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Abstract

We study the fine-grained complexity of NP-
complete, infinite-domain constraint satisfaction
problems (CSPs) parameterised by a set of first-
order definable relations (with equality). Such
CSPs are of central importance since they form a
subclass of any infinite-domain CSP parameterised
by a set of first-order definable relations. We prove
that under the randomised exponential-time hy-
pothesis it is not possible to find ¢ > 1 such that
a CSP over an arbitrary finite equality language is
solvable in O(c™) time (n is the number of vari-
ables). Stronger lower bounds are possible for infi-
nite equality languages where we rule out the exis-
tence of 2°(1o8n) time algorithms; a lower bound
which also extends to satisfiability modulo theories
solving for an arbitrary background theory. De-
spite these lower bounds we prove that for each
¢ > 1 there exists an NP-hard equality CSP solv-
able in O(c¢™) time. Lower bounds like these imme-
diately ask for closely matching upper bounds, and
we prove that a CSP over a finite equality language
is always solvable in O(c™) time for a fixed c.

1 Introduction

The constraint satisfaction problem (CSP) is the problem of
determining whether a set of constraints has at least one sat-
isfying assignment. Depending on the set of allowed con-
straints I, called a template or a constraint language, it is
possible to formulate many natural problems as CSP(T") prob-
lems. This is especially true if we allow templates over an
infinite universe, which increases the expressive power of
CSPs and e.g. makes it possible to formulate many prob-
lems from artificial intelligence [Bodirsky and Jonsson, 2017;
Dylla et al., 2017]. The complexity of CSPs have also been
the subject of intense theoretical research: for each constraint
language T" over a finite domain CSP(T") is always either
polynomial-time solvable or is NP-complete [Bulatov, 2017,
Zhuk, 2017]. Infinite-domain CSPs are in general unde-
cidable, but there exists a wealth of results when addi-
tional restrictions are imposed. Early examples include the
CSP formulation of Allen’s interval algebra [Krokhin et
al., 20031, the region connection calculus [Renz and Nebel,
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19991, CSPs over first-order definable relations with equal-
ity [Bodirsky and Kdra, 2008] (equality CSPs), and tempo-
ral CSPs [Bodirsky and Kdra, 2010]. More generally, it
is common to consider first-order reducts of a fixed rela-
tional structure A, i.e., languages that are first-order defin-
able (with equality) over .A. Equality CSPs then correspond
to CSP(T") when T is a first-order reduct of (A; () for some
universe A (an equality language) while temporal CSPs cor-
respond to CSP(I") when T is a first-order reduct of (Q; <).
Equality CSPs have previously been intensively studied due
to their fundamental importance for understanding more com-
plex CSPs, since any classification of a larger relational struc-
ture A necessarily also needs to include a classification of
equality CSPs (an equality language I' is a reduct of any
countably infinite structure A). Let us also remark that CSPs
in this setting are very similar to reasoning problems occur-
ing in artificial intelligence, where one fixes a set of “base
relations” A, typically binary, and then consider a satisfiabil-
ity problem where constraints are taken from e.g. the relation
algebra generated by A, or the set of all disjunctive clauses
over A [Dylla et al., 2017]. A recent comparison may also be
found in satisfiability modulo theories (SMT) where a back-
ground theory A is fixed, and where one considers the sat-
isfiability problem of first-order formulas (with equality) re-
stricted to interpretations agreeing with A [Biere e al., 2009].

While theoretical CSP research has concentrated on clas-
sical complexity, complexity theory itself has partially
shifted towards parameterised complexity and fine-grained
complexity, which e.g. encompasses constructing improved
exponential-time algorithms, and proving lower bounds with
stronger assumptions than P # NP such as the (strong)
exponential-time hypothesis (S)ETH (see, e.g., [Cygan er al.,
2015]). In this paper we study the fine-grained complexity
of NP-hard infinite-domain CSPs, with a particular focus on
equality CSPs using the number of variables, n, as the com-
plexity parameter. As remarked, equality CSPs constitute a
natural starting point for questions of fine-grained complex-
ity, since if we cannot even overcome this obstacle there is
little hope of understanding fine-grained complexity ques-
tions for larger classes of CSPs. Assume, for example, that
we prove that there exists an equality language I' such that
CSP(T") is not solvable in O(f(n)) time, for some function
f. Then, regardless of which relational structure .4 that we
choose, we cannot hope to construct an algorithm with a run-
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ning time of O(f(n)) which is applicable to CSP(A) for ev-
ery first-order reduct A of 4. Under this viewpoint it is there-
fore crucial to prove lower bounds for equality CSPs before
moving on to construct faster exponential-time algorithms for
broader classes of infinite-domain CSPs.

Thus, among the class of NP-hard equality CSPs, how
does the choice of I' affect the fine-grained complexity of
CSP(I")? For example, it is known that CSP(T") is solvable
in O* (2108l 13(7"93713)) time when T is an arbitrary equality
language [Jonsson and Lagerkvist, 2017] (the O* notation
is used to suppress polynomial factors). Concerning lower
bounds it is known that no NP-complete equality CSP(T")
problem is solvable in subexponential time without violating
the ETH [Jonsson et al., 2017b], and if I is the full first-order
reduct of (A4; () then there cannot exist an O*(c") time al-
gorithm for CSP(I") for any constant ¢ without violating the
SETH [Jonsson and Lagerkvist, 2017]. Despite bounds like
these, there are still large gaps in our understanding of fine-
grained complexity of infinite-domain CSPs in general, and
of equality CSPs in particular. For example, is it possible to
find an equality language I" such that CSP(T") is NP-complete
but solvable in O(c™) time for a constant ¢ > 1? Is it possi-
ble to solve CSP(I") in O(c™) time whenever I' is a finite
equality language, and in that case, does c depend on I' or
is it possible to find a uniform value? Furthermore, since no
NP-complete equality CSP is solvable in subexponential time
without violating the ETH, does there exist a ¢ > 1 such that
no NP-complete equality CSP is solvable in O(c™) time? Af-
ter defining the necessary preliminaries (in Section 2) we in
Section 3 begin to answer these questions by a careful study
of lower bounds. First, we prove that under the randomised
ETH for each ¢ > 1 there exists a finite equality language
T'. such that CSP(T'.) is not solvable in O(c¢™) time. Sec-
ond, we showcase a striking difference between finite and in-
finite languages and prove the existence of an infinite equal-
ity language I" such that CSP(I") is not solvable in 2°( 18 7)
time (under the ETH). In particular this lower bound rules
out a uniform O(c") time algorithm, ¢ > 1, applicable to
arbitrary equality CSPs (which previously was only known
to hold under the much stronger SETH). We also manage to
lift this lower bound to SMT, where little is known about the
fine-grained complexity, despite being a framework with a
wide range of applications due to the success of efficient SAT
solvers. We provide the first known lower bound under the
ETH and show that regardless of the background theory it
is not possible to solve the resulting SMT in 2°(*1°87) time
without violating the ETH. Furthermore, we are able to prove
this as a straightforward consequence of our general bounds
for equality CSPs, indicating yet another advantage of study-
ing fine-grained complexity in this setting. Third, we prove
that for each constant ¢ > 1 there exists an NP-complete
equality CSP which is solvable in O(c™) time, and thus rule
out the existence of an “easiest NP-complete equality CSP”.
Such CSPs are known to exist for finite-domain CSPs [Jon-
sson et al., 2017b] so we see a clear dividing line between
finite and infinite-domain CSPs.

In light of these lower bounds, what is the best possible
exponential-time algorithm for equality CSPs that we could
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hope for? We tackle this question in Section 4 and construct
an O*(¢") time algorithm for CSP(T") whenever T is a finite
equality language, where c is a constant depending only on
the arities of relations in I". Note that while the constant ¢
likely can be improved, we have already established (under
the randomised ETH) that it is not possible to find a uni-
form value. Similarly, it appears difficult to extend the al-
gorithm to non-trivial classes of infinite equality languages
since we have already proved that there is an infinite equal-
ity language that cannot be solved in 2°("1°6™) time (and the
ETH). Here, it is also interesting to note that certain classes of
infinite-domain CSPs do not admit an O(c") algorithm even
if the template is finite. For instance, there is a finite temporal
language whose CSP (under the randomised ETH) cannot be
solved in 2°("1°87) time [Jonsson and Lagerkvist, 2018].

These results paint a peculiar picture of the fine-grained
complexity of equality CSPs (and all classes of infinite-
domain CSPs over first-order reducts of relational structures).
On the one hand, equality CSPs are incredibly hard to solve
(no uniform O(c™) time algorithm for finite languages under
the randomised ETH, and no go(nlogn) time algorithm for in-
finite languages), but on the other hand one for any ¢ > 1,
say, ¢ = 1.00001, can find an NP-hard equality CSP solvable
in O(c") time. These conflicting messages indicate that a
complete understanding of fine-grained complexity of equal-
ity CSPs is well out of reach, but we have simultaneously
unravelled several interesting research directions. We discuss
some of these in Section 5.

2 Preliminaries

A relational structure is a tuple (A;0,I) where A is a set
typically called a domain, or a universe, o is a relational sig-
nature, and [ is a function from o to the set of all relations
over A which assigns each relation symbol a corresponding
relation over A. For simplicity, we will typically write a re-
lational structure as (A; Ry, ..., Ry) where each R; is a re-
lation over A, and will not make a sharp distinction between
relations and their corresponding signatures. A set of rela-
tions I' over A is a first-order reduct of a relational struc-
ture (A; Ry,..., Ry) if each R € T is the set of models of
a o-formula (with equality) interpreted in (A; Ry, ..., Rk).
In symbols, we write R(z1,...,2,) = @(x1,...,2,) if R
is the set of models of the first-order formula p(x1, ..., z,)
with respect to the free variables x1, ..., x,.

2.1 The Constraint Satisfaction Problem

Let I be a set of finitary relations over some set A of values,
occasionally called a constraint language. The constraint sat-
isfaction problem over I' (CSP(I")) is defined as follows.

Instance: A set 'V of variables and a set C' of constraints
of the form R(x1,...,xy), where k is the arity of R,
T1,...,x, € Vand R eT.

Question: 1Is there a function f: V' — A such that
(f(x1),..., f(xr)) € R forevery R(z1,...,z) € C?

Concerning representation, we take a simple approach and
only consider the case when I is a first-order reduct of a re-
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lational structure, and represent each relation R € I' by a
first-order formula. However, the exact representation is only
important if I" is infinite, since any reasonable representation
can be chosen and precomputed if I is finite.

2.2 Primitive Positive Definitions and
Interpretations

Let I' be a constraint language over a domain A. A
k-ary relation R is said to have a primitive positive
definition (pp-definition) over I' if R(zq,...,zr) =
1,y 2 Ri(x1) A ... A Ry(Xm) Where each R; €
T'U{Eq, } and each x; is a tuple of variables over z1, . . ., T,
Y1, - . ., Yg matching the arity of R;. Here, and in the sequel,
Eq is the equality relation {(a,a) | a € A)} over A. Thus,
R is definable by a first-order formula consisting only of ex-
istential quantification and conjunction over positive atoms
from I" and equality constraints. If I is a constraint language
we let (I') be the smallest set of relations containing I" closed
under pp-definitions. Pp-definitions are typically only useful
for comparing similar languages over the same domain, but
can be generalised as follows.

Definition 1. Let A and B be two domains and let T and
A be two constraint languages over A and B, respectively.
A primitive positive interpretation (pp-interpretation) of A
over T consists of a d-ary relation ' C A? and a surjec-
tive function f: F — B such that F, f~1(Eqg) € (') and
F7Y(R) € (L) for every k-ary R € A, where f~1(R) de-
notes the (k-d)-ary relation {(z1,...,2%,... 2}, ..., 2%) €
AR (f(ad, . 2, o f(xk, . 2d)) € R

Hence, pp-interpretations are generalisations of pp-
definitions, and can be used to obtain polynomial-time reduc-
tions between CSPs (cf. Theorem 5.5.6 in [Bodirsky, 2012]).

2.3 Equality Languages

We say that I' is an equality language if each R € I admits
a first-order definition over a relational structure (A; (), i.e.
the empty structure. Recall here that the equality relation is
always accessible in first-order logic. Without loss of general-
ity we henceforth assume that A = N, write Eq (or = in infix
notation) for the equality relation over N, and R, or # (in in-
fix notation) for the inequality relation {(x,y) € N? | z # y}
over N. The computational problem we consider is then
CSP(T") when I is an equality language. This problem is eas-
ily seen to belong to NP for any finite language, and its classi-
cal complexity has been completely classified [Bodirsky and
Kadra, 2008].

Theorem 1. Let I' be an equality language. Then either
CSP(T') is (1) polynomial-time solvable or (2) there exists
a finite A C T such that CSP(A) is NP-complete since A
pp-interprets every finite-domain relation.

Example 1. Let S = {(z,2,9), (z,y,y) | 2,y € N,z # y},
and observe that S(x,y,z) = (x = yANy # 2)V (v #
y ANy = z). Thus, {S} is an equality language, and it is
known that { S} pp-interprets a language A where CSP(A) is
NP-hard, which implies that CSP({S}) is NP-hard, too. For
tractability, if we take {Eq, R.. } then CSP({Eq, R..}) is well-

known to be polynomial-time solvable. This can be proven

via Theorem 1, but CSP({Eq,R.}) can also be solved by
propagation methods.

2.4 Fine-Grained Complexity and the
Exponential-Time Hypothesis

Assume that CSP(I") is NP-complete. How fast can we solve
CSP(T"), and is it possible to prove stronger lower bounds
than an expected superpolynomial running time (under P #
NP)? Such questions, especially when the complexity pa-
rameter is the number of variables |V| or the number of con-
straints |C', fall under the umbrella of fine-grained complex-
ity. To prove non-trivial lower bounds for NP-complete prob-
lems we typically need stronger assumptions than P # NP.
Say that CSP(T") is solvable in subexponential time if CSP(T")
is solvable in O(2¢IV!) for each ¢ > 0. The conjecture
that 3-SAT is not solvable in subexponential time is called
the exponential-time hypothesis (ETH). There exists several
stronger variants of the ETH. First, an algorithm A is said
to be a 2¢!Vl-randomised algorithm if its running time is
bounded by 2°VI . poly(||I]|) and its error probability is
at most 1/3 (||I]| is the number of bits required to repre-
sent a CSP instance I). For k,d > 1 we then define (1)
¢ = inf{c | 3 a deterministic 2¢V'| algorithm for k-SAT}
and (2) cqr = inf{c | 3 a 2¢/VI-randomised algorithm
for CSP(I'y k) }, where T'g is the set of all relations over
the set {0,...,d — 1} of arity at most k. The randomised
exponential-time hypothesis (r-ETH) is then the conjecture
that co 3 > 0, i.e., that 3-SAT is not solvable in subexpo-
nential time even with randomised algorithms, and the strong
exponential-time hypothesis (SETH) is the conjecture that the
limit of the sequence cs3, ¢4, . .. is equal to 1.

3 Lower Bounds on the Complexity of
Equality Constraints

In this section we investigate lower bounds for equality CSPs.
As remarked in Section 1, such lower bounds are valuable
since if it is possible to prove that CSP(T") is not solvable
in O(f(]V])) time (for some function f) then we cannot in
general expect to solve CSP(A) in O(f(|V])) time when A
is a first-order reduct of an arbitrary relational structure. Let
us recapitulate two known lower bounds.

Theorem 2. (1) If CSP(T') for an equality language T" is NP-
hard then it is not solvable in subexponential time unless the
ETH is false [Jonsson et al., 2017b, Thm. 9]) and (2) if T is
the full first-order reduct of (N; () then CSP(T") is not solv-
able in O(cV) time for any ¢ > 1 unless the SETH is false.
(Theorem 19 in [Jonsson and Lagerkvist, 2017].)

3.1 Finite Versus Infinite Equality Languages

We begin by proving that for every ¢ > 1 there exists a fi-
nite equality language I'. such that CSP(T'.) is not solvable
in O(2¢V1) time without contradicting the r-ETH. We first
require the following result [Traxler, 2008, Thm. 1].

Theorem 3. If r-ETH holds, then there exists a universal con-
stant o > 0 such that for all d > 3, o - log(d) < ¢q.2.
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Theorem 4. For every ¢ > 1, there exists a finite equality
language T, such that CSP(T'..) cannot be solved in O(2¢1V)
(randomised) time unless the r-ETH is false.

Proof. For 1 < a,b < d define Ry 4 4(c1,--.,¢4,%,Y)
\/?:137 = ¢ A \/?:1y = ¢ AN (x#ceVy#cp). For ar-
bitrary d then define the finite equality language ©, = {#
YU{Ra.ap | 1 < a,b < d}. Wepresent a polynomial-time re-
duction from CSP(T'4,2) to CSP(©,) only introducing a con-
stant number of fresh variables. Let (V,C) be an instance
of CSP(I'42). Introduce d fresh variables ¢y, . . . , ¢4 together
with constraints {¢; # ¢; | 1 < ¢ < j < d}. For each
R(x,y) € C, add the constraints Rq ,(c1, ..., cq,x,y) for
every 1 < a,b < d such that (a,b) ¢ R. The resulting
instance (V U {cy1,...,cq},C") can be constructed in poly-
nomial time, and is clearly satisfiable if and only if (V, C) is
satisfiable. Furthermore, d is fixed so only a constant number
of fresh variables are introduced. By Theorem 3, CSP(O,)
cannot be solved in 2(¢42=)IVI time for any ¢ > 0 unless
r-ETH is false, and the result follows by choosing d such that
cq,2 > c. We know that o - log(d) < ¢g4.2 so it is sufficient to

choose a d such that a - log(d) > ¢, e.g. d = 2[&1. O

Thus, assuming the r-ETH, there cannot exist an algorithm
solving CSP(T') in O(c!V!) time for every finite equality lan-
guage I'. This can be strengthened even further for infinite
equality languages, and we will show the existence of I" such
that CSP(T") is not solvable in O(2°(IV 1192 IV1)) time without
contradicting the ETH. In contrast, the second statement of
Theorem 2 is only valid under the much stronger SETH, and
only if I' consists of all first-order definable relations over
(N; (). For this lower bound we provide a reduction from the
k x k INDEPENDENT SET problem: given a graph G over
the vertex set {1,...,k} x {1,...,k} (where k is part of the
input), is there an independent set of size k in G with exactly
one element from each row? The following lower bound is
known under the ETH [Lokshtanov et al., 2018].

Theorem 5. k£ x k INDEPENDENT SET is not solvable in
20(k1o8 k) time unless the ETH is false.

For n > 1 define R, (y,2z1,...,2,) =y = 21 Vy =
o V- Vy=umx,, andlet R(z,y,z,w) =x £ yV 2z # w.
Let I'i,¢ be the infinite equality language {#, R, R1, Ro, .. .}.

Theorem 6. CSP(T'i,¢) cannot be solved in 20(IVI1og V) fime
unless the ETH is false.

Proof. To prove the result, we present a polynomial-time re-
duction from &k x k INDEPENDENT SET to CSP(I';,¢) such
that the resulting CSP(T';,¢) instance only contains 2k vari-
ables. Let G = (V,E) denote an arbitrary graph where
V ={1,...,k} x {1,...,k}. We then begin by introduc-
ing k variables a1, ..., ax together with the constraints a; #
a;,1 <1< j < k. Second, for eachrow 1 < ¢ < kin G, in-
troduce a variable x; and the constraint Rg(x;,a1,...,ax).
This constraint ensures that x; equals one of the variables
ai,...,ag. Third, for each edge e = ((a,b), (¢,d)) € E, in-
troduce the constraint R(x,, ay, Z¢, aq). This constraint guar-
antees that both endpoints of an edge are not put into the in-
dependent set simultaneously. O
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Hence, we cannot even hope to solve CSP(T") in O(cV'])
time for any ¢ when I is allowed to be infinite. Furthermore,
since an equality CSP is always solvable in 20(VIlog[V])
time [Jonsson and Lagerkvist, 2017], the bound in Theorem 6
is asymptotically tight. Last, let us consider a problem which
is related to equality CSPs, for which we rather effortlessly
can obtain lower bounds by reducing from CSP(Ti,¢). Sar-
isfiability modulo theories is a decision problem for logical
formulas with respect to combinations of background theo-
ries expressed in classical first-order logic with equality. Let
SMT(T) be the problem of determining whether a first-order
formula (with respect to a background theory 7) is satisfiable,
and let SMTy/(7") be the subproblem where universal quanti-
fiers are not allowed. We can then readily prove a matching
lower bound valid for any background theory 7.

Lemma 1. SMTy(0) cannot be solved in 2°0V 11081V time
unless the ETH is false.

Proof. We present a polynomial-time reduction from
CSP(Ti,¢) which does not introduce any fresh variables. Let
(V,C) be an instance of CSP(T'iy¢), where V- = {x1, ..., 2k}
andC' = {c1,...,¢p}. Define F = 31 ... Jzg: F1A---AF,
where F; = (=(z = y))ife; = o # y, Fi = (y =
1 Vy =x2V ... Vy = x,) if¢; = Ro(y,21,...,%n),
and F; = (-(z = y) V(z = w)) if ¢; = S(z,y,z,w). It
is obvious that F is true if and only if (V, C) has a solution,
that F' can easily be constructed in polynomial time, and that
F' contains as many variables as there are variables in V. The
result then follows from Theorem 6. O

To exemplify this, we consider the well-known unit two
variable per inequality (UTVPI) class of constraints, i.e.,
SMTy(UTVPI) where UTVPI for each integer b and co-
efficients ¢;,co € {—1,1} contains ¢; - & + ¢ -y > b.
The UTVPI class has many applications in, for instance, ab-
stract interpretation, spatial databases, and theorem proving
(cf. Schutt and Stuckey [2010] and the references therein.)
It is known [Seshia et al., 2007] that SMTy(UTVPI) can be
solved in 20UV 118 ) time where d = 2|V|(bpax + 1) + 1
and b, 1S the maximum over the absolute values of con-
stant terms in the constraints. Using Lemma 1 we can prove
that this algorithm is close to optimal.

Theorem 7. SMT over UTVPI constraints, SMTy(UTVPI),
cannot be solved in 2°"'°2 %) time unless the ETH is false.

Proof. Assume there is an algorithm A that solves
SMTy(UTVPI) in 2°0VI1°8d) time. The formulas con-
structed in Lemma 6 are SMTy(UTVPI) formulas (degen-
erated ones, though, since they do not contain UTVPI con-
straints). Thus, b« for this class X of formulas is 0, im-
plying that A can solve SMTy(UTVPI) restricted to X in

go(nlogn) time, contradicting Lemma 1. O

3.2 No Easiest NP-Hard Infinite-Domain CSP

Our lower bounds suggest that equality CSPs are rather dif-
ferent from finite-domain CSPs when viewed under the lens
of fine-grained complexity. In this section we prove yet an-
other differentiating factor. For each finite A it is known that
there exists I' 4 such that CSP(I"4) is NP-complete, but if an
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NP-complete CSP(A)! over A is solvable in O(c!V!) time,
then CSP(T"4) is solvable in O(c!V'l) time, too [Jonsson et
al., 2017b]. More generally, if G is a set of constraint lan-
guages over A, say that CSP(T") for I" € G is the easiest CSP
problem in G if CSP(T") is solvable in O*(c!V!) time when-
ever CSP(A) for A € G is solvable in O*(c/V']) time.
Contrary to the finite-domain case we will prove that
there does not exist an easiest NP-complete equality CSP,
unless the ETH is false. To prove this we for every
¢ > 1 show the existence of an equality language I'.
such that CSP(T..) is NP-complete but solvable in O(c/V'!)
time. First, recall from Example 1 that the ternary rela-
tion § = {(z,z,y),(z,y,9) | .,y € Nz # y} has
an NP-complete CSP. We will show how S can be ex-
tended with additional arguments in order to decrease the
time complexity of the resulting CSP. If v = (vy,...,vk)
and w = (wy,...,wy) are two k-ary tuples of variables, x
a variable, and R is a binary relation, then we write R(z, v)
for Ay <<y R(2,v3), R(v,w) for A, ; ;< R(vi,w;), and
R(v) for N\ <; j<p.izj B(vi,v;). For each k > 1 now
define S*(z,y,z,v,w) as Nsefoy.ay veivw) Re(s:8) A
R.(viw) A (z =y Ay # z2NEq(v) AR.(W)) V (z #
yAy = z AR.(v) A Eq(w)) where v = (vy,...,v5)
and w = (ws,...,wy) are two distinct k-ary tuples of vari-
ables. The problem CSP({S*}) is clearly NP-complete since
S € ({S*}), and we will now prove that the fine-grained
complexity of CSP({S*}) decreases, in the following sense.

Theorem 8. Let ¢ > 1. Then there exists a k such that
CSP({S*}) is solvable in O*(c!V) time.

Proof. We will present an algorithm for CSP({S*}) which
runs in O*(2%) time. The claim then follows when choos-

ing sufficiently large k > @. Thus, choose & > 1 and

let (V, C) be an instance of CSP({S*}), where |V'| = n. Say
that a set of inequality constraints L is consistent if L, viewed
as an instance of CSP({R..}), is satisfiable, and inconsistent
otherwise. The consistency of a set of inequality constraints
can be determined in polynomial time since CSP({R..}) is
in P (from Example 1). Consider the following algorithm for
CSP({S*}), where the set L is used to keep track of inequal-
ity constraints induced by the constraints in the instance.

1. Let L = 0.

2. If L is inconsistent, return no.

3. If L is consistent and C' = {J, return yes.

4. Pick a constraint Sk(xi,yi, 2i, Vi, W;) € C where v; =
(v}, ..., oF) and w; = (w}, ..., wk).

70 AP i

5. Return no if:
(a) |{mzayzazl}‘ = 1»

(b) {mivyiazi}m{vz’lv"wvawilv"'awi‘c}#0’
© {v},...,oFyn{wh, ... wk} #0, orif
@ [{v},...,oF} < kand [{w},...,wF}| <k.

"For technical reasons A contains all unary relations over A.

6. If |[{v},...,vF}| < k and |[{w},...,wF}| = k then
we identify y; with x;, v} with every variable in
{v}, ..., vFY\ {v}}, remove S*(z;, i, 2i, vi, w;), add
R (wi), R (@i, vi), R (s, wi), R (24, vi), R (25, wi),
R.. (i, 2) to L, and jump to step (2).

7. The case [{v},..., v} = k, [{w},...
handled analogously.

Jwh <k, s

8. If none of the above cases apply we proceed as follows.

(a) If |[{x;,y;, 2;}| = 2 then no branching is necessary,
and depending on whether x; = y; or x; # y; we
jump to step (b) or step (c) below.

(b) Identify y; with z;, v} (2 < j < k) with v},
add R#(Wi), R#(S(}Z‘, Vi)7 R;é (l‘i, Wi)7 R;é(ZZ‘, Vi),
R.(z;,w;), and R._(z;,2)} to L, remove
S*(xi, i, 2i, Vi, W;), and jump to step (2).

(c) Identify z; with y;, w? (2 < j < k) with w], add
R.(vi), Ry(zi,vi), R (i, wi), R (93, vi),
Ri(yi,wi), and R_(z;,y;) to L, remove
S*(zi, i, 2i, Vi, W;), and jump to step (2).

9. Answer yes if any of the two recursive branches return
yes, and otherwise no.

For correctness, the algorithm branches on a constraint
Sk(x;,vi, 2, vi,w;) € C, and either identifies z; with y;,
or y; with z;, and in the process identifies variables and in-
troduces inequality constraints according to the definition of
Sk. Furthermore, the algorithm answers yes’ if and only if
it for each constraint Sk(mi, Yi, 2i, Vi, W;) € C is possible to
identify z; with y;, or y; with z;, in a non-contradictory way,
and answers ‘'no’ if and only if this is not possible. Con-
cerning time complexity, note first that all variables in v;
and w; are distinct, once step (8) is reached. This follows
from the tests undertaken in step 5 where we systematically
verify that {w},...,w¥} and {v},... v*} are disjoint and
that [{w},...,wF}| = [{v},...,vF}| = k. Furthermore, if
(8)(b) or (8)(c) is reached then |{x;, y:, z; }| = 3, as otherwise
the current instance is unsatisfiable (|{x;, y;, 2;}| = 1) or no
branching was required (|{x;,y:, 2;}| = 2). Thus, in each
branch we eliminate & variables via variable identification,
which implies that the time complexity is bounded by the re-
currence T'(n) = 2T (n — k) + poly(||I]|). Thus, the total
running time is O* (2% ), which solves CSP({S*}) in O*(c")
time for sufficiently large k. O

We immediately obtain the following corollary.

Corollary 1. Let A = (A; Ry, ..., Ry) be a relational struc-
ture over a countably infinite A, such that CSP(I") for a

first-order reduct of A is NP-complete if and only if T pp-

interprets 3-SAT. Let G = {T" | T is a first-order reduct of
A and CSP(T') is NP-complete}. If G has an easiest CSP
problem then the ETH is false.

Proof. For each ¢ > 1 there exists a constraint language
I'. € G such that CSP(T".) is NP-complete and solvable in
O*(c!V!) time (Theorem 8). If G has an easiest NP-complete
problem CSP(T") then (1) CSP(I") pp-interprets 3-SAT, and
(2) CSP(T) is solvable in O*(c!V!) time for each ¢ > 1. Thus,
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CSP(T") is solvable in subexponential time, but this violates
the ETH by Corollary 10 in [Jonsson et al., 2017b]. O

This captures the NP-hard cases of the CSP di-
chotomy conjecture over finitely bounded homogeneous
structures [Barto and Pinsker, 2016].

4 Upper Bounds for Equality CSPs

The lower bounds established in Section 3 suggest that we
cannot construct an O(c!V!) time algorithm (¢ > 1) which
is applicable to arbitrary equality languages. However, if we
fix a finite equality language T', this still leaves the possibil-
ity of constructing an O(c!V'!) time algorithm for a constant
c depending on I'.  We manage to construct a novel algo-
rithm for CSP(T"), where T is a finite equality language with
maximum arity «, with a running time of O*((@)M).
Thus, the algorithm runs in O*(c/V'!) time for a constant ¢
depending on I', which is a significant improvement over the
algorithm proposed by [Jonsson and Lagerkvist, 2017] which

solves CSP(T") in O*(Z‘Vl'log(lgﬁﬁmg )) time.
Theorem 9. Let ' be a finite equality language and let
a = max{ar(R) | R € T'}. Then, CSP(T") can be solved

in O*((%)IV‘) time.

Proof. Consider the following algorithm A([) for an instance
I of CSP(T).

1. Let] = (V,C)andlet V = {x1,..., 2, }.

2. Define s: V — {1,...,n} such that s(x;) = i.
3. If s is a solution to I, then return ’yes’.

4. If s is not a solution to I and |V| = 1, then return 'no’.
5

. Arbitrarily choose a constraint R(x;,,...,x;,) that is

not satisfied by s.

6. Foreach1 < j < k < p, let I, denote the instance
obtained by identifying x;, with z;, in I.

(a) If A(I; ) =’yes’ then return ’yes’.
7. Return 'no’.

We begin by proving correctness by induction over |V| =
n. If n = 1, then the tests in steps (3) and (4) provide the
correct answer. Assume the algorithm is correct when n =
m > 1. Let I = (V,C) be an instance where |V| = n =
m + 1. First, assume that I has an injective solution. Then it
is readily verified that f: {1,...,|V|} defined as f(z;) = ¢
foreach z; € V = {x1,..., 2y}, is a solution to [ as well
(in technical terms this follows from the well-known fact that
the automorphisms of T is the full symmetric group [Bodirsky
and Kdra, 2008]). Hence, the algorithm answers "yes’ via step
(3). Otherwise I does not have an injective solution and at
least one constraint ¢ = R(z;,,...,2;,) € C is not satisfied
by the function s. This implies that (at least) two variables
in {x;,,...,x;,} must be assigned the same value. This is
systematically tested in step (6), and the correctness follows
from the inductive hypothesis.

Concerning the time complexity, it is bounded from above

by the recurrence T'(n) = @ -T(n —1) + poly(||1]])
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since i, < « for each possible choice of constraint
R(w;,, ... ;). Thus, T(n) € O*((21%2)"), and we get
the desired bound on the time complexity. [

5 Concluding Remarks

We have studied fine-grained complexity of infinite-domain
equality CSPs, and have proven that this class of problems
differ from finite-domain CSPs in almost every way conceiv-
able. Despite the disarray of this complexity landscape, it is
possible to outline several concrete future research directions.
First, since we know that all finite equality languages can be
solved in O(c!V!) time and that there exists infinite equality
languages not solvable in O(c!V'l) time for any ¢ > 1, is it
possible to prove a dichotomy separating the problems solv-
able in O(c!V!) time to those that are not?

More generally, which infinite-domain CSPs are solvable
in O(c!Vl) time? Is this strictly a property of finite first-
order reducts (disregarding trivial examples of infinite lan-
guage which can be constructed by adding an infinite number
of relations which do not affect the complexity)? An interest-
ing continuation is the class of temporal CSPs, i.e., CSPs over
first-order reduct of (Q; <). Temporal languages are well-
behaved from a model theoretic viewpoint (w-categorical),
admit a dichotomy between P and NP-complete, and are al-
ways solvable in O*(2!VI1°8 V1) time, so one would expect
similarities between equality CSPs and temporal CSPs when
it comes to fine-grained complexity. Thus, which temporal
CSPs are solvable in O(c!V!) time? Despite the aforemen-
tioned similarities there are still large differences to equality
CSPs. For example, there exists a finite first-order reduct I" of
(Q; <) such that CSP(I") is not solvable in 2°(V 198 IV time
without violating the r-ETH [Jonsson and Lagerkvist, 2018].

Last, we have seen that the class of NP-complete equality
CSPs does not admit an “easiest problem” without violating
the ETH, contrary to satisfiability problems [Jonsson ef al.,
2017al and finite-domain CSPs [Jonsson et al., 2017b]. The
existence of easiest problems of this form can be explained by
so-called weak bases. We brush aside the technical definition
and simply remark that a weak base is a constraint language I"
implying that CSP(T") is the easiest CSP problem with respect
to the set of constraint languages that can pp-define (and be
pp-defined by) I". A weak base I such that (I") is the full first-
order reduct E of (N; () would therefore be a great surprise
since it, in the light of Theorem 8, would contradict the ETH.
However, it is in fact possible to unconditionally prove that
E does not have a weak base, using techniques from partial
clone theory. In general, both positive and negative examples
of infinite-domain weak bases exist [Romov, 20181, but the
resulting CSPs are not of practical interest. Thus, does there
exist (I') over a countably infinite domain admitting a weak
base, and where CSP(I") is NP-hard?
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