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Abstract
Formal logic can be used as a tool for representing
complex and heterogeneous data such as beliefs,
knowledge and preferences. This study proposes
an approach for defining clustering methods that
deal with bases of propositional formulas in clas-
sical logic, i.e., methods for dividing formula bases
into meaningful groups. We first use a postulate-
based approach for introducing an intuitive frame-
work for formula clustering. Then, in order to
characterize interesting clustering forms, we intro-
duce additional properties that take into considera-
tion different notions, such us logical consequence,
overlapping, and consistent partition. Finally, we
describe our approach that shows how the incon-
sistency measures can be involved in improving the
task of formula clustering. The main idea consists
in using the measures for quantifying the quality of
the inconsistent clusters. In this context, we pro-
pose further properties that allow characterizing in-
teresting aspects related to the amount of inconsis-
tency.

1 Introduction
Clustering is one of the main machine learning techniques for
data analysis, which is used to divide data into meaningful
groups of objects that share similar characteristics. It plays
an important role in several domains, including information
retrieval, social sciences, and biology (e.g. see [Aggarwal
and Reddy, 2013]). The numerous application fields of clus-
tering have resulted in a variety of data types, such as trans-
actions, sequences, texts, graphs, - and consequently a vari-
ety of clustering methods (e.g. see [Berkhin, 2006]). In that
regard, we can particularly point out symbolic datasets [de
Carvalho et al., 2009; de Souza and de Carvalho, 2004;
Gowda and Diday, 1994] that are appropriate for dealing with
complex objects (e.g. [Billard and Diday, 2012; Bock, 2000;
Diday and Esposito, 2003]). We can also mention concep-
tual clustering proposed in [Michalski, 1980], which is a ma-
chine learning task that deals with a set of complex and het-
erogeneous objects and produces a classification scheme over
them. In other words, conceptual clustering is a technique for
explaining and summarizing data.

To the best of our knowledge, there is in the literature a
unique work on clustering where propositional formulas are
used to represent complex and heterogeneous data (beliefs,
knowledge, preferences, etc.) [Boudane et al., 2017]. In this
work, it is mainly proposed adaptations of existing cluster-
ing methods to the case of sets of propositional formulas, in
particular the two well-known k-means and hierarchical ag-
glomerative clustering techniques. In fact, in the clustering
framework introduced in [Boudane et al., 2017] the propo-
sitional logic is only used as a tool for representing sets of
objects in a compact manner: a propositional formula repre-
sents its Boolean models where each one represents a distinct
object. In this context, we aim here at characterizing typical
aspects of logical formula clustering that take into account
that formal logic is more than a tool for compact representa-
tion, in particular investigating how it can be used in presence
of inconsistency.

In this work, we introduce a framework for defining for-
mula clustering methods that allow dealing with classical
propositional logic as a tool of both representation and rea-
soning. There exist several important differences between the
approach introduced in [Boudane et al., 2017] and our frame-
work. In particular, the definition of clustering methods in our
framework is driven by rationality postulates, which allows us
to have flexibility and capture different interesting aspects. In
addition, the inconsistency measurement is involved in im-
proving the quality of inconsistent clusters.

We first propose a basic postulate-based approach for
defining formula clustering methods. The general idea be-
hind our starting rationality postulates consists in preferring
consistent clusters to inconsistent ones. For instance, the pos-
tulate Consistency − Preference states that the improvement
of any cluster by making it consistent brings about the dete-
rioration of at least one other cluster by making it inconsis-
tent. We then introduce a specific form of formula clustering
that satisfies the proposed postulates. It is important to men-
tion that our basic approach makes only a distinction between
consistent clusters and inconsistent ones, but no distinction is
made between inconsistent clusters.

Then, we introduce our approach that involves the incon-
sistency measurement in formula clustering, which consists
in using measures for quantifying the quality of the inconsis-
tent clusters. Indeed, we present a specific type of formula
clustering where we use a property that shows how to im-
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prove the inconsistent clusters by considering the amount of
conflicts. This property says that this amount in every in-
consistent cluster cannot be reduced without increasing the
amount of inconsistency in at least one other cluster. We then
propose additional properties that allow characterizing inter-
esting aspects related to the amount of inconsistency such as
a property for reducing as much as possible the value corre-
sponding to the greatest amount of inconsistency, which in a
sense may lead to balance the amount of inconsistency be-
tween clusters.

2 Preliminaries
The material in this section consists of a description of clas-
sical propositional logic, related notions, and notational con-
ventions.

The considered language of classical propositional logic is
inductively defined starting from a countably set of propo-
sitional variables, denoted P , and the constant ⊥ denoting
false, and using ∧, ∨, ¬ and→ as logical connectives. The
set of propositional formulas is denoted F . Notationally, we
use, possibly primed and/or with subscripts and/or with su-
perscripts, the letters p, q and r to denote the propositional
variables and the greek letters φ, ψ and χ to denote the propo-
sitional formulas. Further, given a formula φ (resp. a set of
formulas S), we use Prop(φ) (resp. Prop(S)) to denote the
set of propositional variables occurring in φ (resp. S). For a
finite set S, we use |S| to denote its cardinality.

A Boolean interpretation I of a formula φ is a func-
tion from a set of propositional variables P to {0, 1} with
Prop(φ) ⊆ P . It is inductively extended to the propositional
formulas as usual.

We say that a Boolean interpretation I of a formula φ is
a model of the latter, written I |= φ, if we have I(φ) = 1.
Given a set of propositional variables P with Prop(φ) ⊆ P ,
we use Mod(φ, P ) to denote the set of models of φ that are
defined over P . A formula is said to be consistent if it admits
a model. Further, we say that a set of formulas S is consistent
if its associated formula

∧
φ∈S φ is consistent, otherwise it is

inconsistent.
Let S be a finite set of formulas and φ ∈ F . We say that

S entails φ, written S ` φ, if and only if for all Boolean
interpretation I defined over Prop(S∪{φ}), if I |=

∧
φ∈S φ

then I |= φ. In particular, S is inconsistent if and only if
S ` ⊥ holds.

We define an integrity constraint as a consistent proposi-
tional formula, and a knowledge base as a finite set of propo-
sitional formulas. We use KF to denote the set of knowledge
bases.
Definition 1 (MIS). Given a knowledge base K, a set M of
formulas is said to be a minimal inconsistent subset (MIS) of
K iff M ⊆ K, M ` ⊥, and ∀φ ∈M , M \ {φ} 0 ⊥.
Definition 2 (MCS). Given a knowledge base K, a set M of
formulas is said to be a maximal consistent subset (MCS) of
K iff M ⊆ K, M 0 ⊥, and ∀φ ∈ K \M , M ∪ {φ} ` ⊥.

We use MC(K) and MI(K) to denote respectively the set
of all maximal consistent subsets and that of all minimal in-
consistent subsets of K.

Definition 3 (Free Formula). Given a knowledge baseK and
a formula φ inK, φ is said to be free inK iff φ /∈M for every
M ∈ MI(K).
Definition 4 (Problematic Formula). Given a knowledge base
K and a formula φ in K, φ is said to be problematic in K iff
there exists M ∈ MI(K) s.t. φ ∈M .

We use Free(K) and Pb(K) to denote respectively the
set of free formulas and that of problematic formulas in K.
The set of inconsistent formulas in K is denoted Inc(K).

The following notions are used for defining our approach
for formula clustering. Given a knowledge base K, we use
2K to denote the powerset of K, i.e., the set of its subsets.
A subset D ⊆ 2K \ {∅} is said to be a partition of K if
(i) K =

⋃
S∈D S and (ii) S ∩ S′ = ∅ for every S, S′ ∈ D

with S 6= S′. We say that D is an m-partition if in addi-
tion we have |D| = m. Furthermore, given a formula φ, a
consistent (m,φ)-partition of K is a subset D ⊆ 2K∪{φ}

where (i) φ ∈ S for every S ∈ D, (ii) {S \ {φ} | S ∈ D}
is an m-partition of (

⋃
S∈D S) \ {φ}, and (iii) S 0 ⊥ for

every S ∈ D. We say that D is a maximal consistent (m,φ)-
partition of K if there is no consistent (m,φ)-partition D′ of
K such that

⋃
S∈D S ⊂

⋃
S′∈D′ S′.

3 Motivation
Let us first consider the example of organizing a wedding din-
ner in order to illustrate the interest of using formula cluster-
ing; the aim is to propose a distribution of the guests around
the available tables. In this context, we assume that we have
m guests and n tables. We associate to each guest i ∈ 1..m
a distinct propositional variable denoted pi. Each guest i ex-
presses her/his preferences using a propositional formula, de-
noted ψi. For instance, if the guest 1 does not want to be
with 2 and she/he accepts to be with the guest 3 if and only
if the guest 4 is at the same table, then we can use the fol-
lowing formula p1 ∧ ¬p2 ∧ (p3 ↔ p4) to represent her/his
preferences. Clustering is a data mining task that consists in
grouping a set of objects so that the objects in the same cluster
are more compatible with each other than those in the other
groups (e.g. see [Aggarwal and Reddy, 2013]). Thus, a clus-
tering of the set K = {φ1, . . . , φm} in n groups can be seen
as a distribution of all the guests around the available tables.
In this context, it is interesting to reduce the amount of con-
flicts in each table (cluster), this explains why we use here the
notion of inconsistency measure. Moreover, it is appropriate
to consider preferences that have to be taken into account in
all the clusters. The formula representing such preferences is
called here integrity constraint. For example, one can use
the formula (

∑m
i=1 pi ≤ 5) ∧ ((

∨
i∈W pi) ∧ (

∨
j∈M pj)),

where W represents the set of female guests and M that of
male guests, to represent the fact that we can place up to five
chairs per table and around every table there is at least one
woman and at least one man. It is worth noting that the cardi-
nality constraints

∑m
i=1 pi ≤ n can be polynomially trans-

formed into propositional formulas (e.g. see [Sinz, 2005;
Marques-Silva and Lynce, 2007]).

In the literature, there is a unique work on logical formula
clustering [Boudane et al., 2017], which proposes to use clas-
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sical propositional logic as a tool for representing sets of ob-
jects in a compact manner. Indeed, a propositonal formula
can have an exponential number of models and it can thus
represents an exponential number of objects. In that regard,
the previous work proposed essentially adaptations of exist-
ing clustering methods. In fact, it is especially proposed adap-
tations of k-means and hierarchical agglomerative clustering
techniques. There are a number of relevant differences be-
tween our approach and that proposed in [Boudane et al.,
2017], and the major ones can be summarized in the follow-
ing points:
• Our framework is defined through an approach based on

rationality postulates. Differently, the prior framework
is defined through a less flexible approach analogous to
that used in standard clustering framework by mainly
considering similarity measures.
• The use of the notion of inconsistency measure to deal

with inconsistent clusters in our framework, which al-
lows it to benefits from the numerous contributions on
inconsistency measurement in the literature.
• The use of additional concepts in our framework such as

integrity constraint.

4 Formula Clustering
In this section, we introduce our clustering framework. We
first propose a basic definition of clustering using a postulate-
based approach. Then, we introduce some interesting addi-
tional properties to characterize useful clustering forms.

4.1 Clustering and Consistency
The main idea behind the following definition of formula
clustering is in the fact that consistent clusters are preferred
to inconsistent ones.
Definition 5 (Formula Clustering). Given a knowledge base
K, a positive integer n and an integrity constraint φ, a (n, φ)-
clustering of K is a set C ⊆ 2K∪{φ} such that:
•
⋃
K′∈CK

′ = K ∪ {φ} (Completeness);

• φ ∈
⋂
K′∈CK

′ (Integrity);

• |C| ≤ n (Upper − Bound);

• ∀K ′,K ′′ ∈ C, if K ′ 6= K ′′ then K ′ 6⊂ K ′′

(Inclusion− Freeness);

• if K admits a partition D s.t. |D| ≤ n and S ∪
{φ} 0 ⊥ for every S ∈ D, then, ∀K ′ ∈ C, K ′ 0 ⊥
(Consistent− Partition);

• ∀K ′ ∈ C and ∀K ′′ ⊂ K ′ \ {φ} with K ′ ` ⊥ and K ′ \
K ′′ 0 ⊥, and ∀{K1, . . . ,Km} ⊆ C \{K ′} with |K ′′| ≥
m, there exists nom-partition {K ′′1 , . . . ,K ′′m} ofK ′′ s.t.
Ki ∪K ′′i 0 ⊥ for i ∈ 1..m (Consistency − Preference);

• if ∃K ′ ∈ C s.t. K ′ ` ⊥, then |C| = min(|K|, n)
(Clusters− Number).

In a (n, φ)-clustering, n corresponds to the maximum num-
ber of clusters and the integrity constraint φ is used to rep-
resent properties that have to be shared by all the clusters.
The postulate Completeness states that all the formulas of

X⏟K′ ′ 

K1 K2 K3

Cluster 1 Cluster 2 Cluster 3 Cluster 4(K′ )
K2 ⊬ ⊥

K2 ∪ X ⊢ ⊥
K′ ∖K′ ′ ⊬ ⊥
K′ ⊢ ⊥⇓ ⇓

Improvement Deterioration

Figure 1: An illustration for Consistency − Preference.

the considered knowledge base must occur in the clustering.
The postulate Integrity says that the integrity constraint has to
be in every cluster. The postulate Upper − Bound expresses
that the number of clusters cannot exceed the fixed bound.
The postulate Inclusion− Freeness states that there exist no
two clusters where one contains the other. the postulates
Consistent− Partition and Consistency − Preference are
both used to express that consistency is preferred to inconsis-
tency. In particular, Consistency − Preference is illustrated
in Figure 1: the improvement of any cluster brings about
the deterioration of another. Finally, Clusters− Number says
that we have to use the maximum number of clusters in the
presence of at least one inconsistent cluster, which can be
seen as a manner to tend towards consistency.
Definition 6. LetK be a knowledge base, n a strictly positive
integer s.t. |K| ≥ n, D a n-partition of K and φ ∈ F . Then,
D is said to be φ-minimal iff, for all n-partition D′ of K,
|{S ∈ D | S ∪ {φ} ` ⊥}| ≤ |{S′ ∈ D′ | S′ ∪ {φ} ` ⊥}|.

One of the important consequences of the following propo-
sition is the fact that it shows that it is always possible to build
a formula clustering from a knowledge base.
Proposition 1. If D is a φ-minimal n-partition of a knowl-
edge base K, then {K ′ ∪ {φ} | K ′ ∈ D} is a (n, φ)-
clustering of K.

It is important to note that our definition of formula clus-
tering makes only a distinction between consistent clusters
and inconsistent ones, but no distinction is made between the
consistent clusters, as well as between inconsistent clusters.
In the case of consistent clusters, we are in possession of a
strong tool to measure the quality of a cluster, namely the
notion of model. In this context, a first idea consists in prefer-
ring the augmentation of the number of models. The intuition
behind this idea is in the fact that formulas sharing a great
number of models represent close objects. To take this point
into account, one can replace (Consistency − Preference)
with the following stronger property:

∀K ′ ∈ C, ∀K ′′ ⊂ K ′ \ {φ} with |Mod(K ′, P rop(K))| <
|Mod(K ′\K ′′, P rop(K))|, and ∀{K1, . . . ,Km} ⊆ C\{K ′}
with |K ′′| ≥ m, there exists no m-partition {K ′′1 , . . . ,K ′′m}
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of K ′′ s.t. Mod(Ki, P rop(K)) = Mod(Ki ∪
K ′′i , P rop(K)) for i ∈ 1..m (Model− Augmentation).

However, this property does not take into account the
structures of the clusters and, in particular, the number
of formulas involved in each one. In order to clarify
this point, consider for instance the (2,>)-clustering C =
{K1 = {>, p1, . . . , pn},K2 = {>, q1 ∧ · · · ∧ qn}},
where p1, . . . , pn, q1, . . . , qn are pairwise distinct proposi-
tional variables. We use V to denote the set of vari-
ables occurring in C. We clearly have |Mod(K1, V )| =
|Mod(K2, V )|, but the number of formulas of K1 can be
significantly greater than that of K2. A possible solu-
tion is the use of Jaccard similarity coefficient, as proposed
in [Boudane et al., 2017], instead of the number of models in
Model− Augmentation:

JK(K ′) =
|Mod(

∧
ψ∈K′ ψ, Prop(K))|

|Mod(
∨
ψ∈K′ ψ, Prop(K))|

Consider again the previous example. We obtain in this case
JK(K1) =

2n

22n−2n and JK(K2) = 1, which means that the
quality of K2 can be much better than that of K1.

The quality of a consistent cluster can be evaluated through
the quantity of information. As stated in [Lozinskii, 1994],
given a consistent set of formulas S, if a formula ψ is consis-
tent with S, then the addition of ψ to S cannot decrease the
amount of information: more formulas means more informa-
tion. Thus, contrary to the previous measure, more models
means less information. One of the well-known information
measure is that proposed in [Lozinskii, 1994] and defined as
follows:

L(K ′) = |Prop(K ′)| − log(|Mod(K ′, P rop(K ′))|)
The choice between Mod, JK and L depends strongly on

the context. This explains why in the definition of formula
clustering we only give advantage to the consistent clusters
without any preference among them.

4.2 Additional Properties
We now describe some interesting properties on formula clus-
terings. Although these properties are not required for every
clustering, they allow taking into consideration some impor-
tant aspects and characterize useful clustering forms.

A (n, φ)-clustering C is said to be overlap-free if it satisfies
the following property:
• ∀K ′,K ′′ ∈ C, K ′ ∩K ′′ = {φ} (Overlap− Freeness).
For instance, in the example of wedding dinner described

previously, it is reasonable to consider Overlap− Freeness
since each formula represents in a sense a distinct person.
It is to be noted that the (n, φ)-clusterings built from the φ-
minimal n-partitions, as described in Proposition 1, satisfy
Overlap− Freeness. In addition, in the case where overlaps
between clusters are allowed, it would be interesting to re-
strict such overlaps to the formulas obtained through entail-
ment in the case of the consistent clusters by using the fol-
lowing two properties:
• ∀K ′ ∈ C and ∀ψ ∈ K, if K ′ 0 ⊥ and K ′ ` ψ, then
ψ ∈ K ′ (Logical− Consequence);

• ∀K ′,K ′′ ∈ C with K ′ 6= K ′′, K ′ ∩ K ′′ 6= {φ} iff
K ′ 0 ⊥, K ′′ 0 ⊥, (K ′ \ K ′′) ∪ {φ} ` ψ and (K ′′ \
K ′) ∪ {φ} ` ψ for every ψ ∈ K ′ ∩K ′′ (Intersection).

The property Logical− Consequence is mainly used to
preserve classical reasoning under consistency by augment-
ing every consistent cluster with its logical consequences.
Moreover, the property Intersection states that only the logi-
cal consequences of consistent clusters and the integrity con-
straint can occur more than once.

Let us now consider the following properties for a (n, φ)-
clustering C of a knowledge base K:

• there exists a maximal consistent (n, φ)-partition D of
K s.t. ∀S ∈ D there exists K ′ ∈ C s.t. S ⊆ K ′ and
S′∩K ′ = {φ} for every S′ ∈ D\{S} (MCS− BASE);

• ∀K ′ ∈ C and ∀ψ ∈ Pb(K ′) \ {φ}, K ′′ ∪ {ψ} ` ⊥
and ψ ∈ Pb(K ′′ ∪ {ψ}) hold for every K ′′ ∈ C
(PF− Reduction);

• ∀K ′ ∈ C with K ′ ` ⊥, and ∀ψ ∈ K ′ \ {φ}, there is no
K ′′ ∈ C s.t. K ′′ ∪ {ψ} 0 ⊥ (NbF− Reduction).

The property MCS− BASE is used to consider the clus-
tering that are built over the maximal consistent partitions.
In a sense, the notion of maximal consistent partition can
be seen as the natural counterpart in the case of cluster-
ing of the notion of maximal consistent subset. The prop-
erty PF− Reduction is used to capture the fact that reduc-
ing the number of problematic formulas in an inconsistent
cluster allows improving it. Let us consider for instance
the (2,>)-clustering C = {K ′ = {>, p ∧ q ∧ ¬r,¬p ∧
r,¬q},K ′′ = {>, p ∧ r,¬r ∧ ¬p}}. Clearly, C does not sat-
isfy PF− Reduction since ¬q ∈ Pb(K ′) but ¬q /∈ Pb(K ′′);
however, C′ = {{>, p ∧ q ∧ ¬r,¬p ∧ r}, {>, p ∧ r,¬r ∧
¬p,¬q}} satisfies PF− Reduction (the number of problem-
atic formulas is reduced: ¬q is not a problematic in any clus-
ter). The property PF− Reduction allows us to partly charac-
terize the fact that a cluster can be improved by reducing the
number of MISes. The property NbF− Reduction states that
reducing the number of formulas in an inconsistent cluster al-
lows improving it. Thus, this property captures, in part, the
fact that we have to avoid the inconsistent clusters as much as
possible. It is worth mentioning that the inconsistent clusters
are equally considered by the postulates characterizing clus-
tering in Definition 5. Thus, the properties PF− Reduction
and NbF− Reduction allow us to partially distinguish incon-
sistent clusters.

Example 1. Consider a simple example of a dinner orga-
nized by a company for its employees, which is similar to that
of wedding dinner described previously. The aim in this con-
text is to propose at most two menus. The preferences of the
employees are defined through the following formulas:

• ψ1 = soup ∧ fish;

• ψ2 = fish ∧ ice cream;

• ψ3 = ¬meat ∧ cheese;
• ψ4 = salad ∧meat ∧ cheese; and

• ψ5 = ¬soup ∧meat ∧ ice cream.
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The integrity constraint corresponds to the fact that every
menu contains at most one starter, at most one course, and
at most one dessert, which corresponds to the formula φ =
(
∑
s∈S s ≤ 1) ∧ (

∑
c∈C c ≤ 1) ∧ (

∑
d∈D d ≤ 1). Note that

each conjunct of φ corresponds to an instance of the well-
known at-most-one constraint that can be linearly encoded
as a propositional formula (e.g. see [Sinz, 2005]).

One can easily see that the set K = {ψ1, ψ2, ψ3, ψ4, ψ5}
cannot be partitioned into two sets S1 and S2 such that
S1 ∪ {φ} 0 ⊥ and S2 ∪ {φ} 0 ⊥. Thus, ev-
ery (2, φ)-clustering of K contains an inconsistent clus-
ter. For example, the following sets are (2, φ)-clusterings
of K: C1 = {{φ, ψ1, ψ2}, {φ, ψ3, ψ4, ψ5}} and C2 =
{{φ, ψ1, ψ2, ψ3}, {φ, ψ4, ψ5}}. The first cluster in C1 is con-
sistent and represents the menu soup, fish, and ice cream;
the second cluster is inconsistent but any of its formulas
does not reject salad and cheese, and one can also say
that meat is more accepted than fish since meat is a log-
ical consequence of both ψ4 and ψ5. Thus, using C1 one
can propose the two menus m1 = {soup, fish, ice crem}
and m2 = {salad,meat, cheese}. Regarding the (2, φ)-
clustering C2, the two clusters are both inconsistent. How-
ever, the first cluster contains the formulas that do not re-
ject soup and fish, and the second one contains those that
do not reject salad and meat. Moreover, note that C3 =
{{φ, ψ1, ψ2, ψ3, ψ4, ψ5}} is not a (2, φ)-clustering since it
does not satisfy Clusters− Number, and the (2, φ)-clustering
C4 = {{φ, ψ1}, {φ, ψ2, ψ3, ψ4, ψ5}} does not satisfy both
PF− Reduction and NbF− Reduction. Furthermore, it is
clear that the three (2, φ)-clusterings described in this exam-
ple satisfy Overlap− Freeness, Logical− Consequence, and
Intersection.

5 Improving Clustering by Using
Inconsistency Measures

The aim of this section is to introduce our approach for using
inconsistency measurement in formula clustering. Indeed, the
inconsistency measures are used to improve the inconsistent
clusters.

5.1 Inconsistency Measure
In the literature, an inconsistency measure is defined as
a function that associates a non negative value to each
knowledge base (e.g. [Konieczny et al., 2003; Hunter and
Konieczny, 2010; Grant and Hunter, 2013; Jabbour et al.,
2016; Thimm, 2016; Ammoura et al., 2017; Bona et al.,
2018; Thimm, 2018]), which is used to quantify the amount
of conflicts. The different works on inconsistency measures
use postulate-based approaches to capture inconsistency-
related aspects. In particular, in [Bona et al., 2018], the au-
thors proposed the following formal definition of inconsis-
tency measure.

Definition 7 (Inconsistency Measure). An inconsistency
measure is a function I : KF → R+

∞ that satisfies the two
following properties:

• ∀K ∈ KF , I(K) = 0 iff K is consistent (Consistency);
and

• ∀K,K ′ ∈ KF , if K ⊆ K ′ then I(K) ≤ I(K ′)
(Monotonicity).

The set R+
∞ corresponds to the set of positive real number

augmented with a greatest element denoted∞.
The postulate Consistency means that an inconsistency

measure must allow distinguishing between consistent and
inconsistent knowledge bases. Monotonicity means that the
amount of conflicts does not decrease by adding new formu-
las. Note that these two rationality postulates were first in-
troduced in [Hunter and Konieczny, 2008]. There are several
postulates other than Consistency and Monotonicity that have
been introduced in the literature to characterize particular as-
pects related to inconsistency. For instance, one can mention
the following interesting postulates:

• ∀K ∈ KF and ∀φ ∈ Prob(K), I(K) > I(K \ {φ})
(Penalty);

• ∀K ∈ KF and ∀φ ∈ Free(K), I(K) = I(K \ {φ})
(Free− Formula);

• ∀K,K ′ ∈ KF with K ∩K ′ = ∅, I(K ∪K ′) ≥ I(K)+
I(K ′) (Super − Additivity).

Let us now describe some simple and intuitive inconsis-
tency measures from the literature:

• IM (K) = |MI(K)| ([Hunter and Konieczny, 2008])

• IA(K) = |MC(K)|+ |Inc(K)|−1 ([Grant and Hunter,
2011])

• IHS(K) = min{|S| | S ⊆ M and ∀φ ∈ K, ∃I ∈
S s.t. I |= φ}−1 withM =

⋃
φ∈KMod(φ, Prop(K))

and min{} =∞ ([Thimm, 2016])

The measure IM quantifies the amount of inconsistency
through minimal inconsistent subsets: more MISes brings
more conflicts. The measure IA is defined in the same way
as IM by using MCSes instead of MISes. The mesure IHS
is defined through an explicit use of the Boolean semantics:
the amount of inconsistency is related to the minimum num-
ber of models that satisfy all the formulas in the considered
knowledge base.

5.2 IM-based Formula Clustering
In this section, we describe our approach that shows how
the inconsistency measures can be involved in improving the
task of formula clustering. The main idea consists in using
the measures for quantifying the quality of the inconsistent
clusters. In this context, we propose additional properties
that allow us to characterize interesting aspects related to the
amount of inconsistency.

Definition 8 (IM-based Rational Clustering). Given a knowl-
edge baseK, an inconsistency measure I , a positive integer n
and a formula φ, a (n, φ)-clustering C is said to be I-rational
iff it satisfies the following properties:
∀K ′ ∈ C and ∀K ′′ ⊂ K ′ \ {φ} with I(K ′ \K ′′) < I(K ′),
∀C′ ⊆ C \ {K ′} with |C| ≤ |K ′′| and m = |C′|, and ∀P an
m-partition of K ′′ and ∀K0 ∈ P , there exists K3 ∈ C′ s.t.
I(K3 ∪K0) > I(K3) (Inconsistency −Minimality).
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In other words, a (n, φ)-clustering is I-rational if the
amount of inconsistency in every inconsistent cluster can-
not be reduced without increasing the amount of inconsis-
tency in at least another cluster. In particular, the inequality
I(K ′ \ K ′′) < I(K ′) is used to express that reducing the
amount of inconsistency in K ′ (by removing K ′′ from K ′)
leads to an increase in the amount of inconsistency in at least
one other cluster (K3).

Let us consider again Example 1 and the inconsis-
tency measure IM described in Section 5.1. The (2, φ)-
clustering C1 is IM -rational since IM ({φ, ψ1, ψ2}) = 0
and IM ({φ, ψ1, ψ2} ∪ {χ}) > 0 holds for ev-
ery χ ∈ {ψ3, ψ4, ψ5}. However, the (2, φ)-
clustering C4 is not IM -rational since IM ({φ, ψ1}) =
IM ({φ, ψ1, ψ2}) = 0 and IM ({φ, ψ2, ψ3, φ4, φ5}) =
|{{φ, ψ2, ψ3}, {φ, ψ2, ψ4}, {φ, ψ2, ψ5}, {ψ3, ψ4}, {ψ3, ψ5},
{φ, ψ4, ψ5}}| = 6 > IM ({φ, ψ3, φ4, φ5}) = 3.

It is important to point out that requirements on the
considered inconsistency measure allow obtaining inter-
esting properties on the IM-based rational clusterings.
For instance, we show in the following proposition that
Penalty and Free− Formula allows obtaining the property
PF− Reduction provided in Section 4.

Proposition 2. If I satisfies Penalty and Free− Formula,
then every I-rational (n, φ)-clustering satisfies
PF− Reduction.

Proof. Let C be an I-rational (n, φ)-clustering of K, K ′ ∈
C s.t. there exists ψ ∈ K ′ \ (Free(K ′) ∪ {φ})
and K ′′ ∈ C s.t. ψ ∈ Free(K ′′ ∪ {ψ}). Knowing
that I satisfies Free− Formula, I(K ′′ ∪ {ψ}) = I(K ′′)
holds. Further, using the fact that I satisfies Penalty,
I(K ′) > I(K ′ \ {ψ}) holds. Thus, using the property of
Inconsistency −Minimality described in Definition 8, we ob-
tain a contradiction.

Let us now consider the following IM-based requirement
for a (n, φ)-clustering C of a knowledge base K:

• there exists no (n, φ)-clustering C′ of K s.t.
max{I(K ′) | K ′ ∈ C} > max{I(K ′) | K ′ ∈ C′}
(IM−Max).

The property IM−Max allows capturing the clustering
with smallest maximum amount of conflicts. Consider
for instance the (2, φ)-clusterings C1 and C2 in Exam-
ple 1. As said previously C1 is IM -rational, and one
can easily show that C2 is also IM -rational. We have
max{IM ({φ, ψ1, ψ2}) = 0, IM ({φ, ψ3, ψ4, ψ5}) = 3} =
3 > max{IM ({φ, ψ1, ψ2, ψ3}) = 1, IM ({φ, ψ4, ψ5}) =
1} = 1. Thus, the property IM−Max allows us to avoid
C1 in favor of C2.

The property IM−Max can be generalized by considering
an arbitrary fixed function F on the inconsistency values of
the clusters :

• There exists no (n, φ)-clustering C′ of K s.t. F{I(K ′) |
K ′ ∈ C} / F{I(K ′) | K ′ ∈ C′}

where / ∈ {<,>}. For instance, one can use minimum
with the inequality operator <, average with >, or

summation with >.

We now consider some aspects related to cluster sizes.
In this context, consider the example of the following IM -
rational (2, p ∧ q)-clustering of K = {¬p,¬q, r1, . . . , r100}:
C = {{p ∧ q,¬p}, {p ∧ q,¬q, r1, . . . , r100}}, where
p, q, r1, . . . , r100 are pairwise distinct propositional variables.
Clearly, the two clusters are both inconsistent and have the
same amount of inconsistency w.r.t. IM , but the size of the
second cluster is much greater than the size of the first one. If
we consider that each formula in K corresponds to a piece
of information related to a distinct agent, it would be ap-
propriate to avoid the clustering C in favor of IM -rational
(2, p∧ q)-clusterings where the clusters have close sizes, like
C′ = {{p ∧ q,¬p, r1, . . . , r50}, {p ∧ q,¬q, r51, . . . , r100}}.
To this end, we propose the two following requirements, for
a (n, φ)-clustering C of a knowledge base K:

• ∀K ′ ∈ C with K ′ ` ⊥, and ∀ψ ∈ K ′ \ {φ} and
I(K ′ \ {ψ}) = I(K ′), there is no K ′′ ∈ C s.t. K ′′ `
⊥, I(K ′′) = I(K ′′ ∪ {ψ}) and |K ′| − |K ′′| > 1
(Size− Balance);

• ∀K ′ ∈ C with K ′ ` ⊥, and ∀ψ ∈ Free(K ′) \ {φ} and
I(K ′ \ {ψ}) = I(K ′), there is no K ′′ ∈ C s.t. K ′′ ` ⊥,
I(K ′′) = I(K ′′∪ψ) and |Free(K ′)|−|Free(K ′′)| > 1
(FF− Balance).

The property Size− Balance allows prioritizing the IM-based
rational clusterings where the sizes of the inconsistent clus-
ters are balanced. However, FF− Balance allows us to focus
on balancing the number of free formulas between the incon-
sistent clusters. Consider again the previous knowledge base
K and the inconsistency measure IM . Each of the previous
two properties allows avoiding C in favor of C′.

In the same way as the generalization of IM−Max, one
can also generalize Size− Balance and FF− Balance by bal-
ancing the number of the formulas satisfying an arbitrary
fixed property Pr:

• ∀K ′ ∈ C with K ′ ` ⊥, and ∀ψ ∈ Pr(K ′) \ {φ} and
I(K ′ \ {ψ}) = I(K ′), there is no K ′′ ∈ C s.t. K ′′ ` ⊥,
I(K ′′) = I(K ′′ ∪ {ψ}) and |Pr(K ′)| − |Pr(K ′′)| > 1
(Prop− Balance).

6 Conclusion and Perspectives
In this paper, we proposed a framework for defining cluster-
ing methods that allow dealing with data represented using
classical propositional logic. The definitions of these meth-
ods are driven by different rationality postulates. In particu-
lar, we proposed an approach that uses the inconsistency mea-
sures to improve the quality of the inconsistent clusters. This
allows benefiting from the numerous contributions on incon-
sistency measurement in the literature.

Future work includes the definition of clustering methods
by taking into account our postulates. We think that some
well-known methods (e.g. k-means and hierarchical agglom-
erative clustering techniques) can be adapted to incorporate
our properties. Other possible rationality postulates can be
examined to consider specific application domains.
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