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Abstract
We address the problem of handling provenance
information in ELHr ontologies. We consider a
setting recently introduced for ontology-based data
access, based on semirings and extending classi-
cal data provenance, in which ontology axioms are
annotated with provenance tokens. A consequence
inherits the provenance of the axioms involved in de-
riving it, yielding a provenance polynomial as anno-
tation. We analyse the semantics for the ELHr case
and show that the presence of conjunctions poses
various difficulties for handling provenance, some
of which are mitigated by assuming multiplicative
idempotency of the semiring. Under this assump-
tion, we study three problems: ontology completion
with provenance, computing the set of relevant ax-
ioms for a consequence, and query answering.

1 Introduction
Description logics (DLs) are a well-known family of first-
order logic fragments in which conceptual knowledge about
a particular domain and facts about specific individuals are
expressed in an ontology, using unary and binary predicates
called concepts and roles [Baader et al., 2007a]. Important
reasoning tasks performed over DL ontologies are axiom en-
tailment, i.e. deciding whether a given DL axiom follows
from the ontology; and query answering. Since scalability
is crucial when using large ontologies, DLs with favorable
computational properties have been investigated. In particular,
the EL language and some of its extensions allow for axiom
entailment in polynomial time, and conjunctive query entail-
ment in NP [Baader et al., 2005; Baader et al., 2008a]. Many
real-world ontologies, including SNOMED CT, use languages
from the EL family, which underlies the OWL 2 EL profile of
the Semantic Web standard ontology language.

In many settings it is crucial to know how a consequence—
e.g. an axiom or a query—has been derived from the ontology.
In the database community, provenance has been studied for
nearly 30 years [Buneman, 2013] and gained traction when
the connection to semirings, so called provenance semirings
[Green et al., 2007; Green and Tannen, 2017] was discovered.
Provenance semirings serve as an abstract algebraic tool to
record and track provenance information; that is, to keep track

of the specific database tuples used for deriving the query, and
of the way they have been processed in the derivation. Besides
explaining a query answer, provenance has many applications
like: computing the probability or the degree of confidence
of an answer, counting the different ways of producing an an-
swer, handling authorship, data clearance, or user preferences
[Senellart, 2017; Suciu et al., 2011; Lukasiewicz et al., 2014;
Ives et al., 2008]. Semiring provenance has drawn interest be-
yond relational databases (e.g. [Buneman and Kostylev, 2010;
Zimmermann et al., 2012; Deutch et al., 2014; Ramusat et
al., 2018; Dannert and Grädel, 2019]), and in particular has
recently been considered for ontology-based data access, a
setting where a database is enriched with a DL-LiteR ontol-
ogy and mappings between them [Calvanese et al., 2019].
In the latter, the ontology axioms are annotated with prove-
nance variables. Queries are then annotated with provenance
polynomials that express their provenance information.
Example 1. Consider the facts mayor(Venice,Brugnaro) and
mayor(Venice,Orsoni), stating that Venice has mayors Brug-
naro and Orsoni, annotated respectively with provenance in-
formation v1 and v2, and the DL axiom ran(mayor) v Mayor,
expressing that the range of the role mayor is the concept
Mayor, annotated with v3. The query ∃x.Mayor(x) asks if
there is someone who is a mayor. The answer is yes and it can
be derived using ran(mayor) v Mayor together with any of
the two facts, interpreting x by Brugnaro or Orsoni. This is
expressed by the provenance polynomial v1 × v3 + v2 × v3.
Intuitively, × expresses the joint use of axioms in a derivation
path of the query, and + the alternative derivations.

We adapt the provenance semantics of Calvanese et al. for
the ELHr variant of EL, extending it to those ELHr axioms
that do not occur in DL-LiteR. It turns out that handling the
conjunction allowed in ELHr axioms is not trivial. To obtain
models from which we can derive meaningful provenance-
annotated consequences, we adopt ×-idempotent semirings
and a syntactic restriction on ELHr (preserving the expressiv-
ity of full ELHr when annotations are not considered). After
introducing the basic definitions and the semantics for DL on-
tologies and queries annotated with provenance information,
we present a completion algorithm and show that it solves
annotated axiom entailment and instance queries in ELHr in
polynomial time in the size of the ontology and polynomial
space in the size of the provenance polynomial. We then show
that we can compute the set of relevant provenance variables
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for an entailment in polynomial time. Finally, we investigate
conjunctive query answering. Note that the query answering
methods developed by Calvanese et al. cannot be extended to
ELHr since they rely on the FO-rewritability of conjunctive
queries in DL-LiteR, a property that does not hold for ELHr
[Bienvenu et al., 2013]. Therefore, we adapt the combined
approach for query answering in EL [Lutz et al., 2009] to
provenance-annotated ELHr ontologies.

Detailed proofs are available in [Bourgaux et al., 2020].

2 Provenance for ELHr

We first introduce our framework for provenance for ELHr
ontology and discuss our design choices.

2.1 Basic Notions
In the database setting, commutative semirings have proven
to be convenient for representing various kinds of provenance
information [Green et al., 2007; Green and Tannen, 2017]. In
a commutative semiring (K,+,×, 0, 1), the product × and
the addition + are commutative and associative binary op-
erators over K, and × distributes over +. Given a count-
ably infinite set NV of variables that are used to annotate the
database tuples, a provenance semiring is a semiring over a
space of annotations, or provenance expressions, with vari-
ables from NV. Green and Tannen present a hierarchy of
expressiveness for provenance annotations [2017]. The most
expressive form of annotations is provided by the provenance
polynomials semiring N[NV] = (N[NV],+,×, 0, 1) of poly-
nomials with coefficients from N and variables from NV, and
the usual operations. The semiring N[NV] is universal, i.e.,
for any other commutative semiring K = (K,+,×, 0, 1), any
function ν : NV → K can be extended to a semiring ho-
momorphism h : N[NV] → K, allowing the computations
for K to factor through the computations for N[NV] [Green,
2011]. Hence, provenance polynomials provide the most in-
formative provenance annotations and correspond to so-called
how-provenance [Cheney et al., 2009]. Less general prove-
nance semirings are obtained by restricting the operations +
and × to idempotence and/or absorption [Green and Tannen,
2017]. In this work, we focus on ×-idempotent semirings,
i.e., for every v ∈ K, v × v = v. This corresponds to the
Trio semiring Trio(NV), defined in [Green, 2011] as the quo-
tient semiring of N[NV] by the equivalence kernel ≈trio of the
function trio : N[NV] → N[NV] that “drops exponents.” An
annotation is a polynomial p that is understood to represent
its equivalence class p/≈trio. Trio(NV) encompasses in the
hierarchy the well-known why-provenance semiring Why(NV)
obtained by restricting + to be idempotent as well, where
an annotation corresponds to the set of sets of tuples used to
derive the result [Cheney et al., 2009].

We use the following notation. A monomial is a finite
product of variables in NV. Let NM be the set of monomials,
and NP the set of all finite sums of monomials, i.e., NP con-
tains polynomials of the form

∑
1≤i≤n

∏
1≤ji≤mi vi,ji , with

vi,ji ∈ NV; n,mi > 0. By distributivity, every polynomial
can be written into this form. The representative [m] of a
monomial m is the product of the variables occuring in m,
in lexicographic order. Two monomials which are equivalent

w.r.t. ≈trio (i.e. are syntactically equal modulo commutativity,
associativity and ×-idempotency) have the same representa-
tive, e.g., v×u and u× v×u have representative u× v. N[M]

denotes the set {[m] | m ∈ NM}.
As ontology language we use a syntactic restriction of

ELHr. Consider three mutually disjoint countable sets of
concept- NC, role- NR, and individual names NI, disjoint from
NV. ELHr general concept inclusions (GCIs) are expressions
of the form C v D, built according to the grammar rules

C ::= A | ∃R.C | C u C | > D ::= A | ∃R,

where R ∈ NR, A ∈ NC. Role inclusions (RIs) and range
restrictions (RRs) are expressions of the form R v S and
ran(R) v A, respectively, with R,S ∈ NR and A ∈ NC. An
assertion is an expression of the form A(a) or R(a, b), with
A ∈ NC, R ∈ NR, and a, b ∈ NI. An axiom is a GCI, RI,
RR, or assertion. An ELHr ontology is a finite set of ELHr
axioms. ELHr usually allows GCIs of the form C v C, but
these can be translated into our format by exhaustively ap-
plying the rules: (i) replace C v C1 u C2 by C v C1 and
C v C2, (ii) replace C1 v ∃R.C2 by C1 v ∃S, S v R and
ran(S) v C2 where S is a fresh role name. The reason for
syntactically restricting ELHr is that conjunctions or qualified
restrictions of a role on the right-hand side of GCIs lead to
counter-intuitive behavior when adding provenance annota-
tions. We discuss this later in this section.

2.2 Annotated Ontologies
Provenance information is stored as annotations. An annotated
axiom has the form (α,m) with α an axiom and m ∈ NM. An
annotated ELHr ontology O is a finite set of annotated ELHr
axioms of the form (α, v) with v ∈ NV ∪ {1}. We denote by
ind(O) the set of individual names occurring in O.

The semantics of annotated ontologies extends the classical
notion of interpretations to track provenance. An annotated
interpretation is a triple I = (∆I ,∆Im, ·I) where ∆I ,∆Im are
non-empty disjoint sets (the domain and domain of monomials
of I, respectively), and ·I maps

• every a ∈ NI to aI ∈ ∆I ;
• every A ∈ NC to AI ⊆ ∆I ×∆Im;
• every R ∈ NR to RI ⊆ ∆I ×∆I ×∆Im; and
• every m,n ∈ NM to mI , nI ∈ ∆Im s.t. mI = nI iff
m ≈trio n.1

We extend ·I to complex ELHr expressions as usual:

(>)I = ∆I × {1I};
(∃R)I = {(d,mI) | ∃e ∈ ∆I s.t. (d, e,mI) ∈ RI};

(C uD)I = {(d, (m× n)I) | (d,mI) ∈ CI , (d, nI) ∈ DI};
(ran(R))I = {(e,mI) | ∃d ∈ ∆I s.t. (d, e,mI) ∈ RI};
(∃R.C)I = {(d, (m× n)I) | ∃e ∈ ∆I s.t.

(d, e,mI) ∈ RI , (e, nI) ∈ CI}.

The annotated interpretation I satisfies:

1or iff m = n if we consider N[NV] instead of Trio(NV)
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(R v S,m), if, for all n ∈ NM, (d, e, n
I) ∈ RI

implies (d, e, (m× n)I) ∈ SI;
(C v D,m), if, for all n ∈ NM, (d, n

I) ∈ CI
implies (d, (m× n)I) ∈ DI;

(A(a),m), if (aI ,mI) ∈ AI; and
(R(a, b),m), if (aI , bI ,mI) ∈ RI.

I is a model of the annotated ontology O, denoted I |= O,
if it satisfies all annotated axioms in O. O entails (α,m),
denoted O |= (α,m), if I |= (α,m) for every model I of O.
Remark. While it may appear counter-intuitive at first sight
that CI differs from (C uC)I , this is in line with the intuition
behind the provenance of a conjunction. In the database
setting, the Trio-provenance of tuple (a) being an answer to
query ∃yz.R(x, y) ∧ R(x, z) over {R(a, b), R(a, c)} is also
different from that of (a) being an answer to ∃y.R(x, y).

Example 2 illustrates the semantics and some differences
with the DL-LiteR case from [Calvanese et al., 2019].
Example 2. Consider the following annotated ontology.

O = {(mayor(Venice,Orsoni), v1),

(predecessor(Brugnaro,Orsoni), v2),

(∃predecessor.Mayor v Mayor, v3),

(ran(mayor) v Mayor, v4)}.

Let I be s.t. ∆I = {Brugnaro,Orsoni,Venice}, ∆Im = N[M],
individual names are interpreted by themselves, monomials by
their representatives and

mayorI = {(Venice,Orsoni, v1)},
predecessorI = {(Brugnaro,Orsoni, v2)},

MayorI = {(Orsoni, v1 × v4),

(Brugnaro, v1 × v2 × v3 × v4)}.

I |= O by the semantics of annotated ELHr. Moreover, it can
be verified that if I |= (α,m), then O |= (α,m). Note that O
entails (Mayor(Brugnaro), v1 × v2 × v3 × v4) whose prove-
nance monomial contains v1 and v2, witnessing that the two
assertions of O have been used to derive Mayor(Brugnaro).
Combining two assertions to derive another one is not possible
in DL-LiteR. The rewriting-based approach by Calvanese et
al. cannot be applied here as ∃predecessor.Mayor v Mayor
leads to infinitely many rewritings.

2.3 Discussion on Framework Restrictions
Example 2 shows that conjunction and qualified role restriction
lead to a behavior different from DL-LiteR. They are also the
reason for some features of our setting. First, the next example
illustrates the ×-idempotency impact for the EL family.
Example 3. Let O = {(A v B1, v1), (A v B2, v2), (B1 u
B2 v C, v3)}. If I is a model of O and (e, nI) ∈ AI , then
(e, (n × v1)I) ∈ BI1 and (e, (n × v2)I) ∈ BI2 so (e, (n ×
v1 × n × v2)I) ∈ (B1 u B2)I , i.e. (e, (n × v1 × v2)I) ∈
(B1uB2)I by×-idempotency, which implies (e, (n×v1×v2×
v3)I) ∈ CI . ThusO |= (A v C, v1×v2×v3). This intuitive
entailment is lost if × is not idempotent. Indeed, assume that
× is not idempotent and let I be the interpretation defined as

follows (where ∆I = {e} and ∆Im contains all monomials
with variables in lexicographic order).

AI ={(e, u)} BI1 = {(e, u× v1)} BI2 = {(e, u× v2)}
CI ={(e, u× u× v1 × v2 × v3)}.
I is a model of O such that I 6|= (A v C, v1 × v2 × v3).

A downside of ×-idempotency is a loss of the expressive
power of provenance, neglecting the number of times an axiom
is used in a derivation. Let O = {(A v B, v1), (B v A, v2)}.
With ×-idempotency, O |= (A v B, vk1 × vl2) for k ≥ 1 and
l ≥ 0 because for k, l ≥ 1, vk1×vl2 is interpreted by (v1×v2)I

in any interpretation I . In contrast, if × is not idempotent, we
only obtainO |= (A v B, vk+1

1 ×vk2 ) for k ≥ 0 (in particular
O 6|= (A v B, v1 × v2)), which is a more informative result.
Some useful semirings are not ×-idempotent; e.g. the Viterbi
semiring ([0, 1] ,max,×, 0, 1), where × is the usual product
over real numbers, which is applied for representing confi-
dence scores. We limit ourselves to ×-idempotent semirings
because we are interested in computing provenance not only
for assertions or queries, but also for GCIs. In particular, when
a non-annotated ontology entails the GCI C v D, we want
the annotated version of the ontology to entail (C v D,m)
for some monomial m. The non-idempotent case could be
relevant when one is not concerned with provenance for GCI
entailment, and is left as future work.

Many useful semirings are ×-idempotent. Examples of
these are: the Boolean semiring, used for probabilistic query
answering in databases; the security semiring, used to de-
termine the minimal level of clearance required to get the
consequence; and the fuzzy semiring which allows to deter-
mine the truth degree of the consequence (see e.g. [Senellart,
2017] for details on these semirings and more examples).

Second, let us explain the restrictions on the form of the
right-hand side of the GCIs. Example 4 illustrates the case of
conjunctions. Qualified role restrictions lead to the same kind
of behavior (they can be seen as implicit conjunctions).
Example 4. Let O = {(A v B u C, v), (A(a), u)}. All
the following interpretations which interpret a by itself and
monomials by their representatives are models of O:

AI1 = {(a, u)}, BI1 = {(a, u× v)}, CI1 = {(a, u× v)}
AI2 = {(a, u)}, BI2 = {(a, u)}, CI2 = {(a, v)}
AI3 = {(a, u)}, BI3 = {(a, 1)}, CI3 = {(a, u× v)}

Since the semantics does not provide a unique way to “split”
the monomial u× v between the two elements of the conjunc-
tion, O 6|= (B(a),m) for any m ∈ NM, and in particular,
O 6|= (B(a), u× v). It is arguably counter-intuitive since we
intuitively know that a is in A with provenance u and that A is
a subclass of the intersection of B and C with provenance v.

Partially normalizing the ontology before annotating it, or
more specifically, replacing e.g. annotated GCIs of the form
(C v C1 u C2, v) by (C v C1, v) and (C v C2, v), may be
acceptable in most cases, even if the rewritten ontology leads
to additional—arguably natural—consequences compared to
the original one. For instance, even if O 6|= (A v B, v) in
Example 4, in many cases a user would accept to change the
GCI of O to (A v B, v) and (A v C, v) as it may reflect

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1864



the original intention of the GCI since {A v B,A v C} and
A v B u C are semantically equivalent.

One could argue that it would be better to define the seman-
tics so that only I1 was a model of O in Example 4, instead
of restricting the language as we do. We explain next why this
is not so simple.

One possibility is to change the definition of satisfaction of a
GCI by an interpretation such that I |= (A v BuC,m) iff for
every (d, nI) ∈ AI , then (d, (m× n)I) ∈ BI and (d, (m×
n)I) ∈ CI , and similarly for qualified role restrictions. This
approach leads to a counter-intuitive behavior. For instance if
O = {(A(a), u), (B(a), v)}, then O 6|= (AuB v AuB, 1),
since (a, (u× v)I) ∈ (A uB)I for every model I of O, but
there is a model I of O such that (a, (u × v)I) /∈ AI (and
(a, (u× v)I) /∈ BI). In contrast, our definition of satisfaction
ensures that for every interpretation I and concept C, I |=
(C v C, 1).

Another possibility is to modify the interpretation of con-
junctions and qualified role restrictions such that (C uD)I =
{(d,mI) | (d,mI) ∈ CI , (d,mI) ∈ DI} and (∃R.C)I =
{(d,mI) | ∃e ∈ ∆I s.t. (d, e,mI) ∈ RI , (e,mI) ∈ CI}.
In this case, we lose even basic entailments from annotated
ABoxes; e.g., {(A(a), u), (B(a), v)} 6|= ((AuB)(a), u× v).
We also lose the entailment of the GCI from Example 3.

Hence, restricting the syntax to prevent conjunctions on
the right and defining the semantics as usual in DLs seems
to be the most natural way of handling provenance in DL
languages with conjunction. Since EL ontologies are often
already expressed in normal form, the main restriction in our
language is the avoidance of qualified existential restrictions
on the right-hand side.

2.4 Annotated Queries
Following Calvanese et al. [2019], we extend DL conjunctive
queries with binary and ternary predicates, where the last
term of the tuple is used for provenance information. Recall
that by the semantics of annotated ontologies, tuples can only
contain monomials. A Boolean conjunctive query (BCQ) q is
a sentence ∃~x.ϕ(~x,~a), where ϕ is a conjunction of (unique)
atoms of the form A(t1, t), R(t1, t2, t); ti is an individual
name from ~a, or a variable from ~x; and t (the last term of
the tuple) is a variable from ~x that does not occur anywhere
else in q (Calvanese et al. call such a query standard). We
use P (~t, t) to refer to an atom which is either A(t1, t) or
R(t1, t2, t), and P (~t, t) ∈ q if P (~t, t) occurs in q.

A match of the BCQ q = ∃~x.ϕ(~x,~a) in the annotated in-
terpretation I is a function π : ~x ∪ ~a → ∆I ∪ ∆Im, such
that π(b) = bI for all b ∈ ~a, and π(~t, t) ∈ P I for every
P (~t, t) ∈ q, where π(~t, t) is a shorthand for (π(t1), π(t)) or
(π(t1), π(t2), π(t)) depending on the arity of P . I satisfies
the BCQ q, written I |= q, if there is a match of q in I . A BCQ
q is entailed by an annotated ontology O, denoted O |= q, if
every model of O satisfies q. For a BCQ q and an interpre-
tation I, νI(q) denotes the set of all matches of q in I. The
provenance of q on I is the expression

provI(q) :=
∑
π∈νI(q)[

∏
P (~t,t)∈q π

−(t)]

where π(t) is the last element of the tuple π(~t, t) ∈ P I ; and
π−(t) is the only m ∈ N[M] s.t. mI = π(t). For p ∈ NP,

we write p ⊆ provI(q) if p is a sum of monomials and for
each occurrence of a monomial in p we find an occurrence of
its representative in provI(q). I satisfies q with provenance
p ∈ NP, denoted I |= (q, p), if I |= q and p ⊆ provI(q).
O |= (q, p), if O |= q and p ⊆ provI(q), for all I |= O. We
call (q, p) an annotated query.
Remark. When O contains only assertions (no GCIs, RIs,
and RRs), we can compare the provenance annotations we
obtain to the database case. Similarly to Trio-provenance,
the sums of monomials distinguish different ways the query
atoms can be mapped to annotated interpretations. For ex-
ample, given O = {(R(a, b), v1), (R(b, a), v2)} and query
q = ∃xytt′.R(x, y, t)∧R(y, x, t′), it holds thatO |= (q, v1×
v2 + v1 × v2). The provenance annotation v1 × v2 + v1 × v2
distinguishes among two derivations using the same axioms,
contrary to the why-provenance v1 × v2. Note that given an
axiom α and O that may contain GCIs, RIs, and RRs, the sum
over all monomials m such that O |= (α,m) represents all
possible derivations of α, in the why-provenance spirit.

The size |X| of an annotated ontology, a polynomial or
a BCQ X is the length of the string representing X , where
elements of NC, NR, NI and NV in X are of length one. We
often omit ‘annotated’ and refer to ‘ontologies,’ ‘queries,’
‘assertions,’ etc. when it is clear from the context.

3 Reasoning with Annotated ELHr Ontologies
We present a completion algorithm for deriving basic entail-
ments from an ELHr ontology. As usual with completion
algorithms, we restrict to ontologies in normal form. The an-
notated ELHr ontology O is in normal form if for every GCI
(α, v) ∈ O, α is of the form A v B, A u A′ v B, A v ∃R,
or ∃R.A v B, with A,A′ ∈ NC ∪ {>}, B ∈ NC. Every
annotated ELHr ontology can be transformed, in polynomial
time, into an ontology in normal form which entails the same
axioms over the ontology signature, using the following rules
where Ĉ, D̂ /∈ NC ∪ {>} and A is a fresh concept name:

NF1 : (C u D̂ v E, v) −→ (D̂ v A, 1), (C uA v E, v)

NF2 : (∃R.Ĉ v D, v) −→ (Ĉ v A, 1), (∃R.A v D, v)

NF3 : (Ĉ v ∃R, v) −→ (Ĉ v A, 1), (A v ∃R, v).

Theorem 5. Let O be an annotated ELHr ontology, α an
axiom, and m a monomial. Let O′ be obtained by applying
exhaustively Rules NF1-NF3 to O.

• If O |= (α,m), then O′ |= (α,m).

• If O′ |= (α,m) and every concept name occurring in α
occurs in O, then O |= (α,m).

Before describing the reasoning algorithm in detail, we
present an important property of entailment; namely, that all
entailment problems can be polynomially reduced to each
other. This allows us to focus on only one problem. In particu-
lar, we focus on entailment of annotated assertions.
Theorem 6. Let O be an annotated ontology, and (α,m) an
annotated GCI, RR, or RI. One can construct in polynomial
time an ontology O′ and an annotated assertion (β, n) such
that O |= (α,m) iff O′ |= (β, n). Conversely, if (α,m) is an
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if then (if Φ /∈ O)

CR0 X ∈ NC ∪ NR ∪ {>} occurs in O add Φ = (X v X, 1) to O
CR1 (R1 v R2,m1), (R2 v R3,m2) ∈ O add Φ = (R1 v R3, [m1 ×m2]) to O
CR2 (R v S,m1), (ran(S) v A,m2) ∈ O add Φ = (ran(R) v A, [m1 ×m2]) to O
CR3 (A v ∃R,m1), (R v S,m2) ∈ O add Φ = (A v ∃S, [m1 ×m2]) to O
CR4 (A v B,m1), (B v C,m2) ∈ O add Φ = (A v C, [m1 ×m2]) to O
CR5 (A v B,m1), (B v ∃R,m2) ∈ O add Φ = (A v ∃R, [m1 ×m2]) to O
CR6 (A v B1,m1), (A v B2,m2), (B1 uB2 v C,m3) ∈ O add Φ = (A v C, [m1 ×m2 ×m3]) to O
CR7 (ran(R) v B1,m1), (ran(R) v B2,m2), (B1 v C1,m3), (B2 v C2,m4), (C1 u C2 v C,m5) ∈ O add Φ = (ran(R) v C, [m1 ×m2 ×m3 ×m4 ×m5]) to O
CR8 (A uB v C,m1), (> v B,m2) ∈ O add Φ = (A v C, [m1 ×m2]) to O
CR9 (A v ∃S,m1), (ran(S) v B,m2), (B v C,m3), (S v R,m4), (∃R.C v D,m5) ∈ O add Φ = (A v D, [m1 ×m2 ×m3 ×m4 ×m5]) to O
CR10 (A v ∃R,m1), (> v B,m2), (∃R.B v C,m3) ∈ O add Φ = (A v C, [m1 ×m2 ×m3]) to O
CR11 a ∈ ind(O) add Φ = (>(a), 1) to O
CR12 (R(a, b),m1), (R v S,m2) ∈ O add Φ = (S(a, b), [m1 ×m2]) to O
CR13 (A(a),m1), (A v B,m2) ∈ O add Φ = (B(a), [m1 ×m2]) to O
CR14 (A1(a),m1), (A2(a),m2), (A1 uA2 v B,m3) ∈ O add Φ = (B(a), [m1 ×m2 ×m3]) to O
CR15 (R(a, b),m1), (A(b),m2), (∃R.A v B,m3) ∈ O add Φ = (B(a), [m1 ×m2 ×m3]) to O
CR16 (R(a, b),m1), (ran(R) v A,m2) ∈ O add Φ = (A(b), [m1 ×m2]) to O

Table 1: Completion rules. A, . . . ,D ∈ NC ∪ {>}, R,S,Ri ∈ NR, m,mi ∈ NM.

annotated concept (resp. role) assertion, one can construct in
polynomial time an ontology O′ and two annotated concept
(resp. role) inclusions (β, n), (γ, n) such that O |= (α,m) iff
O′ |= (β, n) or O′ |= (γ, n).

We adapt the classical EL completion rules to handle anno-
tated ELHr ontologies in normal form. The algorithm starts
with the original ontology O, and extends it through an iter-
ative application of the rules from Table 1 until O becomes
saturated; i.e., no more rules are applicable. We cannot use
the rules of [Baader et al., 2008a] which eliminate range re-
strictions by adding GCIs with qualified role restrictions on
the right so we designed rules for ELHr.

A rule application may add axioms annotated with monomi-
als, and other assertions (>(a), 1), which are not foreseen in
the definition of annotated ontologies. Still, ×-idempotency
ensures that all monomials have at most |O| factors. To show
that the completion algorithm is sound and complete for de-
ciding assertion entailment, we prove a stronger result. The
k-saturation of O is the saturated ontology Ok obtained from
O through the completion algorithm restricted to monomials
of length at most k. We show that Ok suffices for deciding
entailment of annotated assertions (α,m) where m is a mono-
mial of length at most k.
Theorem 7. If Ok is the k-saturation of O, then

1. Ok is computable in polynomial time w.r.t. the size of O,
and in exponential time w.r.t. k,

2. for every assertion α and monomial mk with at most k
variables, O |= (α,mk) iff (α, [mk]) ∈ Ok.

This theorem states that to decide whether an assertion
(α,m) is entailed by O, one just needs to find the k-saturation
of O, where k is the number of variables in m, and then check
whether (α, [m]) ∈ Ok. Due to the first point of Theorem 7
and Theorem 6, we obtain the following corollary.
Corollary 8. For every axiom α, O |= (α,m) is decidable in
polynomial time in |O| and in exponential time in |m|.

In general there is no need to interrupt the completion algo-
rithm; the ontology saturated without restricting the monomial
length can be used to decide all relevant entailments regard-
less of the length of the monomial. Using Ok is merely an
optimisation when one is only interested in a short monomial.

While the polynomial time upper bound w.r.t. the ontology
size is positive, and in line with the complexity of the EL
family, the exponential time bound on the monomial size does
not scale well for entailments with larger monomials. Recall
that these bounds are based on the number of annotated axioms
generated by the completion rules. The following example
illustrates the potential exponential blow-up.

Example 9. Consider O = {(A v Ai, vi), (Ai v B, ui) |
0 ≤ i ≤ n} ∪ {(B v A, u)}. If O′ is the result of applying
the completion algorithm toO, then for every S ⊆ {1, . . . , n},
(B v A, [u×Πi∈Sui × vi]) ∈ O′.

Following Hutschenreiter and Peñaloza [2017], we can see
the completion algorithm as an automaton. More precisely,
given O and (α,m), we can construct a tree automaton A,
whose states correspond exactly to all the elements in Ok,
such that (α, [m]) ∈ Ok iffA accepts at least one tree. Briefly,
A is constructed by reading the rule applications backwards,
allowing transitions from the consequence to the premises of
the rule; see [Hutschenreiter and Peñaloza, 2017] for details.
The number of states in A is exactly the cardinality of Ok and
hence potentially exponential on k. However, the size of each
state is bounded polynomially on k; the arity of the automaton
is bounded by the maximum number of premises in a rule, in
this case 5; and one can bound polynomially on k the number
of different states that may appear in any successful run of A.
Thus, A satisfies the conditions for a PSpace emptiness test
[Baader et al., 2008b], which yields the following result.

Proposition 10. For every axiom α,O |= (α,m) is decidable
in polynomial space in |m|.

Interestingly, these results allow us to bound the full com-
plexity of answering instance queries (IQ) of the form C(a)
where C is an ELHr concept and a ∈ NI.

Theorem 11. LetO be an ontology, C(a) an IQ andm ∈ NM.
O |= (C(a),m) is decidable in polynomial time in |O| and
|C(a)|, and polynomial space in |m|.

4 Computing Relevant Provenance Variables
An interesting question is whether a given variable appears in
the provenance of a query q; i.e., whether a given axiom occurs
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in some derivation of q. Formally, v ∈ NV is relevant for q
(w.r.t. ontologyO) iff ∃m ∈ NM s.t. O |= (q, v×m). For IQs
and ELHr this problem can be solved in polynomial time, via
an algorithm computing all the relevant variables for all queries
of the form A(a), with a ∈ NI, A ∈ NC. We modify the
completion algorithm (Section 3) to combine all monomials
from a derivation, instead of storing them separately.

As in Section 3, the algorithm assumes normal form and
keeps as data structure a set S of annotated axioms (α,m),
where α uses the vocabulary of O, and m ∈ NM. S is ini-
tialised as the original ontology where annotations of the same
axiom are merged into a single monomial:

S := {(α, [Πv∈Vαv]) | (α, u) ∈ O, Vα = {v | (α, v) ∈ O}},

and extended by exhaustively applying the rules in Table 1,
where rule applications change S into

Sd(α,m) :=

{
S ∪ {(α,m)} if there is no (α, n) ∈ S
S \ {(α, n)} ∪ {(α, [m× n])} if (α, n) ∈ S;

i.e., add the axiom α with an associated monomial if it does
not yet appear in S, and modify the monomial associated to
α to include new variables otherwise. To ensure termination,
a rule is only applied if it modifies S. The rules are applied
until no new rule is applicable; i.e., S is saturated.

Example 12. The relevance algorithm on the ontology of
Example 9, yields the saturated set S = {(A v A,m), (B v
B,m), (A v B,m), (B v A,m)} ∪ {(Ai v B,m), (B v
Ai,m), (Ai v A,m), (A v Ai,m) | (1 ≤ i ≤ n} ∪ {(Ai v
Aj ,m) | 1 ≤ i, j ≤ n} with m = u×Πn

i=1ui ×Πn
i=1vi.

Each rule application either adds a new axiom, or adds to
the label of an existing axiom more variables. As the number
of concept and role names, and variables appearing in S is
linear onO, at most polynomially many rules are applied, each
requiring polynomial time; i.e, the algorithm is polynomial.

Lemma 13. If S is the saturated set obtained fromO, a ∈ NI,
A ∈ NC, and v ∈ NV, then v is relevant for A(a) iff v occurs
in m for some (A(a),m) ∈ S .

The algorithm decides relevance for assertion entailment
in ELHr, yielding a polynomial-time upper bound for this
problem. As in Section 3, axioms and IQs can be handled in
polynomial time as well.

Theorem 14. Relevance for axiom and IQ entailment in
ELHr can be decided in polynomial time.

This result shows that if we only need to know which ax-
ioms are used to derive an axiom or an IQ, the complexity
is the same as reasoning in ELHr without provenance. This
contrasts with axiom pinpointing : the task of finding the ax-
ioms responsible for a consequence to follow, in the sense of
belonging to some minimal subontology entailing it (a MinA).
Deciding whether an axiom belongs to a MinA is NP-hard for
Horn-EL [Peñaloza and Sertkaya, 2010]. Relevance is easier
in our context since provenance does not require minimality:
if O = {(A v B, v1), (B v C, v2), (C v B, v3)}, v2 and v3
are relevant for A v B, but the only MinA is {A v B} so
other axioms are not relevant for axiom pinpointing.

Provenance relevance is related to lean kernels (LKs)
[Peñaloza et al., 2017], which approximate the union of Mi-
nAs. The LK of a consequence c is the set of axioms appearing
in at least one proof of c in a given inference method, gener-
alizing the notion from propositional logic, where an LK is
the set of clauses appearing in a resolution proof for unsatisfi-
ability. The sets of variables computed by our algorithm are
the sets of axioms used in the derivations by the completion
algorithm, which is a consequence-based method for ELHr.
Thus they correspond to LKs for the associated axioms and our
algorithm is an alternative way of computing LKs in ELHr.

5 Query Answering with Provenance
Even if ELHr is expressive enough to reduce entailment of
rooted tree-shaped BCQs to assertion entailment, the methods
presented in Section 3 do not apply to other kinds of BCQs.
Example 15. ForO={(R(a, a), u1), (A(a), u2), (Av∃R, v1),
(ran(R)vA, v2)} and q = ∃xyztt′t′′.R(x, x, t)∧R(x, y, t′)∧
R(z, y, t′′), O |= (q, u1) but O 6|= (q, u2 × v1 × v2): O
has a model I with RI = {(a, a, u1), (a, b1, u2 ×
v1), (a, c1, u1 × v1 × v2)} ∪ {(bi, bi+1, u2 × v1 × v2) | i ≥
1} ∪ {(ci, ci+1, u1 × v1 × v2) | i ≥ 1}.

We adapt the combined approach by Lutz et al. [2009] to
trace provenance. Assume that queries contain only individual
names occurring in the ontology O. The combined approach
builds a canonical model for O and shows that every query q
can be rewritten into a query q∗ that holds in this canonical
model iff O |= q. We first define the canonical model IO of
an ontology O annotated with provenance information.

Assume that O is in normal form; mon(O) denotes the
set of monomial representatives built using variables of NV

occurring in O, and rol(O) is the set of role names oc-
curring in O. Also assume that (∗) if there is B ∈ NC,
R ∈ NR, and n ∈ NM such that O |= (ran(R) v B,n),
then (ran(R) v B, [n]) ∈ O. This simplifies the pre-
sentation of the construction of the canonical model. Let
aux(O) := {dmR | R ∈ rol(O),m ∈ mon(O)}. Assume that
ind(O) ∩ aux(O) = ∅. We define the domain of IO and the
domain of monomials of IO as follows:

∆IO := ind(O) ·∪ aux(O) ∆IOm := N[M]

We define the interpretation function of IO as the union of ·IiO ,
i ≥ 0. The function ·I0O sets aI

0
O = a for all a ∈ ind(O) (for

a ∈ NI \ ind(O) the mapping aIO is irrelevant), mI
0
O = [m]

for all m ∈ NM, and for all A ∈ NC and all R ∈ NR,

AI
0
O := {(a, [m]) | O |= (A(a),m)}

RI
0
O := {(a, b, [m]) | O |= (R(a, b),m)}.

If IiO is defined, we define Ii+1
O by choosing an annotated

axiom α ∈ O and applying one of the following rules in a fair
way (i.e., every applicable rule is eventually applied).
R1 α = (C v A,m): if there is d ∈ ∆IO and n ∈ mon(O)

s.t. (d, [n]) ∈ CIiO , then add (d, [m× n]) to AI
i
O .

R2 α = (C v ∃R,m): if there is n ∈ mon(O), d ∈ ∆IO s.t.
(d, [n]) ∈ CIiO , then add (d, d

[m×n]
R , [m× n]) to RI

i
O .
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R3 α = (R v S,m): if there are d, d′ ∈ ∆IO , n ∈ mon(O)

s.t. (d, d′, [n]) ∈ RIiO , then add (d, d′, [m× n]) to SI
i
O .

Example 16. For our running example, IO is as follows:

AIO = {(a, u2), (a, u1 × v2), (du2×v1
R , u2 × v1 × v2),

(du1×v1×v2
R , u1 × v1 × v2),

(du2×v1×v2
R , u2 × v1 × v2)}

RIO = {(a, a, u1), (a, du2×v1
R , u2 × v1),

(a, du1×v1×v2
R , u1 × v1 × v2),

(du2×v1
R , du2×v1×v2

R , u2 × v1 × v2),
(du1×v1×v2
R , du1×v1×v2

R , u1 × v1 × v2),
(du2×v1×v2
R , du2×v1×v2

R , u2 × v1 × v2)}.
Proposition 17 formalises the fact that IO is a model of O.
Proposition 17. IO is a model of O.

We define the rewriting q∗ of a query q, closely following
Lutz et al. [2009]. It contains an additional predicate Aux,
always interpreted as (∆IO \ ind(O))×{1IO} in IO. Let ∼q
be the smallest transitive relation over terms of q, term(q), that
includes identity relation, and satisfies the closure condition
(†) R1(t1, t2, t), R2(t′1, t

′
2, t
′) ∈ q, t2 ∼q t′2 =⇒ t1 ∼q t′1.

Clearly, the relation ∼q is computable in polynomial time in
the size of q. Define for any equivalence class χ of ∼q , the set

pre(χ) = {t1 | ∃R ∈ NR s.t. R(t1, t2, t) ∈ q and t2 ∈ χ}.
We define the sets Cyc and Fork= whose main purpose in the
translation is to prevent spurious matches (e.g., with cycles)
of a query in the anonymous part of the canonical model.
• Fork= is the set of pairs (pre(χ), χ) with pre(χ) of car-

dinality at least two.
• Cyc is the set of variables x in term(q) such that there are
R0(t01, t

0
2, t

0), . . ., Rm(tm1 , t
m
2 , t

m), . . ., Rn(tn1 , t
n
2 , t

n)

in q with n,m ≥ 0, x ∼q tj1 for some j ≤ n, ti2 ∼q ti+1
1

for all i < n, and tn2 ∼q tm1 .
Fork=, and Cyc can also be computed in polynomial time in
the size of q. For each equivalence class χ of ∼q , we choose a
representative tχ ∈ χ. For q = ∃~x.ψ, the rewritten query q∗
is defined as ∃~x.(ψ ∧ ϕ1 ∧ ϕ2), where

ϕ1 :=
∧
x∈Cyc

¬Aux(x, 1)

ϕ2 :=
∧

({t1,...,tk},χ)∈Fork=

(Aux(tχ, 1)→
∧

1≤i<k

ti = ti+1).

Example 18. The rewriting q∗ of q in Example 16
is ∃xyztt′t′′.(R(x, x, t) ∧ R(x, y, t′) ∧ R(z, y, t′′) ∧
¬Aux(x, 1) ∧ (Aux(y, 1)→ x = z)). ϕ1 prevents mapping x
to some dmR , avoiding the R-loops in the anonymous part of
IO to satisfy R(x, x, t). ϕ2 enforces that if y is mapped in the
anonymous part, then x and z are mapped to the same object,
which avoids R-loops in the anonymous part of IO.

Our construction differs from the original rewriting of Lutz
et al. [2009]. In particular, in their rewriting there is a for-
mula ϕ3, which is not necessary in our case. Intuitively, this
is because we keep the information of the role name used
to connect an element of aux(O) to the rest of the model.
Theorem 19 establishes that q∗ is as required.

Theorem 19. Let O be an ontology in normal form and (q, p)
be an annotated query. Then, O |= (q, p) iff IO |= (q∗, p).

Although the domain of monomials is infinite, since only
elements of mon(O) are relevant, an exponential size structure
representing IO is sufficient to check whether IO |= (q∗, p).
The size of the resulting structure is exponential in |O| and can
be constructed in exponential time using the completion algo-
rithm (Theorem 7) to check entailment of assertions and RRs.
Corollary 20. Let O be an ontology, q a BCQ and p ∈ NP.
O |= (q, p) is decidable in exponential time in |O|+ |(q, p)|.

6 Discussion and Conclusions
We study the problem of computing the provenance of an ax-
iom or a BCQ entailment from ELHr ontologies. In particular,
entailment of annotated axioms or IQs for a fixed monomial
size is tractable, and the set of relevant provenance variables
can be computed in polynomial time. For the more challenging
problem of CQ answering, we adapt the combined approach.

Related work. Explaining inferences in DLs has been
studied mostly focusing on explaining axiom entailment,
in particular concept subsumption, through axiom pinpoint-
ing [Schlobach and Cornet, 2003; Kalyanpur et al., 2007;
Baader et al., 2007b]. Few approaches address query an-
swer explanation for DL-Lite or existential rules [Borgida et
al., 2008; Croce and Lenzerini, 2018; Ceylan et al., 2019;
Bienvenu et al., 2019]. However, current explanation services
in DLs provide minimal explanations, which is crucially dif-
ferent to provenance, since provenance takes into account all
derivations (cf. discussion in Section 4).

Closest to our work is provenance for OBDA [Calvanese
et al., 2019]. However, the challenges in enriching the EL
family with provenance were not investigated. We also study
additional problems such as axiom entailment and relevance.
Dannert and Grädel [2019] consider provenance in the DL
ALC. The setting is not the same as ours since they only
consider annotated assertions (not annotated GCIs), do not
study BCQs, and the semantics is different as well. There are
several proposals for handling provenance in RDF(S), most
notably an algebraic deductive system for annotated RDFS
[Buneman and Kostylev, 2010]. The approach by Bourgaux
and Ozaki [2019] for attributed DL-Lite fundamentally differs
by using GCIs and RIs to express constraints on provenance.
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