDs, e.g., checking query con-
tainment under constraints [Beeri and Vardi, 1984; Maier et al.,
1979], computing data-exchange solutions [Fagin et al., 2005],
querying databases with views [Halevy, 2001] or querying
probabilistic databases [Olteanu et al., 2009]. Moreover, the
chase is intensively used in ontological modelling and knowl-
edge representation [Baget et al., 2011; Calı̀ et al., 2010; Grau
et al., 2013], especially for answering conjunctive queries over
ontologies formulated with TGDs: see e.g. [Benedikt et al.,
2017; Urbani et al., 2018] for practical implementations and
benchmarks. The main idea behind the chase is fairly simple:
given a database D and a set of TGDs T the chase computes a
universal model of D and T i.e., a possibly infinite extension
of D, which is self-sufficient to determine query entailment.
Whilst TGDs have a precise definition i.e., they are first-order
sentences of the form ∀x ∀y α(x, y) → ∃z β(y, z), where
both α and β are positive conjunctions of atoms, the way how
the chase constructs a universal model can be formalized in
various ways. It results in several versions of the chase, de-
veloped during the last decade: the Oblivious Chase [Calı̀
et al., 2013], the Skolem Chase [Marnette, 2009], the Semi-
Oblivious Chase [Marnette, 2009], the Standard Chase [Fagin
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et al., 2005]. In this paper however, we focus on the Obliv-
ious Chase, which is an eager (or a naive) version of the
chase. Roughly speaking, for each TGD ∀x ∀y α(x, y) →
∃z β(y, z) from a set T the Oblivious T -Chase extends an
initial database D with fresh elements z witnessing β(y, z)
whenever it is possible to find tuples x, y witnessing α(x, y).
The chasing process continues until a fix point is reached. If
such fix-point structure is finite, we say that the chase is ter-
minating.

A natural question arising from chase termination is the
All-Instances Chase Termination Problem (AICTP): a static
analysis variant of chase termination, where we ask whether
for a given set T of TGDs the T –Chase terminates on all
possible databases D [Grahne and Onet, 2018]. The prob-
lem was recently shown to be undecidable in [Gogacz and
Marcinkowski, 2014] for sets of ternary rules, no matter what
version of the chase we choose. Since the TGDs used in their
undecidability proof are far from any well-known and well-
behaved rule classes, researchers started looking on AICTP
for rule-sets under some shape restrictions [Calautti et al.,
2015]. Recently the decidability of AICTP has been shown for
sets of linear TGDs [Leclère et al., 2019], sets of single-head
guarded TGDs [Gogacz et al., 2020], and for sets of sticky
TGDs [Calautti and Pieris, 2019].

1.1 Our Contribution

In this work, we consider the All-Instances Chase Termination
Problem for the class of TGDs under two restrictions: first,
the allowed arity of relations in TGDs is at most two and
second, all rules contain at most one atom in their heads. Such
restrictions are very natural, e.g. for ontologies from the Horn
fragment of OWL [Hitzler et al., 2009]. More precisely we
are going to prove the following theorem:

Theorem 1.1. All-Instances Oblivious Chase Termination is
undecidable for sets of binary single-head TGDs.

Our result significantly improves the exponential space
lower bound provided in [Gogacz and Marcinkowski, 2014].
Moreover, by arguing along the lines of [Gogacz and
Marcinkowski, 2014, Sec. 3.5] our proofs can be extended
to the undecidability proof of AICTP for binary single-head
TGDs for both Standard and Semi-Oblivious Chases.
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2 Preliminaries
We consider a set of terms T, defined as the union of three
countably-infinite mutually-disjoint sets of constants C, of
nulls N, and of variables V. A schema S is a finite set of
relational symbols. For each relational symbol R ∈ S we de-
note its arity with ar(R). An atom over S is an expression
of the form R(t), where t is a ar(R)-tuple of terms. A fact
is simply an atom R(t), where t consists only of constants.
An instance I over S is a (possibly infinite) set of atoms,
whereas a database D is a finite set of facts. The active do-
main adom(I) of an instance I is the set of all domain ele-
ments from relations of I, i.e., both constants and nulls. Since
databases and instances are structures in a sense of mathe-
matical logic, we use satisfaction relation |= to indicate that
a structure satisfies a given formula. Moreover, we note here
that in Section 3 we work on schemata containing relational
symbols of arity at most two only. Thus we often refer to
binary relations simply as edges and to domain elements of
instances as nodes or vertices.

A tuple-generating dependency (TGD) is a sentence of the
form ϕ = ∀xy α(x, y) → ∃z β(y, z), where x, y, z are tu-
ples of variables from V and both the body α(x, y) and the
head β(y, z) of ϕ (denoted with body(ϕ) and head(ϕ) re-
spectively) are positive conjunctions of atoms. For the sake of
readability, we often omit quantifiers in TGDs. We say that
a TGD ϕ is: n-ary if all relations appearing in ϕ are of arity
at most n, single-head if head(ϕ) contains at most one atom,
existential if ϕ contains an existential quantifier, and datalog
if ϕ does not contain an existential quantifier.

A substitution is a partial function defined over T. A ho-
momorphism from a set of atoms A to a set of atoms B is a
substitution h from the terms of A to the terms of B, which
additionally satisfies conditions: (i) h(t) = t for each t ∈ C,
and (ii) R(h(t1), . . . , h(tn)) ∈ B for all R(t1, . . . , tn) ∈ A.

An instance I is contained in I′, (written I ⊆ I′), when
there exists a injective homomorphism from I to I′. For two
instances I and I′ and schemata S′ ⊆ S we write I ≡S′ I′

when I and I′ are isomorphic when restricted to relations
from S′.

2.1 The Chase
For a given set T of TGDs and an input instance I, the Oblivi-
ous T -Chase (or simply T -Chase from now on) produces the
universal model of T and I, i.e., a model that can be homo-
morphically embedded in any other model of T and I. The
construction is done by exhaustively applying so-called trig-
gers on the intermediate instances constructed so far.

A T -trigger on an instance I is a pair (ϕ, h) composed of
a TGD ϕ from T and a homomorphism h : body(ϕ)→I.
An application of a trigger (ϕ, h) to I returns a fresh in-
stance1 I′ = I ∪ {h′(head(ϕ))}, where the homomor-
phism h′ ⊇ h maps each existentially quantified variable
from head(ϕ) to a fresh null from N. An application of such
trigger is denoted with I(ϕ, h)I′.

We say that a (possibly infinite) sequence of in-
stances I0, I1, . . . (called intermediate instances) is a T -
chase sequence whenever it satisfies:

1Note that we identify formulae with structures and vice versa.

• for each index i there exists a T -trigger (ϕi, hi) such
that Ii(ϕi, hi)Ii+1 holds, and
• for all indices i < j once the trigger applica-

tions Ii(ϕi, hi)Ii+1 and Ij(ϕj , hj)Ij+1 are given, the
inequality (ϕi, hi) 6= (ϕj , hj) holds, and
• for each i if there exists a trigger (ϕ, h) on instance Ii

then there exists j such that (ϕj , hj) = (ϕ, h).
Given a T -Chase sequence I0, I1, . . . we define its result

as a union
⋃∞
i=0 Ii. It is well-known [Grahne and Onet, 2018]

that the order of application of triggers does not matter in
Oblivious Chase: it leads eventually to the same structure (fi-
nite or not), up to renaming of the nulls. Henceforth, we de-
note with Ch(T ,D) the result of the T -Chase procedure on D
(which is equal to the result of any T -Chase sequence that is
starting from D). We say that the T -Chase on D is terminating
when the resulting instance is finite.

2.2 Undecidability of AIOCTP
In the All-Instances Oblivious Chase Termination Problem
(abbreviated as AIOCTP) we ask if, for given set of TGDs T ,
the T -Chase terminates on all possible databases D. It was
recently shown in [Gogacz and Marcinkowski, 2014]:
Theorem 2.1. The AIOCTP is undecidable.
Theorem 2.2. The AIOCTP for the class of binary single-
head TGDs is EXPSPACE-hard.

Moreover, it was observed by Marnette [Marnette, 2009]
that to decide all-instance termination for the oblivious T -
Chase, it is sufficient to restrict the problem to the termination
on a very specific database called the critical instance. For a
given schema S, the critical instance IScr is simply a database
containing a single constant s, called the source, and all atoms
of the form R(s, s, . . . , s) where R ∈ S. The main property
of the critical instance is presented below:
Lemma 2.3 ([Marnette, 2009]). For any set of TGDs T over
a schema S, the T -Chase terminates on all databases D if and
only if the T -Chase terminates on the critical instance IScr.

Now we present the main undecidable problem used in our
reduction, namely the boundedness of Conway functions. Fix
a natural number n ∈ N. Let πn be a product of n prime
numbers and let q0, q1, . . . , qπn−1, r0, r1, . . . , rπn−1 be natu-
ral numbers such that for every m ∈ N congruent to j mod-
ulo πn the fraction m · qjrj is a natural number.

The Conway function g : N→ N is defined as:

g(m) = m · qm mod πn

rm mod πn

The Conway set G is defined as {gi(2) : i ∈ N}, i.e., the small-
est set containing 2 and closed under applications of g. It is
known that checking if G is bounded is undecidable [Gogacz
and Marcinkowski, 2014, Sec. 3.2–3.3].
Lemma 2.4. For a given natural numbers n, πn and qi, ri
for i ∈ [0, πn), the problem of deciding finiteness of G is
undecidable.

Without losing undecidability status of the above problem,
we may assume that the sequence g(2), g2(2), g3(2), . . . is
non-decreasing. It implies that for a finite Conway set G the
sequence gn(2) will eventually be constant.
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3 Undecidability Proof
This section is entirely devoted to the proof of the main theo-
rem in our paper, namely:

Theorem 1.1 (restated). All-Instances Oblivious Chase Ter-
mination is undecidable for sets of binary single-head TGDs.

The proof of Theorem 1.1 is done by a reduction from the
boundedness of Conway functions. We recall that n, πn, g
and G = {gn(2) : n ∈ N} are fixed and defined as in Sec-
tion 2.2. Note that by applying Lemma 2.3 and Lemma 2.4,
one can conclude that in order to show the main result it is
sufficient to find a set Tall of TGDs such that:

Lemma 3.1. The Tall–chase terminates on the critical in-
stance Icr iff the Conway set G is bounded.

Constructing such set of TGDs, even when there is no re-
striction on the arity of relations, is no easy feat. It can already
be seen in [Gogacz and Marcinkowski, 2014] that working
with the critical instance is a tedious fight. As our reduction
shares some of the ideas with the mentioned work, it needs
to overcome the same (and even a few more) problems. We
briefly discuss our main ideas in the context of the existing
works of Gogacz and Marcinkowski.

The TGDs used in the undecidability proof in [Gogacz and
Marcinkowski, 2014] build a path starting from a critical in-
stance. For every vertex v on such a path the chase computes
a “private” Conway set Gv of v, where the numbers in Gv are
implicitly represented as the distances between v and the other
vertices from the path. When the source “gets” into the Con-
way set Gv then v is allowed to give birth to the next node on
the path. The machinery required for computing Gv in their
work employed multiplication and hence it lead to seemingly
inherent ternarity of their construction: to say that one seg-
ment is c times longer than the other one they need to name
two such segments in a single relation and thus the presence
of three vertices in one atom were required.

In our construction, instead of just building a path, we build
a whole binary tree. The beauty of the construction is that it
allows us to uniquely identify the L∗R-ancestor of each node
in a tree. Moreover, it grants us the ability to specify that a cer-
tain condition holds for nodes u, v and “the unique ancestor
of u” rather to quantify over triples of elements. Continuing
the idea from Gogacz et al., each node v in a tree also com-
putes its own Conway set Gv and gives birth to two new chil-
dren if v “reaches” the source via Gv . It means that if the G is
unbounded then the new vertices will be created indefinitely.

3.1 Schema and Treelike Instances
We define a schema S composed of the following relations:

Src(x) a unary relation used to distinguish the source from
other nodes (no TGD will use Src in its head).

L(x, y) “left” successor relation.

R(x, y) “right” successor relation.
Relations L and R are used to construct the set of edges
in treelike instances defined later.

E(x, y) a binary relation denoting “left or right” successor.

Rei(x, y) for any i ∈ [0, πn−1] is a binary relation denoting
that the distance between x and y modulo πn is equal
to i.

Sp(x, y) a binary relation stating that x is on the side path
of y. This relation along with the next one is the main
building block used in encoding multiplication in tree-
like structures.

Lvl(x, y) a binary relation connecting relevant vertices on
equal “depth”.

Mult i(x, y) for any i ∈ [0, πn − 1] is a binary relation that
works closely with the Sp relation to encode multiplica-
tion.

G(x, y) a binary relation denoting that the distance between x
and y is in G.

Families of Treelike Instances
Analyzing the intermediate instances produced by the chase
is a tedious task. To make such reasoning significantly eas-
ier, one can define a family of instances having some “neat”
properties, i.e., satisfying the following: when G is bounded,
rather than showing that the chase terminates, we can observe
that all intermediate instances are contained in some finite
structure from such family; otherwise, intermediate instances
will contain bigger and bigger members of this family. Hence,
analysing the chase boils down to analysing such family. In
this section, we present three such families. Before we follow,
let us stress that all paths in instances from T go up toward the
source (rather than go down as usual in computer science).

Let us move to the definition of the first family of instances.
We encourage the reader to take a look at Figure 1.

L

R

Figure 1: The instance T3 restricted to the relations L and R. Note
that the root is the source and thus the restriction happens only there.

Definition 3.2 (family T). For any i ∈ N let Ti be a full
binary tree of depth i with successor relations L and R such
that:

• the root is replaced with the source and

• if x is a node from Ti and xl (resp. xr) is its left (resp.
right) child, then Ti |= L(xl, x) (resp.Ti |= R(xr, x))
holds.

The family T is defined as a set {Ti | i ∈ N}.
Observe that the instance T0 is equivalent to the critical in-
stance IScr Note that due to the treelike nature of the family T
we can distinguish leafs and the root in instances from T.
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Paths. Let I be an instance over S and let x and y be
two of its nodes. If x is connected to y by a directed path p
composed of relations from some S′ ⊆ S we say that the
path p is an S′–restricted path. Also, for a regular language L
over S a path p is L–restricted if there exists a word from L
that is a naturally corresponding to relations used by p. For a
path p we denote its length with |p|.

Distances. We discuss the notion of the distance in the in-
stances from T family. Henceforth let us fix a natural number i
and an instance I ≡{L,R} Ti. Let x, y be nodes from I. Con-
trary to what was expected here, we cannot simply define the
distance between nodes x and y as the length of the {L,R}–
restricted path between those nodes. When the source is the
endpoint of a path it warps the natural notion of distance due to
its L and R loops. Hence, we employ a more complicated def-
inition using a set-based approach. With dist(x, y) we denote
the set of all |p| for p being a {L,R}–restricted path from x
to y, i.e. the set of all possible “distances” from x to y. Note
that there are only three possible cardinalities of the distance
set: 0, 1 or∞. If nodes x, y are not connected by a directed
{L,R}–restricted path then |dist(x, y)| = 0, if x and y are
connected and y is not the root then |dist(x, y)| = 1 and other-
wise |dist(x, y)| =∞. While this definition is a bit confusing
it is quite important one as the construction would not work
properly with L and R absent from the source.

Side paths. The notion of a side path plays an instrumen-
tal role in our construction. Let us fix an instance I ≡{L,R} Ti.
For any given node y ∈ I the side path of y is the set of
nodes x s.t. there is a (L∗R)–restricted path from x to y. More-
over for any x from the side path of y, we say that y is the side
parent of x. We stress that every node from I has a unique
side parent.

As a next step, we define the family Tbuilt.

Definition 3.3 (family Tbuilt). For any natural number i the
instance Tbuilti is defined as the minimal instance satisfy-
ing Ti ≡{L,R} Tbuilti such that all following conditions hold
for any two nodes x, y ∈ Tbuilti :

• Tbuilti |= E(x, y) holds if and only if Tbuilti |= L(x, y)
holds or Tbuilti |= R(x, y) holds.

• Tbuilti |= Rej(x, y) if and only if there exists a {L,R}–
restricted path of length k connecting x and y such that k
is congruent to j (modulo πn).

• Tbuilti |= Sp(x, y) if and only if there is a (L∗R)–
restricted path from x to y.

• Tbuilti |= Lvl(x, y) if and only if there exists a node z ∈
Tbuilti and a natural number k such that Tbuilti |=
Sp(y, z) ∧ Ek(x, z) ∧ Ek(y, z) holds.

• Tbuilti |= Multj(x, y) if and only if there exists a node z
witnessing Sp(x, z) such that all values v ∈ dist(x, z)
satisfy qj

rj
· v ∈ dist(x, y).

The family Tbuilt is defined as a set {Tbuilti | i ∈ N}.

Src

y

R

L∗

Sp

(L ∨R)∗

Figure 2: The relation Sp
for a single side parent y.

Src

y

R

L∗
Lvl

(L ∨R)∗

Figure 3: The relation Lvl for a single
side path and some {L,R}–restricted
path .

d

d · qjrj

(L ∨R)∗

R

L∗

Multj

x

y

z

Figure 4: The relation Multj . Observe that the third vertex y is
uniquely defined as a side parent of x.

One may wonder about the purpose of instances from Tbuilt

family. Those instances are simply nodes from the previously
defined family T equipped with a framework for computing
the Conway set G. On the other hand, looking somewhat fur-
ther ahead, the instance Tbuilti is exactly the result of starting
the Tbuild-chase on Ti, where the set of TGDs Tbuild is going
to be defined soon. We postpone the definition of the TGDs
until Section 3.2, as we believe that it is easier to grasp the
meaning of relations from S and hence the proof, by under-
standing those “declarative” definitions first.

Most of the properties of Tbuilt family are easy to under-
stand, except the property of relations Multj . Along those
lines lies the essence of our proof as the binary relation Sp
neatly stores (with a help from side paths) the ternary rela-
tion responsible for multiplication. We strongly encourage the
reader to take more time in visualising the family Tbuilt and
taking a look at the Figures 2-4.

Finally, we define the last family of tree-like instances re-
quired in our undecidability proof. Similarly to the previ-
ous case, one may think that those instances are constructed
by the chase on Tbuilti . One can also view Tcompi as an in-
stance Tbuilti after computation of Conway set G reaches a
fixed point due to the limited depth of the instance.

Definition 3.4 (family Tcompi ). For any natural number i
the instance Tcompi is defined as a minimal instance satisfy-
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ing Tcompi ≡S\{G} Tbuilti such that for any two nodes x and y
from Tcompi , the condition Tcompi |= G(x, y) holds iff there
exists k ∈ dist(x, y) which also belongs to the Conway set G.
The family Tcomp is defined as the set {Tcompi | i ∈ N}.

3.2 Tuple Generating Dependencies
Now, once the intended meaning of all relations is known, we
define the set of TGDs Tall containing fourteen TGDs. Whilst
this number may seem overwhelming, this set can be easily di-
vided into three parts having a coherent and hopefully easy to
grasp meaning. We divide the set Tall as follows: TGDs from 1
to 10 are denoted with Tbuild, TGDs from 11 to 12 are de-
noted with Tcomp and the set of the last two TGDs is denoted
with Tgrow. We also note that the TGDs 4, 9, 10 and 12 are ac-
tually sets of TGDs (having one TGD per each i ∈ [0, πn−1])
rather than just single rules. Note that TGDs from Tcomp
and Tbuild are datalog, while TGDs from Tgrow are existential.

1. L(x, y) → E(x, y)

2. R(x, y) → E(x, y)

The first two TGDs are responsible for building the relation E
over the relations L and R so that E can act as the dis-
junction L ∨ R in the TGDs appearing later. Also, to sim-
plify the forthcoming TGDs, for the relation L (and analo-
gously for R and E) we use Li(x0, xi) as a syntactic sugar
for L(x0, x1) ∧ L(x1, x2) ∧ . . . ∧ L(xi−1, xi).

3. E(x, y) → Re1(x, y)

4. Rei(x, y), E(y, z) → Rei+1 mod πn(x, z)

TGDs 3–4 construct the relation Rei such that Rei(x, y) holds
for nodes x and y if the distance from x to y is equal to i
modulo πn.

5. R(x, y) → Sp(x, y)

6. L(x, y), Sp(y, z) → Sp(x, z)

7. E(y, x), R(y′, x) → Lvl(y, y′)

8. Lvl(x, y), E(x′, x), L(y′, y) → Lvl(x′, y′)

The sole purpose of TGDs 5–8 is to build relations Sp and Lvl
(see also Figures 2 and 3).

9. R(s, y), Lri−1(x, s), Eqi−ri(y, z)→Mult i(x, z)

10. Mult i(x, z), L
ri(x′, x), Eqi−ri(z, z′)→Mult i(x

′, z′)

The TGDs above are responsible for constructing the rela-
tion Mult i which serves as a way (along with the Lvl relation)
to simulate multiplication in our construction (see Figure 4).
The set Tbuild of TGDs (i.e., TGDs from 1 to 10) serves as
a building mechanism. This mechanism is meant to be able
to extend a number of relations over some treelike instances
(more precisely the instance Ti from Definition 3.2).
11. E(x, y), E(y, z) → G(x, z)

12. Rei(x, y), G(x, y), Lvl(x, x
′), Sp(x′, y), Mult i(x

′, z)
→ G(x, z)

The computation of a Conway set is done with the TGDs 11
and 12, defined above. The TGD 12 may look complicated,
but it is a crucial element of our proof as the body of that rule
is able to extract a “hidden” ternary information. Figures 5–8
might shed some light onto these TGDs.

G

y

(L ∨R)∗

(L ∨R)∗

x

Src

Figure 5: To understand how
TGD 12 works, we pick x
and y connected with G.

G
R

L∗

y

x

Src

Figure 6: We focus on vertices on
the side path of y (located onRL∗

path downwards from y).

y

Lvl
Sp

x′x

Src

G

Figure 7: There exists
a unique vertex x′ sat-
isfying both Lvl(x, x′)
and Sp(x′, y).

Rei

Multi
y

z
Src

x′x

G

Figure 8: The length d = gk(2) of
the path between x and y is congruent
to i modulo πn and thus Rei connects x
and y. Also from Mult i(x

′, z) we know
that the distance between x′ and z is
equal to d · qi

ri
which in turn is equal

to gk+1(2) thus we connect x and z
with G.

13. G(x, h), Src(h) → ∃z L(z, x)
14. G(x, h), Src(h) → ∃z R(z, x)

The last two TGDs (denoted with Tgrow) are the only existen-
tial rules in Tall. Those TGDs are used to enlarge instances
and to make them look similar to the full binary trees. Notice
connection between those two rules and a family of treelike
instances T.

The following observation about TGDs 13–14 will prove
useful later:

Observation 3.5. Every node of Ch(Tall, Icr), except the
source, has at most one child connected by L and at most
one connected by R.

3.3 From Unboundedness to Nontermination
In this section we show that if the Conway set G is infinite then
the Tall-chase does not terminate on the critical instance IScr.
Let us, for the rest of this section, define I as the set of all
intermediate instances of the Tall-chase run on IScr.

Lemma 3.6. If G is not finite then the Tall-chase does not
terminate on the critical instance IScr.

Note that a single step of the chase can increase the struc-
ture only by a single atom. Hence it is sufficient to show that
the sequence of intermediate instances from the Tall-chase run
on IScr (= T0) contains arbitrarily large instances:

Lemma 3.7. If G is infinite then for every natural number i
there exists an intermediate instance I ∈ I such that Ti ⊆ I.
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To show Lemma 3.7 we employ an inductive reasoning in
which the following lemma plays the central role:
Lemma 3.8. If G is infinite then for every natural number i:
• if there exists an instance I ∈ I containing Ti then there

exists an instance I′ ∈ I containing Tbuilti

• if there exists an instance I ∈ I containing Tbuilti then
there exists an instance I′ ∈ I containing Tcompi
• if there exists an instance I ∈ I containing Tcompi then

there exists an instance I′ ∈ I containing Ti+1

Proof. Therein we present only the second claimed property.
We believe that it is both the most essential and the most diffi-
cult bit of our construction. Let us define Ibuild as the restric-
tion of the instance I to the image of the injective homomor-
phism witnessing Tbuilti ⊆ I. Observe that from the definition
of the family Tcompi , it is sufficient to show that for every nat-
ural number k and any vertices x, y ∈ Ibuild the following
implication holds: if gk(2) ∈ dist(x, y) then Ch(Tall,T0) |=
G(x, y). We prove it by induction over k. In the proof the only
TGDs in use are TGDs 11-12 hence it might be helpful to take
a look at Figures 5-8. The base of the induction is trivially
satisfied as TGD 11 ensures that any two vertices connected
by a path of length 2 in Ibuild are connected by the G edge
in Ch(Tall,T0).

Let us pick a pair of nodes x and z from Ibuild that are
connected by a {L,R}–restricted path of length gk+1(2). We
will show that there exists a trigger in the instance Ibuild for
TGD 12 such that its head is mapped to vertices x and z.
Let y be a node on {L,R}–restricted path from x to z
such that gk(2) ∈ dist(x, y). Thus from the induction hy-
pothesis we infer that Ibuild |= G(x, y). If y is the source
then y = z and from the fact that Ibuild |= G(x, y) we con-
clude that Ibuild |= G(x, z). Let us consider the case when u
is not the source. Let x′ ∈ Ibuild be the node such that Ibuild |=
Sp(x′, y) holds and x′ satisfies gk(2) ∈ dist(x′, y). Notice
that by the definition of Tbuilti we know that Lvl connects x
and x′ in Ibuild. Observe that Rej(x, y) holds in Ibuild for j ≡
gk(2) mod πn. Finally, we need to show that Multj(x

′, z)
holds in Ibuild. By employing the definition of Tbuilti , it is suf-
ficient to show that every v ∈ dist(x′, y) satisfies qj

rj
· v ∈

dist(x′, z). We know that y is not the source so set dist(x′, y)
contains only gk(2). See that the following holds:

qj
rj
· gk(2) = qgk(2) mod πn

rgk(2) mod πn

· gk(2) = g(gk(2)) = gk+1(2)

We know gk+1(2) ∈ dist(x, z) = dist(x′, z), which im-
plies the satisfaction of Ibuild |= Mult i(x

′, z). Hence we con-
clude that there is the required trigger for the TGD 12 in Ibuild,
which when applied, connects x and z by the relationG. From
the definition of the chase sequence we know that each trigger
is eventually applied, which guarantees the existence of the
demanded instance.

3.4 From Boundedness to Termination
It remains to prove that if the Conway set G is bounded then
the Tall-chase terminates on the critical instance IScr. Here we
really reap the benefits of our declarative definitions from Sec-
tion 3.1 and avoid the tedious work with the ever-expanding

chase. The following observations come from the definition
of the family Tcomp.
Observation 3.9. For every i the instance Ch(Tbuild ∪
Tcomp,Tcompi ) is isomorphic to Tcompi .
Observation 3.10. If G is bounded then in Tcompmax(G)+1 no leaf
is connected by a G-edge with the source.

We employ these two observations to prove the following:
Lemma 3.11. If G is finite then the Tall–chase terminates on
the critical instance.
Proof. We will show that every intermediate instance of Tall-
chase on the critical instance IScr is contained within a finite
instance Tcompmax(G)+1 (existing due to fact that G is bounded)
and thus the chase terminates. First observe that IScr is trivially
contained in Tcompmax(G)+1. Let us take a trigger (ϕ, h) and any
pair of intermediate instances I and I′ from Tall-chase run
on IScr such that I(ϕ, h)I′ holds. Suppose that I ⊆ Tcompmax(G)+1

holds and we will prove that I′ ⊆ Tcompmax(G)+1 holds. Let λ
be an injective homomorphism witnessing the fact that I ⊆
Tcompmax(G)+1 holds. If a TGD ϕ belongs to Tbuild ∪ Tcomp then
trivially from Observation 3.9 we infer I′ ⊆ Tcompmax(G)+1. Oth-
erwise ϕ is contained in Tgrow. W.l.o.g suppose that ϕ is the
TGD 13. When the TGD ϕwas fired, it created the “left” child
of some node. From Observation 3.5 we can immediately con-
clude that ϕ was applied to a node v ∈ I not having a left
child, such that I |= G(v, s) holds (where s is the source). By
Observation 3.10 we infer that v corresponds through λ to a
non-leaf node in Tcompmax(G)+1 but then it is easy to extend λ to
also witness I′ ⊆ Tcompmax(G)+1 as follows: let u be a freshly
created node and λ(u) be equal to the left child of λ(v).

The above lemma, together with Lemma 3.6 from the
previous section, allows us to conclude the correctness of
Lemma 3.1 and thus the correctness of the main theorem.

4 Conclusions
In this paper, we have shown that the All-Instance Oblivious
Chase Termination Problem for the class of single-head binary
TGDs is undecidable. By arguing along the lines of (Subsec-
tion 3.5 in [Gogacz and Marcinkowski, 2014]) we may also
conclude undecidability of All-Instances Termination for the
Standard chase and for the Semi-Oblivious chase. It is fair to
say that the presented proof is quite technical. We encoded
the boundedness problem of Conway functions in the grow-
ing structure of the chase executed on the critical instance.
The main obstacle was to encode the multiplication function,
which is inherently ternary and was used e.g. in [Gogacz and
Marcinkowski, 2014]. To avoid ternarity we force the struc-
ture generated by the chase to be a binary tree and employ the
idea of the side paths to uniquely identify certain elements.

A natural direction for further investigation could be as
follows: is there any non-trivial and well-known class of
TGDs of arbitrary arity, which also causes undecidability
of All-Instances chase Termination? Natural candidates are
classes of weakly sticky-join [Calı̀ et al., 2010], glut-frontier-
guarded [Krötzsch and Rudolph, 2011] or model faithful-
acyclic [Grau et al., 2013] TGDs, since they are the most
expressive among other TGD classes.
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tian Rudolph. Extending decidable existential rules by
joining acyclicity and guardedness. In IJCAI, 2011.

[Leclère et al., 2019] Michel Leclère, Marie-Laure Mugnier,
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