
Tractable Fragments of Datalog with Metric Temporal Operators

Przemysław A. Wałęga∗ , Bernardo Cuenca Grau , Mark Kaminski and Egor V. Kostylev
Department of Computer Science, University of Oxford, UK

{przemyslaw.walega, bernardo.cuenca.grau, mark.kaminski, egor.kostylev}@cs.ox.ac.uk

Abstract
We study the data complexity of reasoning for frag-
ments of DatalogMTL—an extension of Datalog
with metric temporal operators over the rational
numbers. Reasoning in DatalogMTL is PSPACE-
complete, which handicaps its application in prac-
tice. To achieve tractability we first study the core
fragment, which disallows conjunction in rule bod-
ies, and show that reasoning remains PSPACE-hard.
Intractability prompts us to also limit the kinds of
temporal operators allowed in rules, and we pro-
pose a practical core fragment for which reason-
ing becomes TC0-complete. Finally, we show that
this fragment can be extended by allowing linear
conjunctions in rule bodies (with at most one IDB
atom), and show that the resulting fragment is NL-
complete, thus no harder than plain linear Datalog.

1 Introduction
DatalogMTL [Brandt et al., 2017; Brandt et al., 2018; Wałęga
et al., 2019b] is a temporal extension of the fundamental rule
language Datalog [Abiteboul et al., 1995] in which atoms
in rules may contain metric temporal logic (MTL) operators
interpreted over a rational timeline [Ouaknine and Worrell,
2008; Hunter et al., 2013]. For instance, DatalogMTL rule (1)
states that cooling measures should be activated on a device
x at time t if the device surpasses a fixed temperature thresh-
old at some point in the interval [t − 2.5, t]; in contrast, rule
(2) captures a more conservative requirement, where cooling
measures are activated if the aforementioned threshold is ex-
ceeded continuously within the given time interval:

Cool(x)← x[0,2.5]Temp(x, high), (1)

Cool(x)← �[0,2.5]Temp(x, high). (2)

MTL is equipped with two alternative semantics: pointwise
and continuous; in this paper we consider the latter, which is
the one typically adopted in works on DatalogMTL.

DatalogMTL is receiving increasing attention as a suit-
ably expressive language for querying temporal data [Brandt
et al., 2018; Artale et al., 2017; Ryzhikov et al., 2019] and

∗Contact Author

reasoning over streams [Wałęga et al., 2019a]. The use of
DatalogMTL in applications is, however, handicapped by its
high data complexity of reasoning, namely PSPACE-complete
for consistency checking [Wałęga et al., 2019b]. A known
alternative to regain tractability while still allowing for tem-
poral operators in rules is to preclude recursion altogether;
Brandt et al. (2018) showed that, if timestamps and inter-
vals are represented as dyadic rational numbers (rationals
given as an integer fraction where the denominator is a power
of 2), reasoning in nonrecursive DatalogMTL is first-order
rewritable and hence AC0 in data complexity.

In this paper, we study the data complexity of recursive
fragments of DatalogMTL under continuous semantics. Our
aim is to identify natural fragments with good computational
properties and sufficient expressive power for data-intensive
applications, while gaining a deeper understanding of inter-
actions between constructs leading to intractability.

We first study the core fragment DatalogMTLcore, where
each rule with the head different from ⊥ has a singleton
body; clearly, rules (1) and (2) satisfy this condition. Plain
core Datalog and its extension with existential quantification
in the rule heads are prominent KR languages, which can cap-
ture standard KR languages for ontology-based data access
(OBDA) [Xiao et al., 2018; Motik et al., 2012]; reasoning in
such languages is first-order rewritable, thus ensuring AC0

data complexity [Calì et al., 2012]. In Section 3 we show that
this does not apply to our setting, as DatalogMTLcore remains
PSPACE-hard in data complexity, even if the since operator
S is the only temporal operator allowed in rules. Operator S
fully expresses the past diamond operator x (but not vice-
versa), and hence the rule (1) can be written using only S as
a temporal operator; in contrast, S does allow us to express
�. This prompts us to investigate both DatalogMTLxcore—
the core fragment where x is the only temporal operator
allowed—and the fragment DatalogMTL�

core. We show that
reasoning in DatalogMTLxcore is TC0-complete, and hence
both tractable and parallelisable; however, these favourable
computational properties do not transfer to DatalogMTL�

core,
for which reasoning is P-hard.

In Section 4 we consider DatalogMTLlin—the linear frag-
ment, where rule bodies must contain at most one IDB con-
junct (i.e., a conjunct whose predicate occurs in the head of
some rule of the program). For instance, the program consist-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1919

DatalogMTL

DatalogMTLlin

DatalogMTL�
linDatalogMTLxlin DatalogMTLcore

DatalogMTL�
coreDatalogMTLxcore

PSPACE-complete

P-hardNL-complete

TC0-complete

Figure 1: Hasse diagram of DatalogMTL-fragments (line segments
link languages and their syntactical fragments).

ing of rule (3), which requires cooling measures to continue
being applied if a moderate temperature is detected after cool-
ing measures were already in force, is linear as the conjunc-
tion in (3) involves a single conjunct over IDB predicate Cool:

Cool(x)← x[0,2]Cool(x) ∧ Temp(x,moderate). (3)

DatalogMTLlin extends DatalogMTLcore, and hence all lower
bounds proved in Section 4 transfer. To regain favourable
computational properties, we focus on DatalogMTLxlin: the
linear fragment where x is the only temporal operator al-
lowed. We then show that reasoning in this fragment is NL-
complete, and hence no harder than in plain linear Datalog
[Dantsin et al., 2001]. Linear Datalog provides the foundation
for recursion in SQL, and hence our results open the door to
efficient implementations of temporal recursive queries.

Our results are summarised in Figure 1 for reference (recall
that TC0 ⊆ NL ⊆ P ⊆ PSPACE and NL 6= PSPACE).

2 Preliminaries
In this section, we define DatalogMTL and its associated rea-
soning problems [Brandt et al., 2018]. We also recapitulate
some important properties of DatalogMTL proven by Wałęga
et al. (2019b), which we exploit in our technical results.

Intervals. We consider intervals over rationals Q. An inter-
val is denoted by 〈x, y〉, where the left bracket 〈 is [or (, the
right bracket 〉 is] or), and x, y ∈ Q ∪ {−∞,+∞}. Hence,

〈x, y〉 = { t ∈ Q | x ≤ t ≤ y,
t 6= x if 〈 is (, and t 6= y if 〉 is) }.

An interval 〈x, y〉 is positive if x ≥ 0; it is bounded if x, y ∈
Q; and it is punctual if it is of the form [t, t], in which case we
write {t} instead of [t, t]. Each number in Q is represented by
an integer numerator and a positive integer denominator, both
encoded in binary (we do not require rationals to be dyadic).

Syntax. Assume a function-free first-order vocabulary with
constants and predicates equipped with a non-negative arity.
An atom is of the form P (τ), with P a predicate and τ a tuple
of constants and variables of matching arity. Each predicate
in the vocabulary is either extensional (EDB) or intensional

(IDB). A literal A is an expression given by the following
grammar, with P (τ) an atom and % a positive interval:

A ::=P (τ) | > |⊥ |x%A ||%A |�%A |�%A |AS%A |AU%A.

A literal is EDB if it mentions only EDB predicates and IDB
otherwise. A (DatalogMTL) rule is an expression of the form

B ← A1 ∧ · · · ∧ An, for n ≥ 0, (4)

where each Ai is a literal and B is a literal not mentioning
the operators x, |, S , and U . The conjunction of the Ai is
the rule body, whereas the literal B is the rule head. A rule
is safe if each variable in its head occurs also in its body. A
DatalogMTL program is a finite set of safe rules. The great-
est common divisor gcd(Π) of a program Π is the largest ra-
tional number dividing all rationals which are endpoints of
intervals in Π to integer values (if Π has no numbers, we take
gcd(Π) = 1 for definiteness). A program is core if each of
its rules is of the form B ← A or ⊥ ← A1 ∧A2. A program
is linear if each of its rules is either of form (4) with at most
one Ai being an IDB literal, or of the form ⊥ ← A1 ∧ A2.
We denote the core and linear fragments by DatalogMTLcore
and DatalogMTLlin, respectively. For X ∈ {x,�}, and
Y ∈ {core, lin}, we denote by DatalogMTLXY the fragment
of DatalogMTLY where X is the only temporal operator that
may occur in literals. A program is propositional if all its
predicates are nullary (i.e., propositions), and it is positive
if it does not mention ⊥. An expression e (e.g., an atom or
a literal) is ground if it mentions no variables. A ground ex-
pression e′ is a grounding of e if e′ = eν for an assignment ν
of variables to constants. A fact is α@%, where α is a ground
atom and % is a non-empty interval. A dataset is a finite set of
facts mentioning only EDB predicates.
Semantics. An interpretation M specifies, for each ground
atom α and each time point t ∈ Q, whether α is true at
t, in which case we write M, t |= α. This notion extends
to ground literals with temporal operators as in Table 1,
where r, s, t ∈ Q. An interpretation M is a model of a rule
of form (4) if, for each grounding assignment ν and each
t ∈ Q, we have M, t |= Bν whenever M, t |= Aiν for each
i ∈ {1, . . . , n}. An interpretation M is a model of program
Π, written M |= Π, if M is a model of all rules in Π. In-
terpretation M is a model of fact α@%, written M |= α@%, if
M, t |= α for all time points t ∈ %, and it is a model of dataset
D, written M |= D, if it is a model of all facts in D. Program
Π and dataset D are consistent if there is a model of both
Π and D. Program Π and dataset D entail fact α@%, written
(Π,D) |= α@%, if M |= α@% for each model M of Π and D.
For brevity, we write D |= α@% instead of (∅,D) |= α@%.
Reasoning Problems. We study the complexity of con-
sistency checking for the linear and core fragments of
DatalogMTL. We focus on data complexity—the standard
measure of complexity in data-intensive applications, where
programs are assumed to be fixed. All our complexity re-
sults are also applicable to the entailment of punctual facts of
the form α@{t}, because such entailment and inconsistency
checking problems are inter-reducible in all the fragments we
consider. On the one hand, (Π,D) |= α@{t} if and only if
Π ∪ {⊥ ← α ∧ P} and D ∪ {P@{t}} are inconsistent, with

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1920

M, t |= > for all t ∈ Q
M, t 6|= ⊥ for all t ∈ Q
M, t |= x%A if M, s |= A for some s with t− s ∈ %
M, t |= |%A if M, s |= A for some s with s− t ∈ %
M, t |= �%A if M, s |= A for all s with t− s ∈ %
M, t |= �%A if M, s |= A for all s with s− t ∈ %
M, t |= AS%A′ if M, s |= A′ for some s with t− s ∈ %

and M, r |= A for all r ∈ (s, t)

M, t |= AU%A′ if M, s |= A′ for some s with s− t ∈ %
and M, r |= A for all r ∈ (t, s)

Table 1: Semantics of DatalogMTL ground literals

P a fresh proposition; on the other hand, Π and D are incon-
sistent if and only if Π and D entail a fact with a proposition
not mentioned in Π or D. In contrast, all known reductions
of entailment of facts with arbitrary intervals to inconsistency
checking require S or U , which are not always available in
our fragments. We assume without loss of generality that the
least number occurring explicitly in each dataset is 0 (for a
fixed program, any dataset can be modified to satisfy this as-
sumption while preserving consistency).
Rulers. If a DatalogMTL program Π and a dataset D are
consistent, then they have a unique least model (i.e., the
model assigning true as little as possible) [Brandt et al.,
2017]. As shown by Wałęga et al. (2019b), such a least model
can be divided into regularly distributed intervals whose time
points satisfy the same ground atoms as follows. The (Π,D)-
ruler is the set of time points of the form x + n · gcd(Π),
for x a number in D and n ∈ Z. A (Π,D)-interval is either
a punctual interval over a time point on the ruler, or an in-
terval (t1, t2) with t1 and t2 consecutive time points on the
ruler. For a sequence %i, %i+1, . . . , %j of successive (Π,D)-
intervals (i.e., such that

⋃
i %i is an interval), with i ≤ j,

we define the (asymmetric) distances between %i and %j as
dist(%i, %j) = j − i and dist(%j , %i) = −dist(%i, %j). As an
example, we present below a fragment of the (Π,D)-ruler for
Π = {β ← x[0,2.5)α, γ ← x{5}β} and D = {α@(0, 1.7)},
where gcd(Π) = 2.5 and dist({0}, (2.5, 4.2)) = 5.

−0.8. . . 0 1.7 2.5 4.2 5 . . .(Π,D)-ruler:

(Π,D)-intervals:

The following lemma by Wałęga et al. (2019b) shows that
points in a given ruler interval satisfy the same ground atoms.
Lemma 1. For every DatalogMTL program Π, dataset D,
atom α, and t ∈ Q, if (Π,D) |= α@{t}, then (Π,D) |= α@%,
where % is the (Π,D)-interval such that t ∈ %.

The (Π,D)-ruler can be divided into segments of length
gcd(Π) starting from 0, such that each segment contains the
same number of (Π,D)-intervals and the corresponding inter-
vals in different segments have the same lengths. The density
d of Π and D is dist({0}, {gcd(Π)}); this induces an equiva-
lence relation on (Π,D)-intervals with d equivalence classes,

which we call (Π,D)-types and denote by natural numbers
between 0 and d−1. The (Π,D)-type k consists of all (Π,D)-
intervals % such that dist({0}, %)− k is a multiple of d.

3 Core Fragments
In this section, we study the data complexity of reason-
ing in the core DatalogMTL fragments. We first show that
consistency checking in DatalogMTLcore is PSPACE-hard,
which matches the known PSPACE upper bound for the full
DatalogMTL language [Wałęga et al., 2019b]. In particular,
each problem in PSPACE reduces to checking inconsistency
of a dataset and a propositional DatalogMTLcore program
where S is the only temporal operator.

Theorem 2. Consistency checking in DatalogMTLcore is
PSPACE-hard in data complexity. The result holds already for
propositional programs using only S as a temporal operator.

Proof sketch. Let P be a problem in PSPACE. Then, there
exists a deterministic Turing machine M and a polynomial
p such that, for every input word w, M decides P for w us-
ing at most p(|w|) cells. We construct in logarithmic space
a dataset Dw encoding the initial configuration of M on w
and a propositional DatalogMTLcore program ΠM simulating
the computations of M (on any input word) such that M ac-
cepts w if and only if ΠM and Dw are inconsistent.

Each configuration of M in the run on w is encoded within
a unit interval (i.e., of length 1) divided into p(|w|) subinter-
vals, each describing a cell of the tape. Each subinterval is
split into two (left-open and right-closed) halves indicated by
propositions P andQ, which respectively hold in the first and
second half of each subinterval. In addition, we use the fol-
lowing propositions to encode a configuration: Pa—for each
alphabet symbol a—which holds in the first half of a subin-
terval if the corresponding cell contains a;Qq—for each state
q—which holds in the second half of a subinterval if the head
is over the corresponding cell andM is in q; andQL andQR,
which hold in the second half of a subinterval if the corre-
sponding cell is, respectively, somewhere to the left and to
the right of the head’s position.

Program ΠM has two main blocks. The first block consists
of the following rules, for each symbol a and state q:

P ← >S{1}P, Q← >S{1}Q,

QLaq ← >S{1}(QqS(0,∞)Pa), Paq ← PS(0,∞)Q
L
aq,

Qaq ← QS(0,∞)Paq, QRaq ← QS(0,∞)(PS(0,∞)Qaq).

The first two rules propagate P and Q. The remaining rules
copy the description of a configuration into the next unit in-
terval using auxiliary propositions (note that there is a gap be-
tween the unit intervals encoding consecutive configurations).
The rules ensure that, if Pa and Qq hold in the two halves of
a subinterval, then Paq and Qaq hold in the two halves of the
corresponding subinterval in the next unit interval. Moreover,
if Paq and Qaq hold in the same subinterval, then QLaq and
QRaq hold in the second halves of the subintervals that are ad-
jacent, respectively, to the left and to the right.

The second block of ΠM encodes the transition function of
M (and does not use temporal operators). Each left-moving

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1921

transition (q, a) 7→ (q′, a′, L) is encoded by the rules

Pa′ ← Paq, Qq′ ← QLaq, QR ← Qaq, QR ← QRaq.

Right-moving transitions are encoded analogously; similar
rules are also needed to propagate QL, QR, and Pa, for cells
without the head. Finally, ΠM contains the rule ⊥ ← Qq for
each accepting state q, which ensures inconsistency of ΠM

and Dw when M accepts w.

The since operator S is strictly more expressive than the
past diamond operator x. Hence, to regain tractability, we
consider the DatalogMTLxcore fragment and show that, in this
case, consistency checking is TC0-complete. This suggests
suitability of DatalogMTLxcore for data-intensive applications.

We start by defining a normal form. A DatalogMTLxcore
program is normal if each of its rules has one of the fol-
lowing forms, where α, α1, α2, and β are atoms, and % is
a non-empty bounded positive interval:

β ← x%α, β ← >, ⊥ ← α1 ∧ α2.

Each DatalogMTLxcore program can be normalised so that the
resulting program is a conservative extension of the original
one: rules with nested operators are flattened by introducing
fresh predicates, rules α ← α′ without metric operators are
rewritten as α ← x{0}α

′, and rules P (τ) ← x[t,∞)P
′(τ ′)

with unbounded intervals are replaced with rules Q(τ) ←
x{t}P

′(τ ′), Q(τ) ← x[0,1]Q(τ), and P (τ) ← x{0}Q(τ),
for Q a fresh predicate of the same arity as P . Hence, in this
section, we concentrate on normal DatalogMTLxcore programs.

Next, we provide a characterisation of fact entailment for
ground normal DatalogMTLxcore programs in terms of exis-
tence of a specific length path in a graph defined below.

Definition 3. Let Π be a ground normal DatalogMTLxcore pro-
gram and let d ∈ N. Then, GdΠ is the directed edge-weighted
multigraph with a vertex vαk for each (ground) atom α in Π

and each k ∈ {0, . . . , d− 1}; and an edge (vαk , v
β
`) of weight

n whenever ` = (k + n) mod d and Π has a rule β ← x%α
such that n · (gcd(Π)/d) ∈ %.

The graphGdΠ is defined so that, if d is the density of Π and
a dataset D, then every derivation from Π and D (i.e., a se-
quence of punctual facts) corresponds to a path in GdΠ such
that a 1-step derivation of β@{t2} from α@{t1} corresponds
to an edge (vαk , v

β
`) of weight dist(%1, %2), where %1 3 t1 and

%2 3 t2 are (Π,D)-intervals of (Π,D)-types k and `, respec-
tively. Indeed, the following result holds.

Lemma 4. Let Π be a ground and positive normal
DatalogMTLxcore program, D a dataset, and d the density of
Π and D. Then, for each fact β@% with a (Π,D)-interval %,
the following are equivalent:

1. (Π,D) |= β@%;

2. there exist a fact α@%′ with %′ a (Π,D)-interval such
that D |= α@%′ (or Π contains a rule α ← >) and
a path in GdΠ of weight dist(%′, %) from vαk to vβ` , where
k and ` are the (Π,D)-types of %′ and %, respectively.

We next show that, given two vertices v and v′ in a directed
multigraph with weights of edges being non-negative integers
(e.g., GdΠ), we can finitely represent the weights of all paths
from v to v′. This lemma relies on the normal form for unary
non-deterministic finite automata (NFAs) by Chrobak (1986)
and will be essential to prove the TC0 upper bound.
Lemma 5. Let G be a directed edge-weighted multigraph
with non-negative integer weights and let v, v′ be vertices
in G. Then, it is possible to construct a finite set S of pairs of
non-negative integers such that there is a path in G of weight
n from v to v′ if and only if n = a+ i · b for a pair (a, b) ∈ S
and a non-negative integer i.

Proof sketch. First, we replace each edge in G of weight
n > 1 with a chain of n edges of weight 1 by introducing
fresh nodes. Then, we construct an NFA A over a unary al-
phabet {σ}, where states correspond to vertices: the initial
state corresponds to v and the final state to v′, and we have
a σ-transition for each edge of weight 1 and an ε-transition
for each edge of weight 0. Then, the weights of paths in G
from v to v′ are exactly the lengths of words accepted by
A. After eliminating ε-transitions, we obtain a unary NFA,
which we then transform to Chrobak normal form [Chrobak,
1986, Lemma 4.3], where the transitions form a path from
the initial state followed by a single nondeterministic choice
between several (disjoint) cycles. For every accepting state q
in the resulting automaton A′, there exist a, b ∈ N such that
there is an accepting run of A′ on σn ending at q if and only
if there is a number i with n = a+ i · b (where a and b are
the lengths of the simple paths from the initial state to q and
of the cycle through q, respectively).

Lemmas 4 and 5 suggest a TC0 algorithm for checking
whether a fixed ground positive normal DatalogMTLxcore pro-
gram Π and a dataset D entail β@{t}. For this, it suffices to
check if there is α@% in D such that (Π, {α@%}) |= β@{t}.
These checks can be done in parallel for each fact α@%
in D and hence we prove that each of them is feasible in
TC0. Assume that D′ = {α@%}; we want to check whether
(Π,D′) |= β@{t}. First, we compute the density d of Π and
D′, which is at most 4 since D′ contains only one interval.
Then, we compute the (Π,D′)-interval %′ containing t, and
the (Π,D′)-type ` of %′. We also compute the left-most, %L,
and the right-most, %R, (Π,D′)-intervals contained in %, as
well as the set K of (Π,D′)-types of (Π,D′)-intervals con-
tained in %. All these computations are feasible in TC0. Now,
by Lemma 4, it suffices to check whether there is a path of
weight n from vαk to vβ` in GdΠ such that dist(%R, %′) ≤ n ≤
dist(%L, %′) and k ∈ K (if Π contains rules of the form
α′ ← >, some additional but easy to handle checks are re-
quired), which by Lemma 5 can also be checked in TC0.

To check consistency of a ground normal DatalogMTLxcore
program Π and a dataset D, we need to consider rules of the
from ⊥ ← α1 ∧ α2, where α1 and α2 are ground atoms. In
particular, inconsistency arises whenever there is a time point
where both α1 and α2 hold together in the least model of D
and the positive subset of Π. This leads to technical difficul-
ties since there is an unbounded number of candidate time
points. The following theorem shows that these difficulties

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1922

can be overcome, and consistency checking is TC0-complete,
where the upper bound holds also for non-ground programs.

Theorem 6. Consistency checking for DatalogMTLxcore is
TC0-complete in data complexity. The lower bound holds for
propositional DatalogMTLcore without metric operators.

Proof sketch. For the lower bound, there is a simple AC0 re-
duction of the integer multiplication problem [Hesse, 2001]:
a · b = c for positive integers a, b, and c (encoded in binary)
if and only if the program {⊥ ← A ∧B}, for propositions A
and B, and the dataset {A@{a}, B@{ cb}} are inconsistent.

For the upper bound, we first consider a ground normal
DatalogMTLxcore program Π, with Π+ its positive subset.
Since rules in Π with ⊥ do not contain temporal operators,
the (Π,D)- and (Π+,D)-rulers and the corresponding densi-
ties coincide, as well as GdΠ = GdΠ+ , for each d ∈ N.

By linearity of derivations and by Lemma 1, Π and D
are inconsistent if and only if there is a rule ⊥ ← β1 ∧ β2

in Π and a subset D′ of D with at most two facts such that
(Π+,D′) |= βi@% for both i and some (Π+,D′)-interval %.
Consider such D′ = {α1@%1, α2@%2}. Moreover, for both
i, let %Li and %Ri be the left- and the right-most (Π+,D′)-
intervals in %i, respectively, letKi be the sets of the (Π+,D′)-
types of all (Π+,D′)-intervals in %i, and let d be the density
of Π+ and D′. Then, assuming for simplicity that Π does not
have rules α← >, we use Lemma 4 to reduce existence of %
as above to existence of two paths in GdΠ+ : one from vα1

k1
to

vβ1

` with weight n1 and another from vα2

k2
to vβ2

` with weight
n2, where ki ∈ Ki for both i, ` is a (Π+,D′)-type, and

dist(%R2 , %
L
1) ≤ n1 − n2 ≤ dist(%L2 , %

R
1). (5)

We can check existence of such pairs of paths in parallel for
each combination of k1, k2, and `. By Lemma 5, we can rep-
resent the weights of all paths from vαiki to vβi` by a finite
set Si of integer pairs. So to check (5) it suffices to verify if
for some (a1, b1) ∈ S1 and (a2, b2) ∈ S2 there exist non-
negative integers i1, i2 with

dist(%R2 , %
L
1) ≤ (a1 + i1 · b1)− (a2 + i2 · b2) ≤ dist(%L2 , %

R
1),

which, by Bézout’s identity, exist if and only if the following
interval contains an integer:[

dist(%R2 , %
L
1)− a1 + a2

gcd(b1, b2)
,
dist(%L2 , %

R
1)− a1 + a2

gcd(b1, b2)

]
.

The existence of such an integer can be verified in TC0 (for
all (a1, b1) ∈ S1 and (a2, b2) ∈ S2 in parallel); hence, we
can check the consistency in TC0 in the size of D.

Finally, let Π be a non-ground normal DatalogMTLxcore pro-
gram. Note that although the grounding ΠD of Π with con-
stants from D can be computed in AC0, the graph GdΠD

de-
pends not only on Π and d but also on D; this would prevent
us from exploiting the TC0 procedure for ground programs.
However, ifD′ andD′′ are the same modulo renaming of con-
stants not occurring in Π, then GkΠD′ and GkΠD′′ are isomor-
phic. Since we are interested in datasets with at most two facts
and with arity of predicates fixed by Π, the number of non-
isomorphic graphs for such datasets can be bounded without

knowingD. Thus, we can compute the representatives of such
non-isomorphic graphs in a data-independent way and reuse
our TC0 procedure for ground programs.

Now, we show P-hardness for consistency checking in
DatalogMTL�

core, that holds even for propositional programs.
Theorem 7. Consistency checking in propositional
DatalogMTL�

core is P-hard in data complexity.

Proof sketch. The proof uses some ideas from the hardness
proofs for pointwise semantics by Ryzhikov et al. (2019). We
reduce the well-known P-complete path system accessibility
problem (PSA) to inconsistency. An instance G of PSA is a
tuple (V,E, S, vt), where V = {v1, . . . , vn} is a finite set of
nodes, E is a ternary relation on V such that i < j < k for
each (vi, vj , vk) ∈ E, S ⊆ V is a set of (source) nodes, and
vt ∈ V is a (target) node. The answer to G is affirmative if vt
is accessible, where a node vk is accessible if vk ∈ S or there
are accessible nodes vi, vj such that (vi, vj , vk) ∈ E.

Let Π be the (fixed) program consisting of the following
rules over propositions P , P ′, P ′′, and Q:

P ′ ← �{2}P, P ′′ ← �(0,1)P
′, P ← �{2}P

′′,

P ← �{4}P, ⊥ ← P ∧Q.

Consider now a PSA instance G as above, and let e1, . . . , em
be an enumeration of E preserving the ‘application order’—
that is, such that for every edge e` with node vk as the third
argument, vk is not the first or second argument of any eh
with h < `. Let DG be a dataset containing the following
facts, for every ` such that 1 ≤ ` ≤ m+ 1:

Q@{4`+ t/n} and P@{4`+ s/n}, for every vs ∈ S,

and the following facts, for every e` = (vi, vj , vk):

P ′@(4`+ 1 + k/n, 4`+ 2 + i/n),
P ′@(4`+ 2 + i/n, 4`+ 2 + j/n),
P ′@(4`+ 2 + j/n, 4`+ 2 + k/n).

For instance, DG, for G with V = {v1, v2, v3},
E = {(v1, v2, v3)}, S = {v1, v2}, and t = 3, is as follows.

5 3
34 1

3 4 2
3 4 3

3 6 1
3 6 2

3 6 3
3 8 1

3 8 2
3 8 3

3

P P
Q

P P
Q

P ′ P ′ P ′′ P

P ′ P ′P ′

by Π:

DG :

(v1, v2, v3) ∈ E

It can then be easily checked that vt is accessible if and only
if Π and DG are inconsistent.

4 Linear Fragments
Since linear fragments of DatalogMTL are extensions of cor-
responding core fragments, all lower bounds established in
Section 4 for core fragments hold also for linear fragments.
To obtain favourable computational properties, we focus on
DatalogMTLxlin and show NL-completeness of consistency
checking in data complexity. The lower bound is inherited

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1923

from plain linear Datalog, but we will prove it also for propo-
sitional DatalogMTLxlin programs.

For the upper bound, we will concentrate on programs
in a normal form, extending the one for the core case;
a DatalogMTLxlin program is normal if it consists only of rules
of the following form, where α, α1, α2, and β are IDB atoms,
φ is a possibly empty conjunction of EDB literals, and % is a
non-empty bounded positive interval:

β ← x%α ∧ φ, β ← >, ⊥ ← α1 ∧ α2.

Each DatalogMTLxlin program can be normalised similarly as
before—that is, by introducing rules with fresh predicates.

Naively, an inconsistency checking algorithm could guess
a derivation of⊥ from a normal program and an input dataset.
This, however, does not lead to an NL algorithm since the
length of a derivation and the representation of its elements
(in particular numbers occurring in intervals) are unbounded.
We next show how to overcome this problem.

Theorem 8. Consistency checking for DatalogMTLxlin is NL-
complete in data complexity. The lower bound holds already
for propositional DatalogMTLxlin.

Proof sketch. The lower bound is by reduction of consis-
tency checking for propositional normal DatalogMTLxcore un-
der pointwise semantics, where datasets consist of punctual
facts and only the time points explicit in the dataset constitute
the temporal universe of interpretations; this problem is NL-
complete in data complexity [Ryzhikov et al., 2019]. Given
a propositional normal DatalogMTLxcore program Π, we in-
troduce a fresh IDB proposition QA for each literal A of the
form x%P in Π, and a fresh EDB proposition Q. We then
construct a propositional DatalogMTLxlin program Π′ by re-
placing each literal A as above in Π by QA and adding rules
QA ← A ∧ Q. For each (punctual) dataset D, Π and D are
consistent under pointwise semantics if and only if so are Π′

and D∪{Q@% | % occurs in D} under continuous semantics.
For the upper bound, consider a normal DatalogMTLxlin

program Π and a dataset D. By Lemma 1, Π and D are in-
consistent if and only if there are a grounding ⊥ ← β1 ∧ β2

of a rule in Π and derivations of both facts βi@% for some
(Π,D)-interval %. We can see each derivation as a sequence
of facts over ruler intervals with IDB predicates. Since, such a
sequence may be of exponential length, to achieve the bound,
we will represent such derivations concisely as follows. Let
Φ be the set of all groundings of the conjunctions φ of EDB
literals in rules of Π such that all the atoms in the groundings
are in D. For each φ ∈ Φ, we compute the maximal intervals
in which D entails φ, which is feasible in TC0. Such inter-
vals allow us to compute in L the partitioning of the whole
Q into sections—that is, the maximal intervals such that if D
entails φ ∈ Φ in some time point in a section σ, then D en-
tails φ in the whole σ. Let Φσ be the set of all φ ∈ Φ entailed
in a section σ by D. We represent each derivation sequence
as the subsequence of polynomial length containing only the
first and the last facts in the derivation from every section.
Each interval % in the subsequence that may have endpoints
with exponentially long binary representations is represented
concisely as a pair of a pointer to the time point t from D

closest to % and the number dist({t}, %), which is polynomi-
ally representable in the size of D (special care is required
when % is in the first/last section). Hence, such representation
of a derivation can be guessed fact by fact in NL.

Next, we show how to verify correctness of a guessed rep-
resentation. The key step is to check that each fact αi+1@%i+1

in the subsequence can be derived from the preceding fact
αi@%i. If %i and %i+1 are in different sections, then we check,
in L, whether there is a 1-step derivation of αi+1@%i+1 from
αi@%i. Otherwise—that is, when %i and %i+1 are in the same
section σ—the derivation of αi+1@%i+1 from αi@%i can be
of exponential length. To deal with this case, we construct in
L a program Πσ by first deleting each rule in the grounding
of Π mentioning some EDB conjunction not in Φσ , and then
deleting all EDB literals from the remaining rules. Then Πσ is
a ground normal DatalogMTLxcore program, so we can show,
as in the proof of Lemma 4, that the following are equivalent:

1. there is a derivation using Π andD that starts with αi@%i
and ends with αi+1@%i+1;

2. there is a path in GdΠσ (for d being the density of Π and
D) of weight dist(%i, %i+1) from vαi` to vαi+1

` , where k
and ` are, respectively, the (Π,D)-types of %i and %i+1.

The graph GdΠσ can be constructed in L, while checking ex-
istence of an appropriate path is feasible in NL, so existence
of a derivation of αi+1@%i+1 from αi@%i is in NL.

5 Discussion and Future Work
We have focused on fragments which mention only the past
temporal operators x and �, however, analogous results im-
mediately follow for the future temporal operators| and �.
Corollary 9. Consistency checking is TC0-complete, P-hard,
and NL-complete for DatalogMTL|core, DatalogMTL�

core, and
DatalogMTL|lin, respectively, and the lower bounds hold al-
ready for the propositional fragments.

Low complexity fragments have also been identified for
propositional DatalogMTL under the pointwise semantics
[Kikot et al., 2018; Ryzhikov et al., 2019]. Results for point-
wise and continuous semantics are, however, different: rea-
soning in DatalogMTL is CONP-complete under pointwise
semantics, but PSPACE-complete for continuous semantics.

We see many possibilities for future work. First, it is un-
clear if the bound in Theorem 7 is tight, as well as whether
the upper bound applies to DatalogMTL�

lin. Second, it would
be interesting to study also combined complexity. Third, we
want to consider DatalogMTL over integer timelines, which
may lead to lower complexity and which have been already
considered for MTL [Gutiérrez-Basulto et al., 2016]. Finally,
our complexity bounds do not directly provide practical rea-
soning algorithms, which we would like to construct.

Acknowledgments
This work was supported by the AIDA project (Alan Turing
Institute), the SIRIUS Centre for Scalable Data Access (Re-
search Council of Norway), Samsung Research UK, Siemens
AG, and the EPSRC projects AnaLOG (EP/P025943/1), OA-
SIS (EP/S032347/1) and UK FIRES (EP/S019111/1).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1924

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Artale et al., 2017] Alessandro Artale, Roman Kontchakov,
Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Ontology-mediated query an-
swering over temporal data: A survey (invited talk). In
TIME, 2017.

[Brandt et al., 2017] Sebastian Brandt, Roman Kontchakov,
Vladislav Ryzhikov, Gohui Xiao, and Michael Za-
kharyaschev. Ontology-based data access with a Horn
fragment of metric temporal logic. In AAAI, pages 1070–
1076, 2017.

[Brandt et al., 2018] Sebastian Brandt, Elem Güzel Kalaycı,
Vladislav Ryzhikov, Guohui Xiao, and Michael Za-
kharyaschev. Querying log data with metric temporal
logic. J. Artif. Intell. Res., 62:829–877, 2018.

[Calì et al., 2012] Andrea Calì, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for
tractable query answering over ontologies. J. Web Semant.,
14:57–83, 2012.

[Chrobak, 1986] Marek Chrobak. Finite automata and unary
languages. Theor. Comput. Sci., 47:149–158, 1986.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001.

[Gutiérrez-Basulto et al., 2016] Víctor Gutiérrez-Basulto,
Jean Christoph Jung, and Ana Ozaki. On metric temporal
description logics. In ECAI, pages 837–845, 2016.

[Hesse, 2001] William Hesse. Division is in uniform TC0.
In ICALP, pages 104–114. Springer, 2001.

[Hunter et al., 2013] Paul Hunter, Joël Ouaknine, and James
Worrell. Expressive completeness for metric temporal
logic. In LICS, pages 349–357, 2013.

[Kikot et al., 2018] Stanislav Kikot, Vladislav Ryzhikov,
Przemysław Andrzej Wałęga, and Michael Zakharyaschev.
On the data complexity of ontology-mediated queries with
MTL operators over timed words. In DL, 2018.

[Motik et al., 2012] Boris Motik, Bernardo Cuenca Grau,
Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.
OWL 2 Web ontology language profiles (2nd edition),
2012. W3C Recommendation.

[Ouaknine and Worrell, 2008] Joël Ouaknine and James
Worrell. Some recent results in metric temporal logic. In
FORMATS, pages 1–13, 2008.

[Ryzhikov et al., 2019] Vladislav Ryzhikov, Prze-
mysław Andrzej Wałęga, and Michael Zakharyaschev.
Data complexity and rewritability of ontology-mediated
queries in metric temporal logic under the event-based
semantics. In IJCAI, pages 1851–1857, 2019.

[Wałęga et al., 2019a] Przemysław Andrzej Wałęga,
Bernardo Cuenca Grau, and Mark Kaminski. Reasoning

over streaming data in metric temporal Datalog. In AAAI,
pages 1941–1948, 2019.

[Wałęga et al., 2019b] Przemysław Andrzej Wałęga,
Bernardo Cuenca Grau, Mark Kaminski, and Egor V.
Kostylev. DatalogMTL: Computational complexity and
expressive power. In IJCAI, pages 1886–1892, 2019.

[Xiao et al., 2018] Guohui Xiao, Diego Calvanese, Roman
Kontchakov, Domenico Lembo, Antonella Poggi, Ric-
cardo Rosati, and Michael Zakharyaschev. Ontology-
based data access: A survey. In IJCAI, pages 5511–5519,
2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1925

	Introduction
	Preliminaries
	Core Fragments
	Linear Fragments
	Discussion and Future Work

