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Abstract

Existential rules are an expressive ontology for-
malism for ontology-mediated query answering
and thus query answering is of high complexity,
while several tractable fragments have been iden-
tified. Existing systems based on first-order rewrit-
ing methods can lead to queries too large for DBMS
to handle. It is shown that datalog rewriting can re-
sult in more compact queries, yet previously pro-
posed datalog rewriting methods are mostly ineffi-
cient for implementation. In this paper, we fill the
gap by proposing an efficient datalog rewriting ap-
proach for answering conjunctive queries over ex-
istential rules, and identify and combine existing
fragments of existential rules for which our rewrit-
ing method terminates. We implemented a proto-
type system Drewer, and experiments show that it
is able to handle a wide range of benchmarks in
the literature. Moreover, Drewer shows superior or
comparable performance over state-of-the-art sys-
tems on both the compactness of rewriting and the
efficiency of query answering.

1 Introduction

Existential rules (a.k.a. Datalog+ and tuple generating de-
pendencies) [Baget et al., 2011; Cali ef al., 2012b] is a fam-
ily of expressive ontology languages. It attracted intensive
interest lately due to its expressive power covering datalog
and many Horn description logics, including the core dialects
of DL-Lite and £L£ [Cali et al., 2012a], which underlay the
OWL 2 Profiles. This makes existential rules an appealing
formalism for ontology-mediated query answering [Bienvenu
et al., 2014]. While query answering is undecidable over the
full formalism, several interesting fragments have been pro-
posed [Baget et al., 2011; Cali ef al., 2012b; Cali et al., 2013;
Leone et al., 2019] that support tractable query answering.
There are two major approaches for query answering over
ontologies expressed in existential rules or Horn description
logics, the chase-based approach and the query rewriting ap-
proach. The chase-based approach relies on the termina-
tion of the chase procedure (a.k.a. forward chaining), and
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it is shown that computing a full chase can be rather in-
efficient when query answers depend only on a small por-
tion of it [Benedikt et al., 2018]. On the other hand, the
query rewriting approach does not require expanding the
data. Given an ontology X and a query ¢, a rewriting
method transforms them into another query ¢s;, which is
sometimes in a different query formalism, such that answer-
ing gy, can be handled by conventional database management
systems (DBMSs) and at the same time preserves the an-
swers to the original ontology-mediated query. The rewrit-
ing approach is particularly promising as it allows ontology-
mediated query answering to be implemented on top of ex-
isting highly-optimised database query engines. While many
algorithms and systems have been developed for various de-
scription logics [Pérez-Urbina et al., 2010; Eiter er al., 2012;
Zhou et al., 2015; Venetis et al., 2016], particularly for DL-
Lite and £L [Kontchakov et al., 2010; Stefanoni et al., 2013;
Trivela et al., 2015; Hansen et al., 2015; Bienvenu et al.,
20171, it is challenging to extend them to more general ex-
istential rules, which allow predicates of arbitrary arities (in-
stead of only unary and binary predicates) and variable per-
mutations in the rules.

Existing query rewriting systems for existential rules are
typically based on first-order rewritings [Gottlob et al.,
2014a; Konig et al., 2015a; Konig et al., 2015b], i.e., gs is
a first-order query. A limitation of such an approach is that
it can only handle ontologies and queries that are first-order
rewritable. Well-accepted first-order rewritable classes are
the linear and sticky existential rules [Cali ef al., 2012b]. Yet
many practical ontologies do not necessarily fall into these
classes, such as some ontologies formulated in ££. Even for
ontologies and queries that are first-order rewritable, the re-
sults of rewriting can suffer from a significant blow up and
become difficult for DBMSs to handle [Rosati and Almatelli,
2010; Bienvenu et al., 2017].

On the other hand, taking datalog as the target query lan-
guage can lead to much more compact rewritings and it is
shown for description logics that executing (non-recursive)
datalog rewritings is much more feasible for DBMSs than
equivalent first-order rewritings [Hansen et al., 2015]. All
ontologies and queries that are first-order rewritable are triv-
ially datalog rewritable, and more datalog rewritable classes
are known, such as the guarded existential rules [Gottlob et
al., 2014b]. However, existing research on datalog rewrit-
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ing of existential rules are mostly theoretical [Gottlob and
Schwentick, 2012; Bienvenu et al., 2014] (refer to [Ah-
metaj et al., 2018] for a detailed discussion). While sev-
eral algorithms and systems have been developed for data-
log rewriting for various description logics [Eiter et al., 2012;
Trivela et al., 2015; Hansen er al., 2015], very few systems
have been developed for datalog rewriting over more general
existential rules. A notable exception is ChaseGoal [Benedikt
et al., 2018], which however, relies on the termination of the
chase procedure.

In this paper, we fill the gap by presenting both a practical
approach and a prototype system for datalog rewriting and
query answering over a wide range of ontologies expressed
in existential rules. Our algorithm is based on the notion of
unfolding [Wang er al., 2018] and to achieve compactness of
rewriting, we separate the results of unfolding into short rules
by introducing the so-called separating predicates and reusing
such predicates when possible. While such a rewriting pro-
cess may not terminate, we move on to identify classes of
ontologies where the rewriting process terminates, introduc-
ing a class by combining existing well-accepted classes. And
we introduce an efficient algorithm for computing the data-
log rewritings. Finally, we implemented a prototype system,
Drewer, and experiments show that it is able to handle a wide
range of benchmarks in the literature. Moreover, Drewer
shows superior or comparable performance over state-of-the-
art systems on both the compactness of rewriting and the ef-
ficiency of query answering.

2 Preliminaries

We assume standard first-order logic notions, such as predi-
cates, atoms, facts (i.e., ground atoms), formulas, entailment
(E) and equivalence (=). For a set of formulas @, [®] denotes
the set of predicates in ®. For convenience, we sometimes
identify a finite set of atoms with the conjunction of its atoms
where all the variables are existentially quantified, and vice
versa. A dataset is a finite set of facts (i.e., ground atoms).

For a set of atoms A, var(A) denotes the set of variables
in A. By assuming a fixed order on all the variables, for a
set of variables V', we may refer to the vector of V; also, for
denotational simplicity, we may use a vector to represent the
set of its elements. A substitution o is a functional mapping
between two sets of terms such that to = ¢ if £ is a constant
or is not in the domain of ¢; and it naturally extends to (sets
of) atoms and formulas. A unifier between two sets of atoms
A and A’ is a substitution 7 such that A7 = A’7; and 7 is a
most general unifier (MGU) if for each unifier 7/ between A
and A’, there exists a substitution ¢ such that 7’ = 7o.

An existential rule (or a rule) r is a formula of the form

VZNV.[37.¢(F, 2) « V(& )]

where #, ¢ and 2" are pairwise disjoint vectors of variables,
and o(Z, Z) and ¢(Z, §) are conjunctions of atoms containing
only variables from respectively £UZ and £Uy/. Variables in &
are frontier variables and those in 2’ are existential variables,
and we use 7, and Z,. to emphasis they are for rule 7. Formula
© is the head of the rule r, denoted head(r), and formula ¢
is the body of r, denoted body(r) (again, they can be seen as
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sets of atoms). For brevity, universal quantifiers in a rule are
often omitted, and we assume each rule employs a distinct set
of variables. A rule r is implied by another rule ' if v’ =
r. Two sets of rules 31 and Y5 are equivalent on a set of
predicates P, denoted X1 =p X, if for each pair of dataset
D and fact c over P, ¥, UD E aiff 3o UD = a. It
is known that a set of existential rules 3 can be transformed
into a set of rules X/ whose heads are singletons in a way that
preserves query answering [Gottlob er al., 2014a]. In what
follows, we assume X consists of such rules and use head(r)
to denote the single atom in the rule head.

A datalog rule r is an existential rule with a single head
atom and Z,. is empty. A fact-preserving datalog rewriting
(FPDR) of a set of existential rules X is a datalog program II
that preserves fact derivation, that is, II =[x Y; and it is a
strong FPDR if additionally, ¥ = TI.

A conjunctive query (CQ) ¢(Z) can be conveniently repre-
sented as a datalog rule Q(Z) + ¢(Z, %) where Q is a pred-
icate with arity |Z|]. When Z is empty the query is Boolean,
called BCQ and denoted q. A UCQ is a set of CQs with the
same head. An ontology-mediated query (OMQ) is of the
form @ = ¥ U {¢(%)} with ¥ a finite set of existential rules
and ¢(Z) a CQ. A tuple @ with the same arity as Z is an answer
to @ over a dataset D if Q U D = Q(a).

Datalog rewriting for an OMQ is relaxed to preserve only
the query answers; in particular, a query-preserving datalog
rewriting (QPDR) of an OMQ @) = ¥ U {¢(%)} is a datalog
program Ilq such that Ilq =(q; 3. Clearly, an FPDR of a
OMQ is also a QPDR, but the converse does not necessarily
hold. When Ilq is a UCQ, it is a UCQ rewriting. Answering
CQs can be reduced to that of BCQs and hence w.l.o.g. we
consider only BCQs in this paper.

Existing works on UCQ rewriting of OMQs are (essen-
tially) based on the notion of piece unification for two sets of
atoms B, H w.r.t. a set of variables V' from H [Baget et al.,
2011; Leclere et al., 2016]. A piece unifier of B and H w.r.t.
Visatuple p = (B’,H',7), where ) C B’ C B, H' C H,
and 7 is a MGU between B’ and H' such that foreachv € V,
v can only be unified with variables v (i.e., v7 = uT) occur-
ring in B’ !. For a CQ q to be rewritten by a rule 7, one would
take B = body(q), H = {head(r)}, and V consisting all the
existential variables in r; thus, we can omit V' and talk about
the piece unification of body(g) and head(r), and because H
is a singleton, the notion can be simplified as pn = (B’, 7).

3 Compact Datalog Rewriting

In this section, we introduce a compact datalog rewriting
approach, based on the notion of unfolding for existential
rules [Wang et al., 2018]. A rule 7 can be unfolded by a rule
r’ if there exists a piece unifier p = (B, 7) of body(r) and
head(r’), and the result is unf”(r, r'):

3z.[head(r)7’ A head(r’)7] +
/\(body(r) \ B)r A /\ body(r')7’
'Tt excludes the cases where v is unified with a constant, with a

variable in H other than v, or with a variable in B shared between
atoms inside and outside B’.
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where 2" consists of all the variables in the head but not in the
body, and 7' is a safe extension of T by substituting variables
Zy U ¥ with fresh variables.

Example 1. Let X.,,1 = {r1 : Jy.A(z,y) + B(z,z2), ra :
32.B(y, 2) < Az, y)} and ger = Q < A(u,v) A A(v, w).

Then, .. can be unfolded by ri with a piece unifier
= {A(v,w)},{z — v,y — w}), and unf"(gez,m1) =
Jw.[Q A A(v,w)] + A(u,v) A B(v, z). On the other hand,
w= {A(u,v)},{z — u,y — v}) is not a piece unifier, as it
does not correctly unify the existential variable y.

Note that the result of unfolding can be simplified when
the unified rule heads of 7 and 7’ do not share existential vari-
ables, i.e., var(head(r)7r') Nvar(head(r’)7) N Z = (. In this
case, the two heads can be separated and result in

37 head(r)r" « \(body(r) \ B)r A \ body(r)7 (*)

where z7 consists of all the variables in the head but not in
the body. Note that 3z3.head(r’)7 + A(body(r) \ B)T A
/\ body(r')7" is implied by ' and thus is redundant.

For a rule set ¥, unfold(X) is the smallest rule set con-
taining X such that unf”(r,r") € unfold(X) for each r, 7’ €
unfold(X) and each p (disregarding variable renaming).

Towards a datalog rewriting method, we observe that when
a strong datalog rewriting exists for a rule set, it can be ob-
tained via unfolding.

Proposition 1. For a set of rules 3, a strong FPDR of ¥
exists iff a finite subset of unfold(X) is an FPDR of X.

Clearly, a naive method to compute a datalog rewriting us-

ing the above unfolding is impractical, as the datalog rules
obtained from unfolding can be very large (indeed, are often
of unbounded sizes). In what follows, we introduce a prac-
tical approach for datalog rewriting by splitting long datalog
rules generated via unfolding into compact ones. As a first
step, we present an alternative operator, which we simply call
rewriting, between two existential rules.
Definition 1. For two rules r,v' and a piece unifier y =
(B, T) of body(r) and head(r’), the result of rewriting r by
r" with u, denoted rew*(r,r'"), consists of rule (*) and the
following two rules

P(&) + /\ body(r')7, (1)
37 head(r)7" « /\(body(r) \ B)T AP(Z),  (2)

where ¥ = &7 U var(body(r) \ B)r N Z..7, P is a fresh
predicate with arity |Z|, called a separating predicate, and 77,
T and ' are as in (*).

Intuitively, we split the body of (*) by introducing P to
obtain compact rules. Note that rule (*) can be obtained by
unfolding (2) by (1), yet it is generated for the correctness
of rewriting as we show later. We call rules of the form (*)
auxiliary rules; they will be deleted after the whole rewriting
process is completed.

Example 2. For Y., and qe, in Example 1, rew*(qeq,71)
consists of the following rules:

rs : P(v) < B(v, 2),
r5 1 Q « A(u,v) A B(v, 2).

rg : Q < A(u,v) A P(v),
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Replacing unf#(r, r’") with rew” (r,r’) for unfolding leads
to a set of rules that are equivalent to unfold(X) w.r.t. fact
derivation (over original predicates) and query answering.
Yet allowing the unfolding of separating predicates (i.e., in-
cluding them in piece unifiers) clearly forfeits their purpose,
as they were introduced to split long rules and their unfolding
simply reverses the split. Hence, the unfolding of separating
predicates must not be allowed.

Furthermore, it is possible to reuse separating predicates.
This is achieved through a labelling function A(-) such that
A(P) = head(r’)7. Intuitively, the label records how P is
introduced (e.g., the head atom involved in the piece unifica-
tion). When introducing a new separating predicate P’ with
the same arity and if A\(P) is equivalent to A(P’) up to variable
renaming, we reuse P to replace P’.

We are ready to define our datalog rewriting.

Definition 2. The rewrite chaining on a rule set X is a se-
quence of rule sets Xt (i > 0), where X%, = ¥, and
yirl =%i  U{rewt(r,r’) | re Xk, r €X}fori >0
satisfying the following two conditions: (i) separating predi-
cates are reused whenever possible, and (ii) any rule that is
implied by another rule is eliminated.

The rewriting of %, rewrite(X), is obtained from X5, by

rew
deleting all auxiliary and non-datalog rules.

Example 3. For Y.,1 and ., in Examples 1 and 2, the
rewriting of qe; by 71 and ro include additionally the follow-
ing (non-exhaustive list of) rules:

re : P'(v) < A(z,v),
rg : Q < A(u,v) A A(z,v),
r10: Q + PN7

Note that rules rg and r1g cannot be obtained without keeping
auxiliary rules r5 and rg during the rewriting.

r7: Q < A(u,v) A P'(v),
ro : P” + B(u, 2),
r11 : Q < B(u, 2).

We establish the correctness of our rewriting approach. We
use rewrited() to denote the variant of rewrite() where only
rules with query or separating predicates in their heads are
rewritten (i.e., in Definition 1, head(r) = Q or head(r) =
P’(Z) for some separating predicate P’).

Proposition 2. For a rule set ¥, a BCQ q, and the OMQ
Q = X U {q}, rewrite(X) (or rewrite?(Q)) is an FPDR
(resp., OPDR) of ¥ (resp., QQ) whenever rewrite(X) (resp.,
rewrite?(Q)) is equivalent to a finite set of rules.

4 Datalog Rewritable Classes

The rewriting method in the previous section does not nec-
essarily terminate; for example, it does not terminate on
Yew2 = {C(z,y) + C(x,2z) A C(z,y)}. Yetit terminates on
the class of finite unification sets (fus) [Baget et al., 2011], for
which several concrete classes have been identified, such as
the linear (lin), sticky (stky) [Cali et al., 2012b], and acyclic
graph of rule dependency (agrd) [Baget et al., 2011].

Proposition 3. For a set of rules 3 in fus, rewrite(X) is finite;
and for any BCQ q, rewrite(3 U {q}) is finite.

However, X2 is not fus. It is not hard to see that the ter-
mination issue is caused by the generation of infinitely many
auxiliary rules. We use rewrite,() to denote the variant of
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rewrite() where auxiliary rules (of the form (*)) are not gen-
erated during rewriting.

Lemma 1. For a set of rules 3, rewrite, (X) is finite.

Arrule set ¥ is separable if rewrite, (X) =[x) X. Intuitively,
the condition requires the rule bodies (in particular, the bod-
ies of auxiliary rules) can be separated during rewriting. The
class of separable rule sets is denoted sep. Clearly, a separa-
ble rule set always admits a (finite) datalog rewriting, yet the
definition does not suggest how to effectively identify such a
rule set. Thus, we first show that the existing shy class [Leone
et al., 2019] is a subclass of sep and then extend it to cover
more practical rule sets.

A position is of the form A[i] with A being an n-ary predi-
cate and 1 < ¢ < n, and a variable v occurs at position A[¢] if
there is an atom A(¢1, . . ., t,,) with ¢; = v. Foraset of rules &
and an existential variable z in ¥, a position A[i] is invaded by
z if there is a rule » € X such that head(r) = A(t1,...,t,)
and either t; = z or t; is a frontier variable that occurs in
body(r) only at positions that are invaded by z. Recall that
we assume each rule has a distinct set of variables. Then, a
variable x in ¥ is attacked by z if x only occurs in positions
invaded by z. Two atoms in the same rule body are chained
if (1) they share a variable that is attacked, or (2) they each
contains a frontier variable and these two variables are both
attacked by the same variable. Finally, X is shy if it does not
contain two chained atoms, and we denote the class of shy
rule sets as shy. It can be seen that X5 is shy, and every shy
rule set is also separable.

Theorem 1. shy C sep.

An example of separable but not shy rule set is X3 =
{r1 = Alz,y) + B(z),r2 = Clz,y,2) < Alz,y) A
A(z,2), 73 = D(x) + C(x,y,2)}. It is not shy because
frontier variables y and z in 75 are both attacked by the exis-
tential variable y in 71, which makes the two body atoms in 9
chained. Yet it is separable, as any datalog rule in rewrite(X)
over [¥], e.g., D(z) < B(z), is derivable from rewrite, (X).

The class of separable rule sets can be expanded to cover
more datalog rewritable cases. Note that OMQ X¢.1 U {qes }
from Example 1 is not separable, yet a datalog rewriting does
exist. We call a rule set X weakly-separable if it can be trans-
formed into a finite set of rules X’ such that rewrite, (X') =[x
>3, and the extended class is denoted as wsep. From the def-
inition, a weakly-separable rule set always admits a (finite)
datalog rewriting. Indeed, the wsep class consists of all data-
log rewritable rule sets X2, as one can take the FPDR of X as
3, which is finite and separable (as it contains no existential
variable). Next, we want to extend the shy class (i) to allow
blocks of, instead of individual, body atoms to be separable,
and (ii) to combine it with concrete subclasses of fus.

A block B C body(r) for some rule r is a smallest non-
empty set such that if « € B then for each atom g chained to
a, € B. We say a block B depends on a rule r if head(r)
share the same predicate with an atom in B. For a set of
rules X, the dependent rule set of a block B, dep(B), is the
smallest set of rules € ¥ such that B depends on r or some
rule in dep(B) contains a block that depends on 7.

Definition 3. Let fus-shy consist of rule sets 3. satisfying for
each block B in ¥ with |B| > 2, dep(B) € lin U stky U agrd.

1936

The OMQ Y51 U Xcpo U {ges } belongs to fus-shy, as the
only block with size greater than 1 is B = {A(u,v), A(v,w)}
in ge, and dep(B) = X.;1 which is fus; yet it is neither
shy nor fus. We can show that each rule set that belongs to
fus-shy is weakly separable, and thus is datalog rewritable.
Intuitively, we can transform the rule set by fully unfolding
the blocks B of sizes greater than 1 by dep(B), resulting in
an equivalent and separable rule set.

Theorem 2. lin U stky U agrd U shy C fus-shy C wsep.

Moreover, a rule set in fus-shy coupled with any BCQ is
also datalog rewritable.

Proposition 4. For a rule set 3 that belongs to fus-shy and
any BCQ q, the OMQ ¥ U {q} belongs to wsep.

S An Efficient Rewriting Algorithm

In this section, we introduce an efficient method for com-
puting datalog rewritings of the form rewrite, () whenever
they exist, and discuss how it can be adapted to compute
rewrite(X). Inspired by [Hansen et al., 2015], we compute
a decomposed representation of the heads and bodies of the
resulting rules generated during the rewriting, such that the
representation is compact due to structure sharing and the dat-
alog rewriting can be conveniently extracted from such a rep-
resentation. For the ease of presentation, we first present a
variant of the representation and then further simplify it.

For a set of rules X, its rewriting forest Fx, has nodes of
the form (P(Z), H, By, Bs), where P is a fresh predicate not
occurring in X, & is a vector of variables, H is an atom,
and Bj, By are sets of atoms; and edges are labelled with
piece unifiers. The roots of Fy; correspond to the rules in
Y, i.e., are of the form (T, head(r),, body(r)) for all rules
r € X, where T represents true. Intuitively, each node
((P(Z), H, By, B2) represents two rules as follows:

P(#) < A\ B, (1%)
32.H « /\BQ, (2%)

where Z consists of all the variables in the head but not in the
body. Rules (1*) and (2*) correspond to the rules (1) and (2)
generated during rewriting. Hence, P can be reused in the
same way as separating predicates through the labelling func-
tion A(-). Moreover, a node n is blocked by another node n’
if its corresponds rules are both implied by those of n’.
Formally, Fx, has the smallest number of nodes and edges
satisfying the following conditions: For each node n =
(P(Z), H, By, Bs) and each root node n’ = (T, H', 0, BS),
let # = var(H') Nvar(B}); and
1. for each piece unifier u = (B, 7) of By and H’, n has
achildn” = (P"(2"), H", B}, BY) whenever n’ is not
blocked s.t.
o 7" =var(H)rUvar(B2\B)TNZ'7, \(P") = H'T,
e H"” = H7', where 7’ is as in (¥), Bf = Bj7’ and
By = (B2 \ B)r U{P"(@")};
2. if n is not a root, for each piece unifier . of By and H’,
n has a child n” whenever n’ is not blocked s.t.

o ¥ =FrUvar(By \ B)TNZ'T,
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o H" =P(#)7’ and BY = (B, \ B)r U {P"(&")},
e B and A\(P") are as in Condition 1;

Our algorithm starts with the nodes corresponding to the
rules in ¥ and expands the rewriting forest based on the above
conditions. The expansion terminates due to the blocking
condition, and the number of nodes are bounded based on
the same argument as for Lemma 1. Let datalog(FY,) be the
set of datalog rules obtained as above from the nodes of F¥;.

Theorem 3. For a set of rules 3, F; is always finite and
datalog(Fx) =[x rewrite,(X).

To further simplify the representation, note that H and B
in each non-root node can be computed on the fly. In particu-
lar, for the computation of H” and B} under Conditions 2, it
only needs the current node n’” and its parent node n; whereas
under Condition 1, BY refers to By in the parent node n,
which can be computed through back-tracking till a root.

To adapt rewriting forests for the computation of
rewrite(X), we can expand each node with a fourth compo-
nent B3, which is a set of atoms. Intuitively, it is used to
capture rules 32.H < /\ Bs, that corresponds to the rules
of the form (*) generated during the rewriting. In particu-
lar, BY = (B3 \ B)T U B47’ in Conditions 1, and B =
(B1\ B)TUBj7" in Condition 2. Furthermore, there is a third
condition: if n is not a root, for each piece unifier yz of Bs and
H'’, n has a child n” whenever n”’ is not blocked such that
¥ =var(H)rUvar(Bs\B)TNZ'r, By = (B3\B)TUB,T’,
and everything else is defined as in Condition 1. Again, B3
in each node can be computed on the fly via back-tracking.
The difference from B; and B, is that the sizes of B3 are not
necessarily bounded, unless rewrite(X) is finite.

6 Experiment

We have implemented a prototype system, Drewer (Data-
log REWriting for Existential Rules), with our piece uni-
fication module adapted from the first-order rewriting sys-
tem Graal® [Kénig et al., 2015al, and we deployed VLog?
as our datalog engine. All experiments were performed on
a laptop with a processor at 2.2 GHz and 8GB of RAM.
The system and experiment benchmarks can be found at
https://www.ict.griffith.edu.au/aist/Drewer.

We evaluated ontologies including the DL-Lite versions of
LUBM, OpenGALEN2, OBOprotein and RS. RS is from [Bi-
envenu ef al., 2017] with a simple ontology but specially
crafted long queries (with up to 15 atoms), which is a known
challenge to existing rewriting-based systems. Reactome and
Uniprot are in OWL2, and we used the existential rule frag-
ments of them which are more expressive than DL-Lite. The
ontologies were converted into existential rules using a trans-
formation tool provided by Graal. DEEP200/300, STB-128,
and ONT-256 are from ChaseBench [Benedikt ez al., 2017], a
benchmark for chase-based reasoning systems. They contain
existential rules with predicates of arities more than two. All
the tested ontologies are found to be in fus-shy and thus can
be handled by Drewer, whereas none of the compared rewrit-
ing system could successfully handle all of them.

2http://graphik-team.github.io/graal/
3https://github.com/knowsys/vlog4;j
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We conducted two sets of experiments to evaluate the per-
formance of our system. In the first set of experiments, we
compared our system with state-of-the-art query rewriting
systems regarding the compactness and efficiency of query
rewriting. In particular, Graal is a first-order rewriting sys-
tem for existential rules, Rapid [Trivela et al., 2015] and
Iqaros [Venetis er al., 2016] are datalog and UCQ rewriting
systems for description logic ontologies. We used original
queries that come with the datasets and evaluated 5 queries
per ontology, except for RS which has only 3 long queries.

Table 1 records the sizes and times for query rewriting,
where sizes are measured by the numbers of atoms and the
times are in milliseconds. We set a 5 minutes time limit per
query, and TO denotes a timeout whereas a “-” means the
system could not handle the OMQ (or reported errors).

It can be seen from Table 1, the sizes of datalog rewrit-
ings are often comparable to or much smaller than those of
UCQ rewritings. Note that to achieve efficiency as well as
compactness in rewriting, Graal makes use of the so-called
compiled pre-orders of the form A < B for predicates A, B,
which can be seen as datalog rules B(Z) < A(Z). Hence, the
UCQ rewritings produced by Graal need to be coupled with
the compiled pre-orders for query answering. For a fair com-
parison, we report the rewriting sizes for Graal in the form
of z + y, where z is the size of the UCQ rewriting and y is
that of the datalog rules corresponding to the compiled pre-
orders. Since not all pre-orders are used for specific queries,
we tracked for each query those pre-orders actually used for
query answering (following Graal’s native query answering
process) and y is the number of only those used pre-orders.

Regarding the time efficiency of rewriting, Drewer is again
superior or comparable to other systems in almost all cases.
In particular, all other systems reached a timeout on g5 for
OBOprotein, whereas Drewer took only less than a second
to complete the rewriting. And all other systems except for
Graal failed to complete their rewriting on the 3 queries for
RS, due to the large sizes of UCQ rewritings.

To evaluate the overall performance of Drewer in query
answering, we conducted a second set of experiments com-
paring it with other in-memory (as Drewer is in-memory)
query answering systems. To separate the contribution of our
rewriting method from that of an efficient datalog engine, be-
sides Graal and Iqaros, we also compare Drewer with state-
of-the-art chased-based systems VLog [Carral er al., 2019]
and DLV? [Leone et al., 2019]. All ontologies except for
Uniprot are weak acyclic [Grau er al., 20131, so the chase-
based systems can be used for query answering. To compare
with Graal on the quality of different rewritings, we used a
datalog translation for both of its UCQ rewritings and the
used pre-orders, and deployed the same datalog engine VLog.

Table 2 presents the average times (in milliseconds) for an-
swering the 5 queries over each ontology, where we ran each
query separately (which may involve running the chase pro-
cedure separately for each query). If a system reached a time-
out on a particular query, we counted 5 minutes. Hence, a TO
means a failure for all the 5 queries. We separate the query an-
swering times (QA, including possibly rewriting, chase com-
putation, and query evaluation) out of the total times, except
for DLV~ where it was difficult to make such a separation.


https://www.ict.griffith.edu.au/aist/Drewer
http://graphik-team.github.io/graal/
https://github.com/knowsys/vlog4j
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Datalog Rewriting UCQ Rewriting
Ontology Query Drewer Rapid Graal Iqaros
Size Time Size Time Size*  Time Size  Time
ql 3 1 3 5 1+2 117 2 4
q2 1296 34 1276 82 1+1275 175 1152 56
OpenGALEN2 q3 93 1055 92 39 5+87 208 488 44
q4 162 7 155 15 1+154 108 147 11
q5 75 2194 81 25 19+62 211 324 40
ql 30 63 29 19 20+7 259 27 16
q2 1357 521 1356 720 1264492 6866 1356 963
OBOprotein q3 34580 152 | 33919 128341 1433918 338 | 33887 699
q4 34625 2496 | 34879 127786 | 682+34085 3239 | 34733 12832
q5 1386 516 | 27907 TO TO TO | 36612 TO
ql 14 153 TO TO 14+4 904 TO TO
RS q2 22 849 TO TO 100+4 13554 TO TO
q3 25 8976 TO TO 143+4 40875 TO TO
ql 25 286 - - 117 +2 927 - -
q2 30 280 - - 528 +3 12417 - -
DEEP300 q3 30 282 - - 624 +2 17196 - -
q4 234 352 - - TO TO - -
q5 55 294 - - TO TO - -
ql 11 35 - - 8+2 94 - -
q2 16 40 - - 446 127 - -
ONT-256 q3 14 33 - - 8+6 139 - -
q4 16 32 - - 12 +5 176 - -
q5 16 35 - - 48+1 2378 - -
Table 1: Comparison on query rewriting
Ontology Drewer VLog DLV? Graal (VLog) Iqaros
Total QA | Total QA Total Total QA | Total QA
LUBM-100 | 21339 1114 | 21696 1952 | 162975 | 21224 301 | 22651 2604
Reactome 2876 61 3300 375 | 20092 | 240589 240004 | 6629 1455
Uniprot 1791 46 TO TO 10448 1796 88 | 2991 755
DEEP200 701 189 | 3700 2456 452 | 122295 121913 - -
DEEP300 840 303 TO TO 562 | 125447 125042 - -
STB-128 8287 116 | 8822 603 | 22239 8207 148 - -
ONT-256 25892 56 | 28275 2070 | 206021 26305 589 - -

Table 2: Comparison on query answering

Overall, our (datalog) rewritings demonstrate significantly
better efficiency in query answering compared to UCQ
rewritings (by Graal and Igaros); while Drewer could suc-
cessfully handle all queries, Graal reached a timeout on
4 queries for Reactome and 2 queries for DEEP200 and
DEEP300. In the comparison with chase-based systems, our
system demonstrates superior time efficiency (sometimes by
magnitudes) than VLog on all tested cases, which shows our
performance gain is significantly contributed by the rewriting.
Drewer also outperforms or is comparable to DLV, which
compute the parsimonious chase rather than the full chase,
on most of the cases. A chase-based system still has the ad-
vantage of being able to answering multiple queries over a
single computation of the chase.Yet when the chase is diffi-
cult or impossible to compute, e.g., on Uniprot, our rewriting
can be a determining factor between success and failure.

7 Conclusion

In this paper, we have presented a novel approach to data-
log rewriting for existential rules and introduced a new con-
crete datalog rewritable class by combining several existing
classes. We also implemented and evaluated our prototype
system, Drewer, which is capable to handle a wide range of
practical ontologies with superior or comparable performance
compared to state-of-the-art rewriting and query answering
systems. For future work, we are working on identifying
more general classes of datalog rewritable existential rules,
and optimising our rewriting algorithm and implementation.
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