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Abstract
Regular Decision Processes (RDPs) are a recently
introduced model that extends MDPs with non-
Markovian dynamics and rewards. The non-
Markovian behavior is restricted to depend on regu-
lar properties of the history. These can be specified
using regular expressions or formulas in linear dy-
namic logic over finite traces. Fully specified RDPs
can be solved by compiling them into an appropri-
ate MDP. Learning RDPs from data is a challenging
problem that has yet to be addressed, on which we
focus in this paper. Our approach rests on a new
representation for RDPs using Mealy Machines that
emit a distribution and an expected reward for each
state-action pair. Building on this representation, we
combine automata learning techniques with history
clustering to learn such a Mealy Machine and solve
it by adapting MCTS to it. We empirically evaluate
this approach, demonstrating its feasibility.

1 Introduction
In the emerging area of personal health tracking, one records
one’s pulse, blood pressure, glucose levels, activity levels, nu-
tritional information and much more, in an attempt to learn
how to improve one’s physical and mental health. In this do-
main, the state of many variables of interest and the effects of
various actions are most likely not Markovian functions of the
value of the most recently measured variables. Hence, apply-
ing standard, MDP-based, RL algorithms [Sutton and Barto,
1998] to a state model consisting of the value of these observed
variables will most likely lead to sub-optimal behavior.

Motivated by such application domains, [Brafman and
De Giacomo, 2019] introduced Regular Decision Processes
(RDPs), a non-Markovian extension of MDPs that does not
require knowing or hypothesizing a hidden state. An RDP is a
fully observable, non-Markovian model in which the next state
and reward are a stochastic function of the entire history of the
system. This dependence on the past is restricted to regular
functions, only. That is, the next-state distribution and reward
depends on which regular expression the history satisfies.

An RDP can be transformed into an MDP by extending the
state of the RDP with variables that track the satisfaction of
the regular expression governing its dynamics. To learn an

RDP, we need to learn these regular expressions. For example,
in the context of personal health-tracking, one might learn
which sequences of activities and measurements make a state
of hyperglycaemia, hypoglycaemia, or depression, likely, and
consequently, adapt behavior policies that prevent them.

An optimal policy for an RDP is a mapping from regular
properties of history to actions. Thus, it provides users with
clear, understandable guidelines, based on observable proper-
ties of the world, in contrast to, e.g., arbitrary hidden states in
a learned POMDP, or unclear features in a neural network.

This paper makes two contributions to the emerging theory
of RDPs. Our first contribution is the use of a deterministic
Mealy Machine to specify the RDP. For each state and action,
this Mealy Machine emits as its output, a class label. This
class label is associated with a distribution over the underly-
ing system states and a reward signal. This idea extends the
use of Mealy Machines to specify non-Markovian rewards,
introduced recently by [Camacho et al., 2019], to RDPs. Our
second, and main contribution is to use this idea to formulate
the first algorithm for learning RDPs from data, and to evalu-
ate it on two non-Markovian domains. Our algorithm identi-
fies, through exploration, histories that have similar dynamics
based on their empirical distributions. Then, it learns a Mealy
Machine that outputs, for each history, an appropriate label.
Finally, we solve the RDP represented by this Mealy Machine
to obtain an optimal policy. Our algorithm was implemented
and tested on two domains modelled as RDPs, demonstrating
its ability to learn RDPs from observable data and to generate
a near-optimal policy for these models.

2 Background
We assume familiarity with MDPs, recalling basic notation
only. We briefly discuss NMDPS, RDPs, and Mealy Machine.

2.1 MDP and NMDPs
A Markov Decision Process (MDP) is a tuple M =
⟨S,A,Tr,R, s0⟩. S is the set of states, A a set of actions,
Tr ∶ S ×A→ Π(S) is the transition function that returns for
every state s and action a the distribution over the next state.
R ∶ S × A → R is the reward function that returns the real
valued reward received by the agent after performing action a
at state s, and s0 ∈ S is the initial state.

A solution to an MDP is a policy ρ ∶ S → A that maps
each state to an action. The value of ρ at state s, vρ(s), is the
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expected sum of discounted rewards when starting at state s
and selecting actions based on ρ. An optimal policy, denoted
ρ∗, maximizes the expected sum of discounted rewards for
every starting state s ∈ S. Such a policy always exists for
infinite horizon discounted reward problems.

A non-Markovian Decision Process (NMDP) is defined
identically to an MDP, except that the domains of Tr and R
are finite histories (=sequences) of states and actions instead
of single states. For convenience and simpler notation, we will
assume that the last action executed is part of the current state
(with a special null action for the initial state), allowing us
to represent histories as sequences of states. However, where
clarity requires, we will explicitly mention the actions, too.
Consequently, in an NMDP, Tr ∶ S+ × A × S → Π(S) and
R ∶ S+ ×A → R. With this dependence on the history, to act
optimally, a policy ρ must, in general, take the form: ρ ∶ S+ →
A. Here, ρ is a partial function defined on every sequence
h ∈ S+ reachable from s0 under ρ. We define reachability
under ρ inductively: s0 is reachable; if h ∈ S+ is reachable
and Tr(h, a, s) > 0 then h ⋅ s is reachable.

The value of a history (s0, s1, ..., sn) (also often called
a trace) is its discounted sum of rewards: v(s0s1, .., sn) =
∑ni=0 γnR(s0, .., si). Because we assume the reward value is
lower and upper bounded and 0 < γ < 1, this discounted sum
is always finite and bounded from above and below.

2.2 RDPs
A Regular Decision Processes (RDP) [Brafman and De Gia-
como, 2019] is an NMDP in which the next-state distribution
and reward depend on which one of a finite set of regular ex-
pressions is satisfied by the current history. It is also a factored
model, i.e., each state is an assignment to a set of state vari-
ables (assumed in this paper to be Boolean, for convenience).

Histories are essentially strings over an alphabet of states
and actions. Sets of histories are languages over this alphabet.
We could use Regular Expressions (RE), an intuitive and much
used formalism, to specify languages. However, REs lack the
logical structure needed to exploit finer-grained properties of
the internal assignments of a state, and do not efficiently sup-
port various useful operations on sets of strings. Instead, RDPs
use Linear Dynamic Logic on finite traces (LDLf ) [De Gia-
como and Vardi, 2013] to specify sets of histories. LDLf has
the same expressive power as RE, allows us to refer to proper-
ties of states, and supports simple specification of conjunction,
disjunction, and negation.

In this paper we do not make explicit use of the structure,
syntax or operations on LDLf formulas, so readers unfamiliar
with them can simply replace each mention of them by RE. For
more details, see [Brafman and De Giacomo, 2019]. However,
it is important to know that for each LDLf formula ϕ, there
exists a finite-state automaton Mϕ over the alphabet of RDP
states that accepts a history of states IFF this history satisfies
ϕ, and that this formula can be effectively constructed [Baier
et al., 2008; De Giacomo and Vardi, 2013].

Formally, an RDP is a tuple ML = ⟨P,A,S, TrL,RL, s0⟩.
P is a set of primitive propositions inducing a state-space
S with s0 as the initial state. A is the set of actions. TrL,
the transition function, is represented by a finite set T of
quadruples of the form: (ϕ,a,P ′, π(P ′)). ϕ is an LDLf

formula over P , a ∈ A, P ′ ⊆ P is the set of propositions
affected by a when ϕ holds, and π(P ′) is a joint-distribution
over P ′ describing its post-action distribution.

Intuitively, if the current history satisfies the formula ϕ, then
action a can only affect the propositions in P ′, and the distri-
bution over the possible next-state values of these propositions
in specified by π(P ′). Formally, if {(ϕi, a, P ′i , πi(P ′)∣i ∈ Ia}
are all quadruples for a, we require the ϕi’s to be mutually
exclusive ( ϕi ∧ ϕj ≡ false if i ≠ j) and exhaustive (⋁i ϕi ≡
true), so that the transition model is well defined for all histo-
ries. Letting s∣P ′ denote s′ projected to P ′, TrL is defined as
follows: TrL((s0, a0, ..., sk), a, s′) = π(s′∣P ′) if quadruple
(ϕ,a,P ′, π(P ′)) is the (single) one s.t. s1, ..., sk ⊧ ϕ and sk
and s′ agree on all variables in P ∖ P ′.

Finally, RL, the reward function, is specified by a finite set
R of pairs (ϕ, r), where ϕ is an LDLf formula over P , and
r ∈ R is a real-valued reward. Given a trace s0, ..., sk, the agent
receives the reward: RL(s0, ..., sk) = ∑(ϕ,r)∈R,s0,...,sk⊧ϕ r.
By definition RL is bounded above and below.

Example 1. We model a 2-armed, Non-Markovian Multi-
Armed Bandit (NM-MAB) using an RDP. In standard MAB
there is a single state, and the reward depends (possibly
stochastically) on the choice of action. Our NM-MAB makes
the probability of receiving a (fixed-size) reward dependent
on the entire history of actions. It is a two-state RDP, where
the state indicates whether a reward was received or not in
the last interaction. Let π = [0.9,0.2] be a vector that assigns
the probability of winning the reward for each action. This
probability shifts right (i.e., +1 mod 2) every time the agent
receives a reward. For example, if the agent won three times
in the past, then the probability of winning with action 1 is
0.2.

The RDP ML = ⟨P,A,S, TrL,RL, s0⟩ is defined as
follows: P = {w(on)}, S = {w, w̄}, the initial state
s0 = w̄, the actions are A = {a0, a1}. TrL, the
transition function, is represented by quadruples T =
{(ϕ,a0,w, π0), (¬ϕ,a0,w, π1), (ϕ,a1,w, π1),
(¬ϕ,a1,w1, π0)}, where ϕ = ⟨(w̄∗;w; w̄∗;w; w̄∗)∗⟩end and
π0(w) = 0.9, π0(w̄) = 0.1, π1(w) = 0.2, π1(w̄) = 0.8.
RL = {(⟨true;w⟩end, rwon), (⟨true; w̄⟩end, rlost)}

2.3 Mealy-Machine
A (deterministic) Mealy Machine (MM) is a deterministic
finite-state transducer whose output value is determined by
its current state and the current input. Formally, it is a tuple
M = ⟨Q, q0,Σ,Λ, T,G⟩. Q is the finite set of states, q0 is
the initial state. Σ is the input alphabet and Λ is the output
alphabet. The deterministic transition function T ∶ Q×Σ→ Q
maps a state and an input symbol to the corresponding next
state. The deterministic output functionG ∶ Q×Σ→ Λ maps a
state and an input symbol to the corresponding output symbol.
On each step, the machine consumes an input symbol σ ∈ Σ,
transitions from the state q ∈ Q it started the step in to state
T (q, σ) ∈ Q, and outputs the symbol G(q, σ) ∈ Λ.

3 Representing and Solving RDPs
An RDP associates with each history h and action a a distri-
bution over next states (the transition function) and a reward.
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Building on the idea of using Mealy Machines to specify
non-Markovian rewards [Camacho et al., 2019], our key ob-
servation is that the information in the RDP model can also
be specified using a Mealy Machine. Below, we show how to
build an equivalent MM given an RDP and vice versa. Later,
we will exploit this representational equivalence to learn an
RDP by learning its equivalent MM.

Suppose we are given an RDPML = ⟨P,A,S, TrL,RL, s0⟩
such that ϕ1, . . . , ϕn are the LDLf formulas that specify TrL
and RL. Each such formula is associated with an action (e.g.,
ϕi appears in some quadruple (ϕi, a, P ′, π(P ′))). As noted
earlier, for each formula ϕ, there exists an automaton Mϕ that
accepts a history h IFF h satisfies ϕ. We use a non-standard
construction where the automaton associates the accepting
status with transitions, rather than states, and its input alphabet
is S ×A, the product of the set of RDP states and RDP actions.
Its initial state corresponds to the empty history, and each tran-
sition extend this history with a state and the following action.
Thus, each state represents a history that ended in some action.
(The standard construction’s input language isA×S, reflecting
the last action and state, but the two are interchangeable. The
same holds for accepting states vs. transitions.)

Let Mi denote the automaton tracking ϕi, and define
M = ⊗ni=1Mi to be the product automaton. By definition,
for every history h ⋅ s and action a, exactly one formula is
satisfied. In the automaton, this history is represented by the
edge from the state reached with history h that is labeled by
(s, a). Hence, given any state q = (q1, . . . , qn) of M and
every transition (s, a), exactly one automaton Mk enters an
accepting transition. In addition, any number of automata
tracking reward formulas may accept on this transition in M .

The Mealy Machine MMe = ⟨Q, q0,Σ,Λ, T,G⟩ that de-
scribes an RDP is obtained by augmenting the above M with
an output function G defined as follows: Let q = (q1, . . . , qn)
be a state of M , and let (s, a) be the input symbol. Let Mk

be the unique automaton tracking a transition formula that ac-
cepts on input (s, a). Let (ϕk, a, P ′, π(P ′)) be the quadruple
associated with ϕk and a in TrL. Let r be the sum of rewards
associated with all the reward formula tracking automata that
accept on input (s, a) from their current state in q. Define
G(q, (s, a)) = ((P ′, π(P ′)), r), i.e., G(q, (s, a)) returns the
propositions and distribution associated with ϕk and reward r.

The converse also holds. Given MMe = ⟨Q, q0,Σ,Λ, T,G⟩
where Σ = S × A and Λ returns pairs of the form
((P ′, π(P ′)), r), we can (re)construct the RDP. Σ contains
the information on S and A. Let q be the state MMe reaches
on input (=history ending with an action) h, then G(q, (s, a))
provides us with the information on the transition and reward
functions given history h ⋅ s ⋅ a.

To solve an RDP ML = ⟨P,A,S, TrL,RL, s0⟩, we can
transform it into an MDP MMDP as follows [Brafman and De
Giacomo, 2019]: Let MMe = ⟨Q, q0,Σ,Λ, T,G⟩ be the MM
representation of ML. Define MMDP = ⟨Q × S,A,Tr,R⟩,
where Tr((q, s), a, (q′, s′)) = π(s′∣P ′) × δq′=T (q,(s,a)) and
R((q, s), a) = r. Here, G(q, (s, a)) = ((P ′, π(P ′)), r), s
and s′ must not differ in the value of the propositions not in
P ′, and δ is the Dirac delta. In words, we take the product of
MMe with the original state space S of the RDP. Transitions
in the MM state component q are deterministic. Transitions

in the RDP state component s are stochastic and distributed
according to the RDP’s transition function which is captured
by the MM’s output. The latter depend on the history but only
through the properties ϕ1, . . . , ϕn, whose satisfaction can be
inferred from q, s and a. Similarly, the rewards depend on s, a
and the relevant properties of the history, captured by q.
MMDP can be solved using standard MDP solution tech-

niques [Puterman, 2005]. We use UCT [Kocsis and Szepesvári,
2006], an MCTS algorithm, because MCTS can be applied to
RDPs without generating MMDP explicitly. We maintain the
current RDP state, i.e., the most recent set of observations, and
the state q of the Mealy Machine. From q, for each action and
current RDP state, we can obtain as output the information
needed to sample the next set of observations and rewards.
The new observations replace the old ones, and are used (with
the action) to update the Mealy Machine. The choice of which
action to apply follows the standard UCB1 criterion [Auer et

al., 2002] a = argmaxaQ((q, s), a) + c ⋅
√

logn((q,s))
n((q,s),a)

.

Example 2. The minimal MM representing the RDP in Ex-
ample 1 is defined as follows: M = ⟨Q, q0,Σ,Λ, T,G⟩. Q =
{q0, q1}, q0 is the initial state. Σ = {w ⋅a0,w ⋅a1, w̄ ⋅a0, w̄ ⋅a1},
Λ = {π0, π1}. T (q0,w ⋅ai) = T (q1, w̄ ⋅ai) = q1, T (q1,w ⋅ai) =
T (q0, w̄ ⋅ ai) = q0 . G(q1, w̄ ⋅ aj) = G(q0,w ⋅ aj) =
π1−j ,G(q0, w̄ ⋅ aj) = G(q1,w ⋅ aj) = πj .

4 Learning RDPs
Most MDP learning algorithms rely on the Markov assump-
tion and full observability of the state for their correctness.
Such algorithms are not suitable for learning non-Markovian
models, such as an RDP.1 In this section, we propose to ex-
ploit the alternative, Mealy Machine representation of RDPs
and use Mealy Machine learning algorithms to learn the RDP
model. Then, we use MCTS to generate an optimal policy for
the learned model. Thus, our algorithm can be characterized
as a Model-based RL algorithm for non-Markovian domains.

The high-level pseudo-code of our algorithm, S3M (Sample,
Merge, Mealy Machine), is given in Algorithm 1. We assume
it has access to the RDP’s state space (since the RDP state
is observable) and can repeatedly sample sequences from the
initial state. Its final output is (a factored) MDP model which
is used to compute the policy.

The algorithm starts by generating sample trajectories (L. 3).
For the purpose of trajectory sampling, it initially assumes
that the RDP is Markovian and hence that its state space is
identical to that of the RDP (L. 1). It then clusters histories
with similar next-state distributions and uses the next-state
distribution of the cluster as its transition model (L. 4). Next,
a Mealy Machine learning algorithm is invoked (L. 5). This
algorithm expects input of the form (input sequence, output),

1Deterministic MDPs are an important exception in which, instead
of the state, we observe a deterministic function of it, called its
label, s.t. given any state and action, the labels of all next states are
different. RDPs and DMDPs are different extension of MDPs with
limited partial observability, s.t. some domains can be captured in
both models. Algorithms for learning DMDPs [Mao et al., 2016;
Tappler et al., 2019] share the use of variants of automata-learning
algorithms that we use here to learn RDPs.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1950



Algorithm 1 Sample Merge Mealy Model (S3M)
Input: domain
Output: M

1: Initialize state space RDP state space SRDP
2: repeat
3: H=Sample Domain(SRDP )
4: C=Cluster(H)
5: Me = mealy generator(C)
6: Set state space to SRDP × SMe

7: until Max Iterations
8: return MDP with state space SRDP × SMe

where output can be the output symbol obtained after reading
the entire input sequence. In our case, the input takes the form
(π,α), where π is a trace (=history) and α is a distribution over
the next observation (RDP state) and reward. We now update
the state-space of the MDP to be the product of the RDP state
space and that of the learned MM, and repeat the process. The
next subsections describe each step in more detail.

4.1 Sampling
To learn the RDP model we need to generate sample traces.
We considered two methods for doing this. One is purely
exploratory and does not attempt to exploit during the learning
process, while the other does.

The Pure Exploration approach uses a stochastic policy
that is biased towards actions that were sampled less. More
specifically, for every a ∈ A and s ∈ SRDP , where SRDP is
the RDP state space, define:

P (a∣s) = f(a, s)
∑a f(a, s)

where f(a, s) = 1 − n(a, s)
∑a n(a, s)

(1)

Here, n(a, s) stands for the number of times action a was
performed in state s of the RDP. This distribution favours
actions that were sampled fewer times in a state.

The Smart Sampling approach is essentially Q-
learning [Watkins and Dayan, 1992] with some exploration
using the above scheme. Specifically, Q values are maintained
for each state-action pair, where states are defined and updated
as above, starting with a single-state Mealy Machine. Q(s, a)
is initialize to 0 for all states and actions, and is updated
following each sample of the form s, a, r, s′ using Q(s, a) =
Q(s, a) + α(R(s, a) + γmaxa′∈AQ(s′, a′) −Q(s, a)). With
probability 1 − ε, we select the greedy action in state s,
and with probability ε we sample an action based on the
distribution defined in Equation 1.

4.2 Trace Distributions
Next, we associate with every trace encountered a set of
propositions and a distribution over their probability. (Note
that each prefix of a trace is also a trace.) Let h =
(o1a1, o2a2, ..., on, an) be a given trace. The oi’s denote
the fully observable RDP states. We define Ph,(o,a), the
set of propositions affected by action a given history h ⋅ o,
to be all propositions p ∈ P such that there exists a trace
hoao′ = (o1a1, o2a2, ..., on, an, o, a, o′) in our sample where
o and o′ differ on the value of p. We expect Ph,(o,a) to be

small because action effects are usually local. Next, we com-
pute the empirical post-action distribution over Ph,(o,a) for
history h, RDP state o and action a. That is, the frequency of
each assignment to Ph,(o,a) in the last RDP state over traces
of the form hoao′ in our sample.

4.3 Merging Histories and Their Distributions
By modeling a domain as an RDP, our basic assumption is
that what dictates the next state distribution of a history is
the class of regular expressions it belongs to. Hence, many
different histories are likely to display similar behavior be-
cause they are instances of the same regular expression. Of
course, we do not know what these regular expressions are,
and because of the noisy nature of our sample, we cannot
expect two histories that belong to the same class to have the
same empirical distribution. Moreover, many histories will
be sampled rarely, in which case their empirical next-state
distribution is likely to significantly differ from the true one.
For this reason, we attempt to cluster similar histories together
based on their empirical next-state distribution, using KL Di-
vergence [Kullback and Leibler, 1951] as a distance measure.
However, we consider merging only histories that affect the
same set of propositions.

Our goal is to create clusters s.t. each cluster represents a
certain distribution and each trace is assigned to a single cluster.
We create the clusters bottom-up. First, we create a single
cluster for each trace hoa, as described in 4.2, with weight w
denoting the number of samples used to create it. Then, for
every two clusters with distributions P1 and P2 affecting the
same propositions with weights w1 ≥ w2 ≥ min samples: we
merge them if (1) the support of P2 contains the support of P1,
and (2) DKL(P1∣∣P2) ≤ ε. Condition 1 is required for DKL

to be well defined. The new cluster’s weight is w = w1 +w2

and its distribution P is defined to be:
P (⋅) = (1/w)[w1 ⋅ P1(⋅) +w2 ⋅ P2(⋅)] (2)

If a cluster has multiple other clusters with which it can merge,
then the one with the smallest KL divergence is selected. We
repeat this procedure until no merges are possible.

Next, for each distribution P whose weight < min samples,
we find the distribution Q from the above clusters that affects
the same set of propositions such that DKL(P ∣∣Q) is well
defined and minimal, and merge the two using Equation 2 to
obtain the new distribution. Notice that such a merge implies
that the support of P is a subset of the support of Q.

The above is repeated for different values of ε, resulting
in different models. We now explain how we select the final
model. Each model has the form (Π, T r). Each π ∈ Π is a
distribution over the set of assignments to some subset Pπ
of the RDP’s set of propositions, with one such distribution
associated with each cluster. Tr ∶ H → Π maps each history
in the sample to the distribution associated with its cluster.

We compare the models using the following loss function:
loss = − ∑

h∈H

log(P (h∣Tr(h)) + λ ⋅ log( ∑
π∈ Pi

∣supp(π)∣)

(3)

P (h∣Tr(h)) =
n

∏
i=1

P (oi∣o1a1 . . . oi−1ai−1;Tr(h)) (4)
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where ∣supp(π)∣ is the size of the support of distribution π.
Thus, our loss function is the log-likelihood of the data with a
regulizer that penalizes models with many clusters, and models
with ”mega”-clusters with large support.

4.4 Generate a Mealy Machine and an MDP
We now have data mapping each encountered history to its
cluster index (with which a distribution is associated). We
use the flexfringe algorithm [Verwer and Hammerschmidt,
2017] to learn a Mealy Machine from this data The result
is a MM, MMe = ⟨SMe, s0Me

,Σ,Λ, T,G⟩ representing the
RDP. From this MM we generate an MDP M = ⟨SRDP ×
SMe,A, Tr;R; (s0, s0Me

)⟩, as explained in Section 3. The
optimal policy for this MDP is optimal for the RDP – associ-
ating actions with regular functions of the RDP history.

5 Empirical Evaluation
As this is the first paper to explore learning and solving RDPs,
we focus on evaluating our algorithm’s ability to learn good
policies and to scale-up. For Mealy Machine learning we used
the EDSM implementation from the FlexFringe library [Ver-
wer and Hammerschmidt, 2017]. To solve the learned RDPs
we use UCT [Kocsis and Szepesvári, 2006], extended to RDPs.

5.1 The Domains
We test the two variants of our algorithm on two new RDP
domains: NM-MAB and Rotating Maze. As a baseline, we
useRmax – a model-based MDP learning algorithm [Brafman
and Tennenholtz, 2002], which essentially assumes (wrongly)
that the RDP transitions are Markovian.

Multi-Armed Bandit Domain
We described our NM-MAB domain in Example 1. For the
experiments we created three MAB-based RDP models:

1. RotatingMAB: The domain defined in Example 1. The
win probability for each arm depends on the entire history,
but via a regular function.

2. MalfunctionMAB: One of the arms is broken, s.t. after the
corresponding action is performed k times, its probability
of winning drops to zero for one turn.

3. CheatMAB: There exists a sequence of actions s.t. after
performing that sequence, all actions lead to a reward
with probability 1 from that point on.

All NM-MAB domains have 2 arms/actions. The win-
ning probabilities of the machines of the RotatingMAB were
(0.9,0.2), for CheatMAB (0.2,0.2) and for Malfunction-
MAB (0.8,0.2).
Maze Domain
The Maze domain is an N ×N grid, where the agent starts in
a fixed position. The possible actions are up/down/left/right.
They succeed 90% of the time, and in the rest 10% the effect
is to move in the opposite direction. The goal is to get to the
designated location where a final reward is received. This task
would be easy with a normal MDP, however, in this maze,
every three actions the agent’s orientation changes by 90○.
Thus, the effects of the actions are a regular function of the
history. In our experiment we used a 4 × 4 maze, where the
goal is five steps away from the initial position.

5.2 Results
For each domain we used three configurations: (1) Random
Sampler: S3M with Pure Exploration sampling; (2) Smart
Sampler: S3M with Smart Sampling; (3) RMax: The model-
based RL algorithm RMax [Brafman and Tennenholtz, 2002]
that uses the RDP states as its states, used as baseline.

The results are displayed in Figure 1. We show the value
of the optimal policy (Optimal), the quality of the policies
learned by the above three algorithms at each evaluation step,
and the average reward accumulated during learning by the
first two algorithms. Each experiment was repeated five times.
We plot the average over these five repetitions with error bars
representing the std. To evaluate the quality of the current
policy during the learning process, the optimal policy for the
current model was computed online using UCT. 50 trials were
conducted using the currently learned Mealy Machine. MAB
trials were 10 steps long, and Maze trials were terminated
after 15 steps if the goal was not reached. The graph shows the
average (over 50 trials) per-step rewards of these policies (aver-
aged over 5 trials), and the average (over 5 trials) accumulated
reward obtained as S3M was sampling traces.

Overall, S3M Smart Sampler does quite well, yielding opti-
mal or near optimal policies, as well as accumulated rewards.
Random Sampler does reasonably well, too, except on the
CheatMAB, but its accumulated reward is typically much
worse. Rmax, which cannot capture the non-Markovian dy-
namics does much worse. Even in the Maze domain, the
difference in its performance is exactly what we would expect
when we ignore the non-Markovian behavior – this margin, in
that case, is simply smaller than in the MAB domains.

It is interesting to compare the performance of the two
sampling approaches. We expected that Smart Sampler will
accumulate more reward, as it exploits more, and its exploita-
tion is informed by the learned MM, and hence takes history
into account. Indeed, in the MAB domain, we see such be-
havior: S3M with smart sampling converges to an optimal
or near-optimal policy quickly, and the accumulated rewards
increase steadily, while Random Sampler does worse. This is
especially pronounced in the Cheat MAB domain, which is
the most complex domain. We believe the reason for Random
Sampler’s weak performance in this domain is that too many
of the samples are not along the more interesting traces that
discover the ”cheat” sequence. Therefore, it is more difficult
for it to learn a good MM that can exploit it. Surprisingly,
unlike in MAB, in the Maze domain there is no significant
difference between the two S3M versions. We hypothesize
that in Maze, there is more to learn about the general behav-
ior of transitions because there are more states, and Random
Sampler generates more diverse samples that provide more
accurate statistics on various states. Smart Sampler, on the
other hand, does not. Moreover, while the domain has more
states, the regular expression that governs the dynamics is
relatively simple, and so Random Sampler is still able to learn
the corresponding automaton.

Generally speaking, we see a high correlation between the
quality of the samples collected by the sampler and the quality
of the learned model: when the average reward of the samples
is monotonically increasing so does the averaged reward of
the policy obtained by MCTS. An open question is what is
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(a) Rotating MAB Domain Results (b) Malfunction MAB Domain Results

(c) Cheat MAB Domain Results (d) Maze Domain Results

Figure 1: Results

the exact relation: do samples that concentrate along desirable
traces yield better Mealy Machines, or is it the case that be-
cause we learn a better Mealy Machine, the traces generated
by the Smart Sampler have higher rewards (naturally).

Finally, we tried to evaluate the quality of the learned MM,
directly. The MM models we learn contain many more states
than the minimal MM. To evaluate them, we sampled 1000
histories for each domain, and for every prefix of every history
we computed the L2 Euclidean distance between the true
distribution and the one given by the MM learned after 150K
steps. This value is bounded from below by zero and from
above by

√
2, for distributions. The results are shown in the

Table below. The values shown are the averaged Euclidean
distance between the algorithm’s generated distribution and
the real one. We can see that for MAB domains the error
is approximately 0.1. Roughly speaking, this means that,
on average, the error for single transition ranges from 7%
(when all error is concentrated on two states) to approximately
5.7% (for three states). In the Maze domain, on average, the

Domain L2 Domain L2

Rotating MAB 0.10 Malfunction MAB 0.11
Cheat MAB 0.11 Maze 0.19

Table 1: Model error

maximum ranges from 13% to 3.3%. These values, while
not perfect, are quite reasonable for estimating a near-optimal
policy (as seen in Figure 1).

6 Summary
We presented the first algorithm for learning RDPs. By view-
ing the RDP specification as a Mealy Machine, we were able
to combine Mealy Machine and RL algorithms to obtain an
algorithm for learning RDPs that quickly learns a good Mealy
Machine representation in our experiments. Naturally, there is
much room for improvement, especially in methods for better
sampling and better aggregation of histories.
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