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Abstract

Implicative semi-lattices (also known as Brouw-
erian semi-lattices) are a generalization of Heyt-
ing algebras, and have been already well studied
both from a logical and an algebraic perspective.
In this paper, we consider the variety ISt of the
expansions of implicative semi-lattices with tense
modal operators, which are algebraic models of
the disjunction-free fragment of intuitionistic tense
logic. Using methods from algebraic proof theory,
we show that the logic of tense implicative semi-
lattices has the finite model property. Combining
with the finite axiomatizability of the logic, it fol-
lows that the logic is decidable.

1 Introduction
Intuitionistic logic [Dalen, 1986] and its modal expansions
[Servi, 1984; Simpson, 1994; Wolter and Zakharyaschev,
1999] have been widely studied and applied to the area of
computer science and artificial intelligence [Boudou et al.,
2019], where they are regarded as a natural framework to
reason about dynamic processes [Pearce, 1996; Leone et al.,
2006; Balbiani and Diéguez, 2016]. In particular, [Pearce,
1996] showed that the stable model semantics [Gelfond and
Lifschitz, 1988] for normal and disjunctive logic program
can be characterized by a two points Kripke model for in-
tuitionistic modal logic, and that DLV system for knowl-
edge representation and reasoning [Leone et al., 2006] is one
of the known solvers for the stable model semantics. Be-
sides, intuitionistic temporal (tense) logics have also been ap-
plied to reactive systems [Maier, 2004], topological dynamics
[Fernández-Duque, 2016], etc.

Implicative semi-lattices (also known as Brouwerian semi-
lattices), introduced by William C. Nemitz [Nemitz, 1965]
in the context of an algebraic approach to non-classical log-
ics, are algebraic reducts of Heyting algebras, and their log-
ical and algebraic theory has been widely investigated [Ne-
mitz and Whaley, 1971; Nemitz and Whaley, 1973; Wronski,
1973; Köhler, 1981]. The interest in implicative semi-lattices
stems from the fact that, in certain respects, they display a
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better behaviour than Heyting algebras, as witnessed by re-
sults such as [Diego, 1966], which employ algebraic methods
to establish logically relevant properties. Specifically, [Diego,
1966] showed that the variety of implicative semi-lattices is
locally finite. Based on this result, C. McKay [Mckay, 1968]
proved that all intermediate logics which are axiomatic exten-
sions of the logic of implicative semi-lattices have the finite
model property (FMP), which implies that these logics are
decidable.

In this paper, we consider the natural algebraic semantics
of the disjunction-free fragment of intuitionistic tense logic
(in the sense of W. B. Ewald [Ewald, 1986] and [Figallo and
Pelaitay, 2014]). The algebras of this class, which we refer
to as tense implicative semi-lattices (or ISt-algebras), are ob-
tained by expanding implicative semi-lattices with two pairs
of adjoint tense operators ♦,� (or F, H) and �,� (P, G). The
decidability and the FMP of intuitionistic tense logic and its
fragments are long term open questions.

The main contribution of the present paper is to show that
the disjunction-free fragment of intuitionistic tense logic has
the FMP, using methods from algebraic proof theory ([Ciabat-
toni et al., 2012]). Having the FMP and the finite axiomatiz-
ability imply that the disjunction-free fragment of intuitionis-
tic tense logic is decidable. In fact, the disjunction-free frag-
ment of intuitionistic tense logic gives a general logical base
for different intuitionisitic tense logics, for example the logic
used in [Pearce, 1996]. The Gentzen-style sequent calculus
and the method of constructing finite models proposed in this
paper can be useful to provide some ideas for constructing
automated deductions for different intuitionistic tense logics,
and to give more efficient ways of implementing related dy-
namic processes in artificial intelligence.

The paper is organized as follows. In Section 2, we col-
lect relevant preliminaries. In Section 3, we introduce se-
quent calculi for intuitionistic tense logic and the logic of ISt-
algebras both of which enjoy cut elimination and subformula
property, and show that intuitionistic tense logic is a conser-
vative extension of the logic of ISt-algebras in a proof theo-
retic way. In Section 4, we show that the logic of ISt-algebras
has the FMP and the decidability. Finally, we mention some
prospects for future work in Section 5.
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2 Preliminaries
In this section, we recall some algebraic definitions and re-
sults which will be used in the rest of the paper.
Definition 1. ([Figallo and Pelaitay, 2014]) An intuitionistic
tense algebra (or IKt-algebra) is a structureA = (A,∧,∨,→
,♦,�,�,�, 0, 1), where A = (A,∧,∨,→, 0, 1) is a Heyt-
ing algebra, and ♦,�,�,� are unary operators (called tense
operators) on A satisfying the following conditions: for all
a, b ∈ A,
(t1) �1 = 1 and �1 = 1;

(t2) �(a ∧ b) = �a ∧�b and �(a ∧ b) = �a ∧�b;

(t3) a ≤ �♦a and a ≤ ��a;

(t4) ♦0 = 0 and �0 = 0;

(t5) ♦(a ∨ b) = ♦a ∨♦b and �(a ∨ b) = �a ∨�b;

(t6) ♦�a ≤ a and ��a ≤ a;

(t7) ♦(a→ b) ≤ �a→ ♦b and �(a→ b) ≤ �a→ �b.

It is not difficult to show that: (1) if ♦(�a ∧ b) ≤ c, then
a∧♦b ≤ c and (2) if �(♦a∧ b) ≤ c, then a∧�b ≤ c hold in
IKt-algebras.
Definition 2. ([Nemitz, 1965]) An implicative semi-lattice is
a structure S = (L,≤,∧,→) in which L is a nonempty set,
≤ is a partial order on L, ∧ is the greatest lower bound with
respect to ≤, and → is a binary operator in L such that for
any elements a, b and c ∈ L,

a ∧ b ≤ c iff a ≤ b→ c

An implicative semi-lattice is bounded if it has the least ele-
ment 0.

Finite implicative semi-lattices (are complete lattices, and
hence) are always bounded.
Proposition 3. ([Nemitz and Whaley, 1973, Theorem 2.1])
The variety of implicative semi-lattices is locally finite.

The following definition identifies the main algebraic envi-
ronment of the present paper.
Definition 4. A tense implicative semi-lattice (ISt) is a
bounded implicative semi-lattice endowed with unary oper-
ators ♦,�,�,� satisfying all conditions (t1)-(t7) except (t5)
in Definition 1.

In what follows, we use ISt and IKt to denote the variety
of IKt-algebras and the class of tense implicative semi-lattices
repectively, and IKt and ISt to denote the logic of IKt and the
logic of ISt respectively.

3 Sequent Calculi for IKt and ISt
In this section, we introduce sequent calculi for the logic of
IKt and the logic of ISt. Both calculi enjoy cut elimination
and subformula property. We show that the logic of IKt is a
conservative extension of the logic of ISt.
Definition 5. Fix a denumerable set Var of propositional
variables. The set of formulae (terms) F is defined recur-
sively as follows:

F 3 α ::= p | > | ⊥ | α1 ∧ α2 | α1 ∨ α2 | α1 → α2 |

♦α | �α | �α | �α
where p ∈ Var.

Definition 6. Let (, ) ◦ and • be structure operations for ∧,
♦ and � respectively. The set of structures FS is defined
inductively as follows:

FS 3 Γ ::= α | Γ1,Γ2 | ◦Γ | •Γ

A structure is an element inFS . In what follows, we use Γ,∆
with or without subscripts to denote structures. A sequent is
an expression of the form Γ⇒ α where Γ is a structure and α
is a formula. A context is a structure Γ[−] with a designated
position [−] which can be filled with a structure. In particu-
lar, a single position [−] is a context. Let Γ[∆] be structure
obtained from Γ[−] by substituting ∆ for [−]. By f(Γ) we
denote the formula obtained from Γ by replacing all structure
operations by their corresponding formula connectives.
Definition 7. The Gentzen sequent calculus GIKt for IKt con-
sists of the following axiom and rules:
(1) Axiom and Constant rules:

(Id) α⇒ α
Γ[>]⇒ β

(>)
Γ[∆]⇒ β

∆⇒ ⊥
(⊥)

Γ[∆]⇒ α

(2) Connectives rules: for any i ∈ {1, 2},
Γ[α1, α2]⇒ β

Γ[α1 ∧ α2]⇒ β
(∧L)

Γ1 ⇒ α1 Γ2 ⇒ α2

Γ1,Γ2 ⇒ α1 ∧ α2

(∧R)

Γ[α1]⇒ β Γ[α2]⇒ β

Γ[α1 ∨ α2]⇒ β
(∨L)

Γ⇒ αi

Γ⇒ α1 ∨ α2

(∨R)

∆⇒ α1 Γ[α2]⇒ β

Γ[∆, α1 → α2]⇒ β
(→L)

α1,Γ⇒ α2

Γ⇒ α1 → α2

(→R)

Γ[◦α]⇒ β

Γ[♦α]⇒ β
(♦L)

Γ⇒ α

◦Γ⇒ ♦α
(♦R)

Γ[•α]⇒ β

Γ[�α]⇒ β
(�L)

Γ⇒ α

•Γ⇒ �α
(�R)

Γ[α]⇒ β

Γ[◦�α]⇒ β
(�L)

◦Γ⇒ α

Γ⇒ �α
(�R)

Γ[α]⇒ β

Γ[•�α]⇒ β
(�L)

•Γ⇒ α

Γ⇒ �α
(�R)

(3) Structural and Cut rules: for any i ∈ {1, 2},
Γ[∆1, (∆2,∆3)]⇒ β

Γ[(∆1,∆2),∆3]⇒ β
(As1)

Γ[(∆1,∆2),∆3]⇒ β

Γ[∆1, (∆2,∆3)]⇒ β
(As2)

Γ[∆1,∆2]⇒ β

Γ[∆2,∆1]⇒ β
(Ex)

Γ[∆i]⇒ β

Γ[∆1,∆2]⇒ β
(Wk)

Γ[α, α]⇒ β

Γ[α]⇒ β
(Conf)

∆⇒ α Γ[α]⇒ β

Γ[∆]⇒ β
(Cut)

Γ[◦∆1, ◦∆2]⇒ β

Γ[◦(∆1,∆2)]⇒ β
(Con◦)

Γ[•∆1, •∆2]⇒ β

Γ[•(∆1,∆2)]⇒ β
(Con•)

Γ[◦(•∆1,∆2)]⇒ β

Γ[∆1, ◦∆2]⇒ β
(Wk◦)

Γ[•(◦∆1,∆2)]⇒ β

Γ[∆1, •∆2]⇒ β
(Wk•)

The Gentzen sequent calculus GISt for ISt is obtained from
GIKt by removing (∨L) and (∨R).

This style of sequent calculi is first introduced by M. Moor-
gart [Moortgat, 1996] and the rules (Wk◦) and (Wk•) are
obtained by modifying S5 rule in modal Lambek calculus in
[Lin and Liu, 2012].

A sequent Γ ⇒ β is provable in G where G ∈
{GISt,GIKt}, notation `G Γ ⇒ β, if there is a derivation
of Γ ⇒ β in G. We write `G α ⇔ β if `G α ⇒ β and
`G β ⇒ α.
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Lemma 8. The following sequents are derivable in GIKt (and
in GISt except (5)). For any α, β ∈ F ,

(1) �> ⇔ > and �> ⇔ >;

(2) �(α ∧ β)⇔ �α ∧�β and �(α ∧ β)⇔ �α ∧�β;

(3) α⇒ �♦α and α⇒ ��α;

(4) ♦⊥ ⇔ ⊥ and �⊥ ⇔ ⊥;

(5) ♦(α ∨ β)⇔ ♦α ∨♦β and �(α ∨ β)⇔ �α ∨�β;

(6) ♦�α⇒ α and ��α⇒ α;

(7) ♦(α→ β)⇒ �α→ ♦β and �(α→ β)⇒ �α→ �β.

Proof. Due to space limitations, we only provide the proof
for the first inequality of (7). Others can be checked easily
and we omit the proofs here.

α⇒ α β ⇒ β
(→ L)

α, α→ β ⇒ β
(� L)

•�α, α→ β ⇒ β
(♦ R)

◦(•�α, α→ β)⇒ ♦β
(Wk◦)

�α, ◦(α→ β)⇒ ♦β
(→R)

◦(α→ β)⇒ �α→ ♦β
(♦L)

♦(α→ β)⇒ �α→ ♦β

Theorem 9. GISt and GIKt are sound and complete with re-
spect to ISt and IKt respectively.

Proof. The soundness can be proved by the standard way and
Lemma 8. We only prove the completeness part here. Let
|α| = {β| `GISt α ⇔ β} and A := {|α| | α ∈ F}. Let us
define ∧,→,♦,�,�,� on A as follows:

|α1|&|α2| = |α1&α2| where & ∈ {∧,→}

]|α| = |]α| where ] ∈ {♦,�,�,�}
It is clear that A = (A,∧,→,♦,�,�,�, |>|, |⊥|) is an ISt

by Lemma 8. The order is defined as the lattice order, that
is, |α1| ≤ |α2| iff |α1| ∧ |α2| = |α1|. Thus |α1| ≤ |α2|
iff `GISt α1 → α2. Define an assignment σ : Var → A
such that σ(p) = |p|. By induction on the complexity of
formula, one shows that σ(γ) = |γ| for any formula γ. Hence
6`GISt α ⇒ β implies 6|=A,σ σ(α) ≤ σ(β). Consequently
6`GISt α⇒ β implies 6|=ISt α⇒ β, This completes the proof.
The proof of the completeness of GISt is similar, and hence
is omitted.

The following Lemma can be shown by a straightforward
induction on the complexity of ∆ and on the height of the
derivation tree for Γ[∆,∆]⇒ β.

Lemma 10. If `G Γ[∆,∆]⇒ β is derivable without any ap-
plication of (Cut) where G ∈ {GISt,GIKt}, then `G Γ[∆]⇒
β is derivable without any application of (Cut).

Theorem 11 (Cut elimination). If `G Γ ⇒ β where G ∈
{GISt,GIKt}, then `G Γ ⇒ β without any application of
(Cut).

Proof. Assume that there is a subderivation of Γ ⇒ β ended
with an application of (Cut) as follows:

` ∆⇒ α ` Σ[α]⇒ θ
(Cut)

Σ[∆]⇒ θ

It suffices to show that if ∆ ⇒ α and Σ[α] ⇒ θ are
both provable in G without any applications of (Cut), then
Σ[∆]⇒ θ is provable in G without any applications of (Cut).
We proceed by induction on (I) the complexity of (Cut) for-
mula α. In each case we proceed by induction on (II) the left
Cut rank i.e. the height of the proof of the left premise of
(Cut) and (III) the right Cut rank i.e. the height of the proof
of the right premise of (Cut). Assume that ∆ ⇒ α is ob-
tained by the application of a rule which is denoted by (Rl)
and Σ[α] ⇒ θ is obtained by the application of a rule which
is denoted by (Rr). It is easy to prove the claim holds if α
is not introduced by (Rl), or not introduced by (Rr) and (Rr)
is not (Conf), or α are introduced both by (Rl) and (Rr), we
refer the details to the standard cut elimination proofs. We
only consider the following relevant cases. Without loss of
generality, we omit the application of (Ex), (As1) and (As2),
and assume that (, ) is associative and commutative.
α is introduced by (Rl). Assume that Σ[α]⇒ θ is obtained

from Σ[αn]⇒ θ by n-1 times of (Conf) such that Σ[αn] is not
obtained from a Conf rule. Suppose that Σ[αn] is obtained by
rule (R). Obviously if n = 1 then Rr = R. Let the derivation
ends with

∆⇒ α

· · ·
(R)

Σ[αn]⇒ θ
(Conf×(n-1))

Σ[α]⇒ θ
(Cut)

Σ[∆]⇒ θ

We consider the following subcases according to (R).
(1) (R) is (Con◦) or (Con•). We consider the following two

subcases. (i) Suppose the derivation ends with

∆⇒ α

Σ′[◦(Σ1[αn]), ◦Σ2]⇒ θ
(Con◦)

Σ′[◦(Σ1[αn],Σ2)]⇒ θ
(Conf×(n-1))

Σ′[◦(Σ1[α],Σ2)]⇒ θ
(Cut)

Σ′[◦(Σ1[∆],Σ2)]⇒ θ

Let h(Σ′[◦(Σ1[αn]), ◦Σ2] ⇒ θ) = l. Then right Cut rank
is l + n. The derivation can be transformed into

∆⇒ α

Σ′[◦(Σ1[αn]), ◦Σ2]⇒ θ
(Conf×(n-1))

Σ′[◦(Σ1[α]), ◦Σ2]⇒ θ
(Cut)

Σ′[◦(Σ1[∆]), ◦Σ2]⇒ θ
(Con◦)

Σ′[◦(Σ1[∆],Σ2)]⇒ θ

Thus the new right Cut rank is l+n−1. Thus by induction
hypothesis (III) the claim holds. (ii) Suppose the derivation
ends with

∆⇒ α

Σ′[◦(Σ1, α
n1 ), ◦(Σ2, α

n2 )]⇒ θ
(Con◦)

Σ′[◦(Σ1, α
n1 ,Σ2, α

n2 )]⇒ θ
(Conf×(n-1))

Σ′[◦(Σ1,Σ2, α)]⇒ θ
(Cut)

Σ′[◦(Σ1,Σ2,∆)]⇒ θ

such that 0 ≤ n1 + n2 ≤ n. Then the derivation can be
transformed into its equivalent derivation as follows

∆⇒ α

∆⇒ α

Σ′[◦(Σ1, α
n1 ), ◦(Σ2, α

n2 )]⇒ θ
(Con◦)

Σ′[◦(Σ1, α
n1 ,Σ2, α

n2 )]⇒ θ
(Conf×(n1 − 1))

Σ′[◦(Σ1, α,Σ2, α
n2 )]⇒ θ

(Cut)
Σ′[◦(Σ1,∆,Σ2, α

n2 )]⇒ θ
(Conf×(n2 − 1))

Σ′[◦(Σ1,∆,Σ2, α)]⇒ θ
(Cut)

Σ′[◦(Σ1,∆,Σ2,∆)]⇒ θ
Lemma 10

Σ′[◦(Σ1,Σ2)]⇒ θ
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Hence, in the new derivation, each cut can be eliminated
by the analogous argument used in (i).

(2) (R) is (WK◦) or (WK•). We consider the following two
subcases. First suppose the derivation ends with

∆⇒ α

Σ′[◦(Σ1[αn], •Σ2)]⇒ θ
(WK◦)

Σ′[◦(Σ1[αn]),Σ2]⇒ θ
(Conf×(n-1))

Σ′[◦(Σ1[α]),Σ2)]⇒ θ
(Cut)

Σ′[◦(Σ1[∆]),Σ2]⇒ θ

This case is similar to 1(i). Second suppose the derivation
ends with

∆⇒ α

Σ′[◦(Σ1, •(Σ2, α
n1 )), αn2 ]⇒ θ

(WK◦)
Σ′[◦Σ1,Σ2, α

n1 , αn2 ]⇒ θ
(Conf×(n-1))

Σ′[◦Σ1,Σ2, α]⇒ θ
(Cut)

Σ′[◦Σ1,Σ2,∆]⇒ θ

This case is similar to 1(ii).
(3) There are three subcases. (i) If (R) is a structural rule

which is not considered in (1) and (2), or a constant rule, then
the proof is quite similar to 1(i). (ii) If (R) is a connective
rule which is not for α, then one may first apply (Conf) to the
premise(s) of (R), and then applying (Cut) to ∆⇒ α and the
conclusion of (Conf), finally applying (R) to the conclusion
of (Cut). Clearly the right Cut rank is smaller than the original
one. (iii) If (R) is a connective rule for α, then one may first
apply (Conf) to the premise(s) of (R), and then applying (Cut)
to ∆⇒ α and the conclusion of (Conf), clearly the right Cut
rank is smaller than the original one. Finally, applying (Cut)
to the premise(s) of (Rl) and the conclusion of the previous
(Cut). Clearly the complexity of this cut formula is smaller.
Therefore, the claim holds by induction hypothesis (III) and
(I).

Corollary 12. If `G Γ ⇒ β where G ∈ {GISt,GIKt}, then
there is a derivation of Γ⇒ β such that all formulae appear-
ing in the derivation are subformulae of formulae in Γ⇒ β.

Notice that combining Theorem 11 with Corollary 12
doesn’t imply decidability since there is the rule (Conf) in
both GISt and GIKt. However, it straightforwardly follows
that:
Proposition 13 (Conservativity). Let Γ ⇒ β be a ISt-
sequent, then `GISt Γ⇒ β iff `GIKt Γ⇒ β.

4 The Decidability of ISt
In this section we prove that the finite model property (FMP)
holds for ISt, that is, we will show that if 6`GISt α ⇒ β, then
there exits a finite tense implicative semi-latticeM s.t.M 6|=
α ⇒ β. As is well known [Harrop, 1956], the FMP and the
finite axiomatizability of ISt imply that ISt is decidable. The
fact that ISt is finitely axiomatizable follows from the finite
axiomatizability of IKt [Ewald, 1986]. The proof strategy
is analogous to the one used in [Greco et al., 2018], and is
illustrated by the following diagram.

6|=Q σ(α) ≤ σ(β) 6`GIKt α⇒ β

6|=A σ(α) ≤ σ(β) 6`GISt α⇒ β

where α ⇒ β is an ISt-sequent, Q is a finite IKt-algebra,
and A is a ∨-reduct of Q. The vertical equivalence on the
right-hand side of the diagram holds by Proposition 13. The
horizontal implication follows from Theorem 26 and Theo-
rem 9. The proof is complete by appealing to Theorem 29.

Let T be a set of ∨-free formulae closed under subfor-
mulae, ∧ and →. Define T ∗ be the ∨-closure of T , then
for any α ∈ T ∗, α =

∨
αi where αi ∈ T . Define

α ∧∗ β :=
∨

(αi ∧ βj). Notice that α ∧∗ β ∈ T ∗ for any
α, β ∈ T ∗. Using (Cut), the following lemma straightfor-
wardly follows:

Lemma 14. If `GIKt Γ[α1 ∨α2]⇒ β, then `GIKt Γ[α1]⇒ β
and `GIKt Γ[α2]⇒ β.

Lemma 15. If `GIKt α, β ⇒ θ where α, β ∈ T ∗, then `GIKt
α ∧∗ β ⇒ θ.

Proof. Let α = α1 ∨ . . . ∨ αn and β = β1 ∨ . . . ∨ βm where
αi, βj ∈ T for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. By Lemma 14
and assumption, one obtains `GIKt αi, βj ⇒ θ for any 1 ≤
i ≤ n and 1 ≤ j ≤ m. Thus by (∧L) and (∨L), one obtains
`GIKt

∨
ij(αi ∧ βj)⇒ θ, whence `GIKt α ∧∗ β ⇒ θ.

In what follows, let T - or T ∗-sequent be the sequent in
which all formulae occurring are from T or T ∗ respectively
and let sf(T ) or sf(T ∗) be the set of structures which is con-
structed from T or T ∗ formulae.

Lemma 16. For any T ∗-sequent Γ⇒ β, if `GIKt Γ⇒ β and
Γ ∈ sf(T ), then there is a γ ∈ T such that `GIKt Γ ⇒ γ and
`GIKt γ ⇒ β.

Proof. We proceed by induction on the length of the cut free
proof of Γ ⇒ β. By Corollary 12, we assume that this cut
free derivation of Γ ⇒ β is a T ∗-derivation. Suppose that
Γ ⇒ β is obtained by rule (R). If (R) is a right rule ex-
cept (∨R), then β ∈ T is a required interpolant. Let (R) be
(∨R). Assume that the premise is Γ ⇒ β1 and β = β1 ∨ β2.
Then by induction hypothesis, there is a γ ∈ T such that
`GIKt Γ ⇒ γ and `GIKt γ ⇒ β1. Hence by (∨R), one
obtains `GIKt γ ⇒ β1 ∨ β2. Let (R) be a left rule. Since
Γ ∈ sf(T ), (R) can not be (∨L). Therefore one obtains the
required interpolant by induction hypothesis and rule (R). For
instance let (R) be (→ L) (Other cases can be treated simi-
larly). Assume that the premise are ∆⇒ α1 and Γ′[α2]⇒ β
where Γ = Γ′[∆, α1 → α2]. Obviously Γ′[α2] ∈ sf(T ).
By induction hypothesis, one obtains `GIKt Γ′[α2] ⇒ γ and
`GIKt γ ⇒ β for some γ ∈ T . Hence by (→ L), one ob-
tains `GIKt Γ′[∆, α1 → α2] ⇒ γ, hence γ is the required
formula.

Definition 17 (Order on sf(T ∗)). Define ≤ on sf(T ∗) as fol-
lows: ∆1 ≤ ∆2 iff for any α ∈ T ∗, if `GIKt ∆2 ⇒ α, then
`GIKt ∆1 ⇒ α.

Proposition 18. Let ∆1 ∼ ∆2 be ∆1 ≤ ∆2 and ∆2 ∼ ∆1,
then ∼ is an equivalent relation.

Let JαK := {∆ ∈ sf(T ∗)|α ∼ ∆} for any α ∈ T ∗.
Lemma 19. Let F be a finite set and T be the subformula,
∧,→ closure of F . Define |T | = {JαK : α ∈ T} and |T ∗| =
{JαK : α ∈ T ∗}, then both |T | and |T ∗| are finite.
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Proof. Since F is finite, |F | = {JαK : α ∈ |F |} is fi-
nite. Proposition 3 implies that the implicative semi-lattice
K generated by |F | is finite. Because the domain of K is
|T | = {JαK : α ∈ T}, hence |T | is finite. Therefore, |T ∗| is
finite by construction.

We let E(T ) = {α | JαK ∈ |T |} and E(T ∗) = {α | JαK ∈
|T ∗|}, then by Lemma 19, E(T ) and E(T ∗) are both finite.
For the rest of the paper, we let T and T ∗ are constructed
from a finite formula set.

Lemma 20. For any α ∈ T , there is β ∈ T s.t. ?α ∼ β
where ? ∈ {◦, •}.

Proof. Given a formula θ ∈ T ∗. Suppose that `GIKt ?α ⇒
θ. Then by Lemma 16, there is a γ ∈ E(T ) such that
`GIKt ?α ⇒ γ and `GIKt γ ⇒ θ. Since E(T ) is finite, let
{γ1, . . . , γn} be the set of all interpolants for all θ ∈ T ∗ such
that `GIKt ?α ⇒ θ. Let β = γ1 ∧ . . . ∧ γn. Then β ∈ T .
Clearly by (∧R) and (∧L), one obtains (1) `GIKt ?α⇒ β and
(2) `GIKt β ⇒ θ. From (2) one obtains β ≤ ?α. Suppose that
`GIKt β ⇒ π for any π ∈ T ∗. Applying (Cut) to (1) and the
assumption, one obtains `GIKt ?α⇒ π. Hence ?α ≤ β.

Lemma 21. For any α ∈ T ∗, there is β ∈ T ∗ s.t. ?α ∼ β
where ? ∈ {◦, •}.

Proof. If α ∈ T , then the claim holds by Lemma 20. Let
θ ∈ T ∗ such that `GIKt ?α ⇒ θ. Let α ∈ T ∗ \ T . Then
α = α1∨ . . .∨αn. By Lemma 14 one obtains `GIKt ?αi ⇒ θ
for all 1 ≤ i ≤ n. Since αi ∈ T , by Lemma 20 there is a
βi ∈ T such that βi ∼ ?αi. Thus one obtains `GIKt βi ⇒ θ
for all 1 ≤ i ≤ n. Let β = β1∨. . .∨βn. By (∨L), one obtains
`GIKt β ⇒ θ. Hence β ≤ ?α. Conversely let `GIKt β ⇒ δ for
some δ ∈ T ∗. Then by Lemma 14, one obtains `GIKt βi ⇒ δ
for all 1 ≤ i ≤ n. Then one gets `GIKt ?αi ⇒ δ. Thus by
(∨L), one obtains `GIKt ?α ⇒ δ. Therefore ?α ≤ β. Hence
?α ∼ β.

Lemma 22. Let α ∈ T ∗, β ∈ T ∗ and γ ∈ T ∗. If `GIKt
?α, β ⇒ θ and ?α ∼ γ, then `GIKt γ, β ⇒ θ.

Proof. Let α = α1 ∨ . . . ∨ αn and β = β1 ∨ . . . ∨ βm where
αi, βj ∈ T for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Suppose that
?αi ∼ γi and γ′ = γ1 ∨ . . . ∨ γn. Then ?α ∼ γ′ whence
γ′ ∼ γ.

By Lemma 14, one obtains `GIKt ?αi, βj ⇒ θ for all 1 ≤
i ≤ n and 1 ≤ j ≤ m. By Lemma 16 there is a δij ∈ T
such that `GIKt ?αi, βj ⇒ δij and `GIKt δij ⇒ θ. Since
βj → δij ∈ T , by (→ L), one obtains `GIKt ?αi ⇒ βj →
δij . By Definition 17, one gets `GIKt γi ⇒ βj → δij . Hence
`GIKt γi, βj ⇒ δij , whence `GIKt γi, βj ⇒ θ. Then by
(∨L), one obtains `GIKt γ′, β ⇒ θ. For any γ ∼ γ′, we have
`IKt γ ⇒ γ′ and hence `GIKt γ, β ⇒ θ by (Cut).

We construct the quotient algebra from T ∗ as follows:

Definition 23 (Quotient algebra). The quotient algebra of T ∗
is a structure Q = (|T ∗|,∧∗,∨,→,♦,�,�,�, 0, 1), where:
for any JαK, JβK ∈ |T ∗|,

1. JαK ∧∗ JβK = Jα ∧∗ βK;

2. JαK ∨ JβK = Jα ∨ βK;

3. JαK→ JβK = Jγ1∨. . .∨γnK where γi ∈ T ∗ s.t. JαK∧∗JγiK ≤
JβK for any i ∈ {1, . . . n};

4. 0 = J⊥K;

5. 1 = J>K;

6. ♦JαK = JγK where γ ∈ T ∗ s.t. γ ∼ ◦α;

7. �JαK = JγK where γ ∈ T ∗ s.t. γ ∼ •α;

8. �JαK = Jγ1 ∨ . . . ∨ γnK where γi ∈ T ∗ s.t. �JγiK ≤ JαK for
any i ∈ {1, . . . n};

9. �JαK = Jγ1 ∨ . . . ∨ γnK where γi ∈ T ∗ s.t. ♦JγiK ≤ JαK for
any i ∈ {1, . . . n}.

One can easily check that Q is well-defined. For instance,
assume that JαK = JβK, it can be proved that ♦JαK = ♦JβK as
follows. Let ♦JαK = Jγ1K and ♦JβK = Jγ2K. Let `GIKt γ2 ⇒
θ for any θ ∈ T ∗. Then `GIKt ◦β ⇒ θ. Since JαK = JβK,
one gets `GIKt α ⇒ β. Hence by (Cut), one obtains `GIKt
◦α ⇒ θ. Thus `GIKt γ1 ⇒ θ. Hence Jγ1K ≤ Jγ2K. Similarly
one proves Jγ2K ≤ Jγ1K. The order of Q is defined by ∧∗ as:
JαK ≤ JβK iff JαK ∧∗ JβK = JαK.

Lemma 24. `GIKt α⇒ β iff JαK ≤ JβK where α, β ∈ T ∗.

Proof. Assume that `GIKt α ⇒ β. Then `GIKt α ⇔ α ∧∗ β.
Thus JαK ≤ JβK. Conversely let JαK ≤ JβK. Then α ∧∗ β ∼
α. Clearly `GIKt α ∧∗ β ⇒ β. Hence `GIKt α⇒ β.

Lemma 25. The following conditions hold for Q: for any
JαK, JβK and JγK ∈ |T ∗|,

1. JγK ≤ JαK ∧∗ JβK iff JγK ≤ JαK and JγK ≤ JβK;

2. JαK ∨ JβK ≤ JγK iff JαK ≤ JγK and JβK ≤ JγK;

3. JαK ∧∗ (JβK ∨ JγK) = (JαK ∧∗ JβK) ∨ (JαK ∧∗ JγK);

4. JαK ∧∗ JβK ≤ JγK iff JαK ≤ JβK→ JγK;

5. 0 ≤ JαK and JαK ≤ 1;

6. ♦(JαK ∨ JβK) = ♦JαK ∨♦JβK and �(JαK ∨ JβK) = �JαK ∨
�JβK;

7. ♦0 = 0 and �0 = 0;

8. ♦JαK ≤ JβK iff JαK ≤ �JβK;

9. �JαK ≤ JβK iff JαK ≤ �JβK;

10. ♦JαK ∧ JβK ≤ ♦(JαK ∧ �JβK) and �JαK ∧ JβK ≤ �(JαK ∧
♦JβK).

Proof. (2) and (3) follows from Definition 23. (5) and (7)
can be check easily. (8) and (9) are analogous to (4). Thus
we only provide the proofs for (1),(4), (6) and (10).

(1) From left to right direction, assume that JγK ≤ Jα ∧∗
βK. Let α =

∨
i αi and β =

∨
j βj s.t. αi, βj ∈ T for

any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. By Definition 23
JαK ∧∗ JβK = Jα ∧∗ βK = J

∨
ij(αi ∧ βj)K. Clearly `GIKt

αi ∧ βj ⇒ αi. So by (∨R) `GIKt αi ∧ βj ⇒ α. Hence by
(∨L), one obtains `GIKt

∨
ij(αi ∧ βj) ⇒ α. Similarly, one

obtains `GIKt
∨
ij(αi ∧ βj)⇒ β. Hence, by assumption and

(Cut), `GIKt γ ⇒ α and `GIKt γ ⇒ β. Therefore, by Lemma
24, JγK ≤ JαK and JγK ≤ JβK.

Conversely, assume that JγK ≤ JαK and JγK ≤ JβK. Let
`GIKt

∨
ij(αi ∧ βj) ⇒ θ for some θ ∈ T ∗. Thus by Lemma

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1802



14, one obtains `GIKt αi ∧ βj ⇒ θ. Since `GIKt αi, βj ⇒
αi ∧ βj , by (Cut), `GIKt αi, βj ⇒ θ. By (∨L), one obtains
`GIKt α, β ⇒ θ. The assumption and Lemma 24 imply that
`GIKt γ ⇒ α and `GIKt γ ⇒ β. By (Cut), one obtains
`GIKt γ, γ ⇒ θ. Finally, by (Conf), `GIKt γ ⇒ θ. Therefore,
γ ≤ α ∧∗ β by Definition 17, and hence JγK ≤ Jα ∧∗ βK =
JαK ∧∗ JβK.

(4) Assume that JαK ∧∗ JβK ≤ JγK. Then by Definition
23, Jβ → γK = Jδ1 ∨ . . . ∨ δn ∨ αK where δ1, . . . , δn ∈ T ∗.
Clearly `GIKt α ⇒ δ1 ∨ . . . ∨ δn ∨ α. Thus JαK ≤
Jδ1 ∨ . . . ∨ δn ∨ αK, whenceJαK ≤ Jβ → γK. Conversely
let JαK ≤ JβK → JγK and JβK → JγK = Jδ1 ∨ . . . ∨ δnK
where JβK ∧∗ JδiK ≤ JγK for all 1 ≤ i ≤ n. Then
`GIKt β ∧∗ δi ⇒ γ. Clearly `GIKt β, δi ⇒ β ∧∗ δi Then
by (Cut), `GIKt β, δi ⇒ γ for all 1 ≤ i ≤ n. By (∨L),
one obtains `GIKt β, δ ⇒ γ. Clearly `GIKt α ⇒ δ. Thus
by (Cut), one obtains `GIKt β, α ⇒ γ. Hence by Lemma 15
`GIKt β ∧∗ α⇒ γ.

(6) Let ♦JαK = Jγ1K, ♦JβK = Jγ2K and ♦Jα ∨ βK =
Jγ3K where γ1, γ2, γ3 ∈ T ∗. Let `GIKt γ3 ⇒ θ. Then
`GIKt ◦(α ∨ β) ⇒ θ. By Lemma 14, `GIKt ◦α ⇒ θ and
`GIKt ◦β ⇒ θ. Hence `GIKt γ1 ⇒ θ and `GIKt γ2 ⇒ θ. Thus
by (∨L), one obtains `GIKt γ1 ∨ γ2 ⇒ θ. Hence by Lemma
24, Jγ3K ≤ Jγ1 ∨ γ2K, whence ♦Jα ∨ βK ≤ ♦JαK ∨ ♦JβK.
Similarly ♦JαK ∨ ♦JβK ≤ ♦Jα ∨ βK. The proof for the sec-
ond equality is analogous and hence is omitted.

(10) Let �JβK = γ, ♦JαK = δ and ♦Jα ∧∗ γK = π
where γ, δ, π ∈ T ∗. It suffice to show Jδ ∧ βK ≤ JπK. Let
`GIKt π ⇒ θ for any θ ∈ T ∗. Then `GIKt ◦(α ∧∗ γ) ⇒
θ. Clearly `GIKt α, γ ⇒ α ∧∗ γ. Hence by (Cut) `GIKt
◦(α, γ) ⇒ θ. Clearly `GIKt •β ⇒ γ. By (Cut), one ob-
tains `GIKt ◦(α, •β) ⇒ θ. Then by (WK◦), one obtains
`GIKt ◦α, β ⇒ θ. Thus by Lemma 22 `GIKt δ, β ⇒ θ.
By Lemma 15 `GIKt δ ∧∗ β ⇒ θ. Hence Jδ ∧ βK ≤ JπK.
The proof for the second inequality is analogous and hence is
omitted.

Lemma 19 and Lemma 25 imply that:
Theorem 26. Q is a finite IKt.
Lemma 27. Let α∧β, α→ β, ♦α, �α, �α, �α, ⊥, > ∈ T ,
then the following equations hold:

1. Jα ∧ βK = JαK ∧∗ JβK;

2. Jα→ βK = JαK→ JβK;

3. J⊥K = 0 and J>K = 1;

4. J♦αK = ♦JαK and J�αK = �JαK;

5. J�αK = �JαK and J�αK = �JαK.

Proof. (1), (3) and (4) follow from Definition 23. We only
provide proofs for (2) and (5) as follows.

(2) It is clear that `GIKt α ∧∗ (α → β) ⇒ β. Hence,
JαK ∧∗ Jα→ βK ≤ JβK. By Lemma 25.4, Jα→ βK ≤
JαK→ JβK. Conversely let γ1, . . . , γn ∈ T ∗ and Jα→ βK =
Jγ1 ∨ . . . ∨ γnK such that JαK ∧∗ JγiK ≤ JβK. Thus `GIKt
α ∧ γi ⇒ β for all 1 ≤ i ≤ n. Hence `GIKt α, γi ⇒ β by
(Cut), then by (→ R), `GIKt γi ⇒ α → β. Hence by (∨L),
one obtains that `GIKt γ1 ∨ . . . ∨ γn ⇒ α → β. Therefore,
since α → β ∈ T ⊆ T ∗, JαK → JβK ≤ Jα→ βK by Lemma
24.

(5) It is easy to show that `GIKt ◦�α ⇒ α. Hence,
♦J�αK ≤ JαK. Thus J�αK ≤ �JαK by Lemma 25.8. Con-
versely let γ1, . . . , γn ∈ T ∗ and �JαK = Jγ1 ∨ . . . ∨ γnK
where ♦JγiK ≤ α. Then `GIKt ◦γi ⇒ α for all 1 ≤ i ≤ n.
Hence by (�R) and (∨L), one gets `GIKt γ1∨. . .∨γn ⇒ �α.
Therefore, �JαK ≤ J�αK since �α ∈ T ⊆ T ∗.

Lemma 28. For any ISt-sequent α ⇒ β, if 6`GIKt α ⇒ β,
then there exits a finite IKt-algebra Q, such that 6|=Q α⇒ β.

Proof. Let F be the set of all subformulae of α and β. Let
T be the ∧,→-closure of F . Obviously T is closed under
subformulae. Define T ∗ as above. Let σ : T ∗ → |T ∗| be
defined as σ(p) = JpK for all p ∈ Var ∩ T . By induction on
the complexity of formula, Lemma 27 implies that σ(γ) =
JγK for any γ ∈ T . Let Q be constructed as above and hence
Q is a finite IKt by Theorem 26 . We show the contraposition
of the claim. Assume that |=Q α ⇒ β which implies that
|=Q σ(α) ≤ σ(β). The completeness of GIKt implies that
`GIKt α⇒ β.

Let A be the ∨-free reduct of Q. Obviously A is a finite
ISt-algebra.
Theorem 29. If 6`GISt α⇒ β, then 6|=A α⇒ β.

Proof. Assume that 6`GISt α ⇒ β. By Proposition 13, 6`GIKt
α⇒ β. By Lemma 28, 6|=Q α⇒ β. Hence 6|=A α⇒ β.

Theorem 30. ISt has the finite model property.
Corollary 31 (Decidability). ISt is decidable.

5 Conclusion
In this paper we have proved the finite model property for
ISt and hence its decidability. These results also partially ad-
dress the open question of the finite model property and de-
cidability of IKt. However, the results of the present paper
cannot be straightforwardly extended to IKt since Lemma 16
and Lemma 19 do not hold if there are ∨-formulae in T (see
the paragraph above Lemma 14). The FMP of IKt will be our
next work. The computational complexity of IKt is PSPACE-
hard while the same problem for ISt is unknown. Up to our
knowledge, there are no results on the computational com-
plexity of the logic of implicative semi-lattices. Our sequent
system and the proof of the finite model property might pro-
vide some help for finding a refined upper bound for the com-
plexity of ISt. Using our methods to obtain some temporal
extensions of logic programing algorithms and to solve the
decidability problems of the intuitionistic modal logics which
are used to model dynamic processes in theoretical computer
science and artificial intelligence are also interesting topics
for our future work.
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