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Abstract
Adversarial invariance induction (AII) is a generic
and powerful framework for enforcing an invari-
ance to nuisance attributes into neural network rep-
resentations. However, its optimization is often un-
stable and little is known about its practical behav-
ior. This paper presents an analysis of the rea-
sons for the optimization difficulties and provides
a better optimization procedure by rethinking AII
from a divergence minimization perspective. Inter-
estingly, this perspective indicates a cause of the
optimization difficulties: it does not ensure proper
divergence minimization, which is a requirement
of the invariant representations. We then propose
a simple variant of AII, called invariance induc-
tion by discriminator matching, which takes into
account the divergence minimization interpretation
of the invariant representations. Our method con-
sistently achieves near-optimal invariance in toy
datasets with various configurations in which the
original AII is catastrophically unstable. Exten-
sive experiments on four real-world datasets also
support the superior performance of the proposed
method, leading to improved user anonymization
and domain generalization.

1 Introduction
Invariance to nuisance attributes is a desirable property of
many representation learning tasks. A domain-invariant rep-
resentation is key to building classifiers robust to domain
changes [Muandet et al., 2013]. When practitioners apply
DNN to data that includes a large amount of user informa-
tion, the desired representations should be invariant to it [Ed-
wards and Storkey, 2016; Iwasawa et al., 2017]. For legal and
ethical reasons, machine learning algorithms must make fair
decisions that are independent of sensitive variables such as
gender, age, or race [Louizos et al., 2016].

Adversarial invariance induction (AII) is a generic and
powerful framework for enforcing invariance to nuisance at-
tributes a into neural networks representations z [Xie et al.,
2017]. At the core of AII is the idea of using an external at-
tribute classifier qφ to measure the level of invariance, more
specifically to approximate the conditional entropy H(a|z).

This approximated conditional entropy is then used to update
the feature extractor fθ, which corresponds to updating fθ to
deceive the external classifier. [Xie et al., 2017] proved that,
under the assumption of optimal qφ, alternatively optimiz-
ing the attribute classifier and the feature extractor converges
to the equilibrium where the feature extractor maximizes the
true conditional entropy. As the true conditional entropy is
maximized if and only if the representations are invariant
against nuisance attributes, the procedure naturally ensures
the invariance of the representations. A similar approach was
extensively used in domain generalization, fairness-aware,
and privacy-protection contexts [Edwards and Storkey, 2016;
Motiian et al., 2017; Xie et al., 2017; Iwasawa et al., 2017].

Despite the theoretical justification, the practical behavior
of AII is still unclear and optimization of AII is often un-
stable. For example, consider the example of learning light-
ing invariant human identification tasks used by [Xie et al.,
2017]. They showed that adversary learned representations
still contain significant information on lighting conditions
(specifically, 0.53% prediction accuracy for five scenarios).
[Moyer et al., 2018] reported that AII is often overfitted; even
if the feature extractor utterly defeats an attribute classifier, a
post-hoc classifier can predict the attributes from the repre-
sentations. Section 2.2 further highlights the instability issue
using a custom designed toy dataset.

This paper approaches the instability of AII by rethink-
ing it from a divergence minimization perspective. Here,
this divergence minimization perspective refers to the ap-
proach of ensuring the invariance by aligning the representa-
tions associated with different attributes [Zemel et al., 2013;
Louizos et al., 2016]. By formally connecting the goal of
AII (maximizing the conditional entropy) and the divergence
minimization perspective, we identify a fundamental miscon-
ception of the AII formulation; i.e.,it does not ensure proper
divergence minimization, which is a requirement of the in-
variant representations. The lack of divergence minimization
considerations explains several practical instabilities of AII.
While this paper primarily focuses on the original version
of AII, our findings are applicable to several extensions of
it [Wang et al., 2018; Jaiswal et al., 2019].

We then present a modification to ensure divergence min-
imization under the adversarial invariance induction frame-
work. As with AII, the proposed method leverages the power
of the adversarial game between a feature extractor and an
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external attribute classifier, but it deceives the external clas-
sifier differently; while AII directly maximizes the approx-
imated conditional entropy, the proposed method implicitly
maximizes it by forcing the representations with different at-
tributes to be recognized similarly by the external classifier.
We refer to the proposed method as Invariance Induction by
Discriminator Matching as it induces invariance by matching
the discriminator’s output between different attributes. While
the modification is simple and easy to implement, it attains
better properties from the divergence minimization perspec-
tive and therefore gives significant performance gains. For
example, our method consistently achieves near-optimal in-
variance in toy datasets with various configurations, in which
AII catastrophically fails. Experiments on four real-world
datasets (Opp and USC for user anonymization, and MNISTR
and PACS for domain generalization) also support the supe-
rior performance of this proposal.

2 Instability Issue of Adversarial Invariance
2.1 Preliminary: Adversarial Invariance Induction
Assume we have a training dataset made of the tuples of
(x, y, a), where x ∈ X is an observation, y ∈ Y is a target of
x, a ∈ A is a nuisance attribute associated with x, and x, y, z
are drawn from the true data distribution p(x, y, a). For ex-
ample, in the context of privacy-preserving activity recogni-
tion using data from wearables, the attribute a corresponds to
some sensitive user information, and y is the activity label.
In the context of domain generalization, learning represen-
tations invariant to domain shifts is a popular approach (the
domain label is the attribute in that case).

Assume fθ is a feature extractor parameterized by deep
neural networks θ. Adversarial invariance induction (AII) op-
timizes the following min–max game:

min
θ,ψ

max
φ

Ep(x,y,a)[− log qψ(y|fθ(x)) + λ log qφ(a|fθ(x))],
(1)

where qψ(y|.) and qφ(a|.) is a conditional probability distri-
bution approximated by deep neural networks parameterized
by ψ (for y) and φ (for a) respectively. The categorical at-
tribute classifier qφ(a|.) is often called a discriminator or ad-
versary in this context. λ is the weighting parameter.

The above min–max game is closely related to the maxi-
mization of the conditional entropy of attributes given repre-
sentations, H(a|z). This is a good property of AII because
H(a|z) is a natural measurements of the invariance, as it is
maximized if and only if z is invariant to a. Formally,

(2)H(a|z) = Ep(x,a) [− log p(a|fθ(x))]
≤ Ep(x,a) [− log qφ(a|fθ(x))] = Hp,q(a|z),

where Hp,q(a|z) is the cross entropy between p and q. The
bound is tight when p(a|z) = qφ(a|z). Since Hp,q(a|z) is
equal to the second term of eq. 1 excluding the sign, mini-
mizing eq. 1 with respect to θ is equivalent to maximizing
the variational upper bound of the conditional entropy. By
alternately (or jointly with the gradient reversal layer [Gan et
al., 2016]) optimizing θ and φ, this framework ensures the
removal of nuisance information from the representations. In

Figure 1: Conditional entropy estimates for a post-hoc classifier (red
line) and the classifier used during training (blue dashed line). The
gap suggests that AII uses inaccurate estimates during training. The
learned representations are far from optimal invariance.

the remainder of this paper, we assume the use of alternating
optimization to solve the adversarial game. At each iteration,
AII first updates the attribute classifier κ times by maximizing
eq. 1 while fixing fθ. AII then updates the feature extractor
and label classifier by minimizing the eq.1 while fixing qφ.

The relationship (eq. 2) is also used to empirically evaluate
the level of invariance [Xie et al., 2017]; i.e., Hp,qeval is used
as an estimate of H(a|z) where qeval is a post-hoc classifier
that is trained to predict a over the learned representations as
correctly as possible. We uses same procedure to empirically
evaluate the conditional entropy.

2.2 Instability of AII: Case Study

Before the main analysis, here we highlight the unstable be-
havior of AII using a toy dataset. The dataset comprises sam-
ples from K pieces of Gaussian distributions with different
means ([sin( iKπ), cos(

i
Kπ)], and i ∈ 1, 2, · · ·K) and the

same variance, assuming that each distribution corresponds to
different attributes. We apply AII on this dataset; qφ, which
predicts the distribution ID from the representations, is first
updated 100 times with a batch size of 128, and qφ and fθ
are alternately updated using stochastic gradient descent with
a learning rate of 0.1. Figure 1 compares three values: (1)
Hp,qeval(a|z) using a post-hoc classifier qeval, (2) Hp,q(a|z)
using qφ which is used during the training, and (3) the theoret-
ical maximum value of the conditional entropy (green line).
The post-hoc classifier qeval is parameterized by a neural net-
work with the same architecture as that of qφ. For reference,
the learned representations after several iterations (1, 35, 40,
and 200 steps respectively) are also visualized. For simplicity,
here we only show the results of K = 3. We later compare
AII and our proposed method on various configurations.

The results indicate a significant mismatch between
Hp,qeval(a|z) (red line) andHp,q(a|z) (dashed blue line). For
example, around 40 iterations, the estimates using qφ become
significantly large but the estimates with a post-hoc classi-
fier remain constant or even decrease. As Hp,qeval(a|z) is
a more reliable estimate of the conditional entropy, the mis-
match means that AII uses inaccurate estimates to update fθ.
Moreover, the estimates of conditional entropy using qφ are
often larger than the theoretical maximum value of H(a|z).
As such, the optimization of AII is unstable and does not
maximize the conditional entropy H(a|z) as expected.
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(a) qφ(a|z) (b) AII (c) Proposal

Figure 2: Visualizing the gradient vector fields (the arrow in b and
c) of AII and proposed method. (a) Both methods utilize qφ(a|z),
which represented as counterplot in the figure. (b) AII has an incen-
tive to move the distribution away from decision boundary. (c) IIDM
prevent the problem by considering both the decision boundary and
information from pθ(z|aj) of different attributes.

2.3 Divergence Minimization Perspective
This paper examines the above instability issue from a di-
vergence minimization perspective. Specifically, we consider
the pairwise divergence among the conditional distribution of
representations given different attributes. In the toy dataset
used in Sec. 2.2, it corresponds to the distributional differ-
ence among red, green, and blue data points. We first for-
mally link the divergence minimization perspective and the
conditional entropy maximization problem, which is the goal
of the formulation of AII. Assume D is the divergence over a
space of probability distributions.
Proposition 1. We assume that a is a uniform categorical
random variable, and z is a random variable of the repre-
sentations. If fθ gives a representation that maximizes the
conditional entropy H(a|z), then D(pθ(z|ai)||pθ(z|aj)) = 0
for all ai, aj and vice versa. Here, the subscription denotes
that the distribution depends on the feature extractor.

Proof. The proposition can be derived by the following prop-
erty of the conditional entropy: H(a|z) is maximized if and
only if p(z|ai) = p(z|aj) for all ai 6= aj ∈ A and z ∈ Z .
Using the Lagrange multiplier, the derivative of

L = −
∑
a∈A

p(a, z) log p(a|z) + λ(1−
∑
a∈A

p(a|z))

is equal to zero for the maximum entropy H(a|z). Solving
both equations, we can say p(a1|z) = p(a2|z) = · · · =
p(aK |z) = 1

K for all z ∈ Z when the conditional entropy
is maximized, and based on the definition, the conditional en-
tropy becomes − log 1

K .
From Bayes’ law and the assumption of uniformity of p(a),

p(z|ai) = p(z|aj) holds ∀ai 6= aj ∈ A and z ∈ Z .

This proposition means that maximizing conditional en-
tropy is asymptotically equal to minimizing pairwise diver-
gence. Unfortunately, the connection challenges AII, because
it only pushes the distribution away from the decision bound-
ary, without considering the divergence minimization require-
ment. Figure 2-(a, b) visualizes how AII updates the feature
extractor using the toy dataset used in the previous section.
The arrows in the figure represent the direction of the gradi-
ent when updating the fθ using the data from pθ(z|a = red)

(updating the distribution pθ(z|a = red)). The gradient vec-
tor suggests that AII has an incentive to move the distribu-
tion far away, regardless of whether it aligns marginal dis-
tributions of different attributes. In other words, AII keeps
the pθ(z|a = red) away from the non-desired point where
a discriminator correctly predicts the attribute, but does not
ensure that it approaches some target distribution, such as
pθ(z|a = blue) or pθ(z|a = green).

The lack of divergence minimization explains the unde-
sired behavior of AII described in the previous section. For
example, Hp,q(a|z) reaches values larger than the theoretical
maximum of the conditional entropy when AII moves the dis-
tribution without minimizing the divergence. Also, a signifi-
cant mismatch between the approximated entropy Hp,q(a|z)
and Hp,qeval(a|z) can happen when the update of the feature
extractor deceives the current discriminator without minimiz-
ing the divergence, or even increasing it.

3 Proposed Method
Based on this analysis, we hypothesize the lack of the diver-
gence minimization perspective is a major cause of unstable
behavior. Here, we describe a way to effectively incorporate
the divergence minimization requirement into the adversarial
invariance framework. Similar to the original AII, our method
employs adversarial training between a feature extractor fθ
and a discriminator qφ, but we deceive the discriminator dif-
ferently. Specifically, we update fθ by minimizing the expec-
tation of the following discriminator matching loss:

Ezj∼pθ(z|aj)
∑

i:ai 6=aj

[
DKL(q

i
θ,φ(a)||qφ(a|zj))

]
, (3)

where qiθ,φ(a) =
∫
pθ(z|ai)qφ(a|z)dz, which represents the

average output of the discriminator given representations as-
sociated with attribute ai. DKL is the KL-divergence defined
over the output of the discriminator:

DKL(q
i
θ,φ(a)||qφ(a|zj)) =

∑
a∈A

qiθ,φ(a) log
qiθ,φ(a)

qφ(a|zj)
. (4)

We refer to this method as invariance minimization by dis-
criminator matching (IIDM).

While the modification is simple, the objective has better
interpretation from the perspective of divergence minimiza-
tion. In contrast to AII, which updates the feature extractor
by considering only the decision boundary, the discrimina-
tor matching loss also considers the location of the represen-
tations of different attributes. Figure 2 compares the gradi-
ent vector fields between AII and IIDM. The gradient vector
fields indicate that our proposed method has no incentive to
move the distribution far away from the decision boundary,
as it violates the divergence minimization constraint. In other
words, IIDM prevents the feature extractor to move the dis-
tribution regardless of whether it aligns marginal distributions
of different attributes or not.

More formally, the objective of IIDM is related to the diver-
gence DKL(pθ(z|ai)||pθ(z|aj)) through the divergence be-
tween DKL(q

i
θ,φ(a)||q

j
θ,φ(a)). Firstly, we can derive

DKL(q
i
θ,φ(a)||q

j
θ,φ(a)) ≤ Ezj∼pjθ(z)

[
DKL(q

i
φ(a)||qφ(a|zj))

]
,
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Figure 3: Overview of the proposed method (IIDM). IIDM force the
representations with different attributes to be recognized similarly
by the external classifier. Moving centroids techniques is used to
reduce computational costs.

using the Jensen’s inequality. Also, based on the data process-
ing inequality of the f-divergence [Gerchinovitz et al., 2017;
Barber et al., 2018], the following inequality holds:

DKL(pθ(z|ai)||pθ(z|aj)) ≥ DKL(q
i
θ,φ(a)||q

j
θ,φ(a)).

The equality holds if the attribute classifier is invertible [Bar-
ber et al., 2018]. In the special case, minimizing the discrim-
inator matching loss ensures the divergence minimization as
it is the upper bound of DKL(pθ(z|ai)||pθ(z|ai)). Note that,
the invertibility is similar to the optimality of the attribute
classifier, which is often assumed in the analysis of the ad-
versarial training. Ensuring inevitability is difficult in general
and an open research areas in neural networks community
[Behrmann et al., 2018]. Instead, we empirically validate that
the proposed method reliably learns invariant representations
even without such a regularization.

One implementation issue is how to calculate qiφ(a) in Eq.
3. The straightforward approach is through Monte Carlo ap-
proximation: qiφ(a) = Epθ(z|ai)[qφ(a|z)]. Although it is an
unbiased estimation, the variance is large if the number of
samples is small. The average can be calculated from all
samples (or a sufficiently large number of samples from each
K attributes) at every iteration. However, it requires addi-
tional computation other than standard mini-batch estimation.
Moreover, the computation becomes intractable (O(K2)) as
the number of attribute values grows.

We address these issues by a moving centroid mechanism.
Instead of estimating qiθ,φ(a) every time with sufficiently
large samples, IIDM uses the moving average of qiθ,φ(a):

(5)Qit(a) = γQit−1(a) + (1− γ)qit(a),

where Qjt−1 is a previous centroid, qit(a) is the new estima-
tion of the centroid based on a single batch, and γ is the de-
cay parameter for controlling the speed at which the centroids
change. We initialized Qj0 by using all training data points.

Then we can use the standard mini-batch method to calcu-
late the discriminator matching loss. As with AII, IIDM in-
corporates alternating optimization. Specifically, IIDM firstly

updates the attribute classifier qφ by eq. 1, and updates the
feature extractor and the classifier by

(6)

min
θ,ψ

Ep(x,a,y)

− log qψ(y|fθ(x))

+ λ

 ∑
i:ai 6=a

DKL(Q
i(a′)||qφ(a′|fθ(x)))

 ,
where λ is a weighting parameter. Figure 3 shows a pictorial
illustration of the proposed method.

4 Related Work
As briefly mentioned in the introduction of the paper, the for-
mulation of AII (eq. 1) has theoretical groundings as a way
to maximize the conditional entropy [Xie et al., 2017]. While
our analysis reveals the unstable behavior of AII, we do not
intend to challenge the previous theoretical analysis. Build-
ing upon the theoretical grounding under ideal conditions, we
examine the practical problem of AII by rethinking it from a
divergence minimization perspective of invariance induction.
We admit that the perspective itself is not brand new in these
fields [Zemel et al., 2013; Louizos et al., 2016]; nevertheless,
none of the studies has been linked AII with the divergence
minimization perspective.

Similar to our work, several studies have proposed exten-
sions of AII. For example, [Jaiswal et al., 2019] proposes an
adversarial forgetting mechanism to ensure the invariance, by
introducing another network to produce forgetting masks over
the representations. [Wang et al., 2018] combines the adver-
sarial invariance objective and a variational autoencoder to
further enforce the invariance. As we have not introduced
any architectural modifications, our method could be incorpo-
rated to the other extensions. Besides, our findings regarding
the original formulation are applicable to several extensions
that have the same objective.

As a extention of AII, several studies focus on the semantic
alignment problem, i.e., how to align only the pair of sam-
ples that have the same semantics (the target label) [Li et al.,
2018b; Li et al., 2018c]. Our method can be extended to con-
sider semantic alignment without additional computational
costs; semantic alignment can be carried out by computing
the centroids for each (attribute, label) tuple and aligning the
qφ(a|z) of {x, y, a} between only centroids of the same label
y′ = y but different attributes a′ 6= a. We test this variant in
experiments below and denote it as IIDM+.

It is noteworthy that the above formulation resembles the
original formulation of GAN [Goodfellow et al., 2014] and
domain adversarial networks (DAN) [Ajakan et al., 2014;
Gan et al., 2016]. However, it is never used practically as
it is known to be unstable and hard to optimize. This fact
motivates us to replace the min–max game of the adversar-
ial invariance induction problem. Although no prior work in
the invariance induction community has been explicitly con-
sidered yet, one can transfer the non-saturating (NS) heuris-
tic used in the GAN via label flipping. The NS-objective is
similar to our method in the sense that it uses an asymmetric
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objective. However, NS has same issue with AII as it only
considers the current decision boundary and does not ensure
the divergence minimization. We refer to this version as the
non-saturating version and denote it by NS.

5 Experiments
5.1 Experimental Settings
Datasets
We provide experimental results on the synthesized dataset
and two real world tasks (four datasets) relevant to invariant
feature learning: (1) user anonymization (Opportunity and
USC datasets), and (2) domain generalization (MNISTR and
PACS datasets). All experiments were implemented in Py-
Torch and were run on either a GTX 1080 or Tesla V100.

For user anonymization tasks, Opportunity and USC
datasets were used. This task is to learn anonymized rep-
resentations (z that do not contain user-identifiable informa-
tion) while maintaining classification performance. The Opp
dataset [Sagha et al., 2011] consists of sensory data regard-
ing human activity in a breakfast scenario. Each record con-
sists of 113 real-value sensory readings. We considered the
task of recognizing 18 classes1. Following previous studies
[Yang et al., 2015; Iwasawa et al., 2017], we use a sliding
window procedure with 30 frames and a 50% overlap. The
number of samples was 57,790 in total. The feature extrac-
tor is parameterized by a convolutional neural network (CNN)
with three convolution-ReLU-pooling repetitions followed by
one fully connected layer and classification by logistic regres-
sion. The discriminator is a simple feedforward network with
800–400 hidden units. The USC-HAD dataset is another ac-
tivity recognition dataset that consists of 14 subjects [Zhang
and Sawchuk, 2012]. The data include 12 activity classes2

that correspond to people’s most essential and daily activities.
MotionNode, which is a 6 DOF inertial measurement unit, is
used to record the output from accelerometers that record six
real sensory values. The same sliding window procedure pro-
duced 172,169 samples.

The MNISTR and PACS are two typical datasets of do-
main generalization tasks. The MNISTR dataset, derived
from MNIST, was introduced by [Ghifary et al., 2015]. Its
labels comprise the ten digits; domains are created by ro-
tating the images in multiples of 15 degrees: 0, 15, 30,
45, 60, and 75. The domains are labeled with the angle
by which they are rotated, e.g., M15 and M30. Each im-
age is cropped to 16 × 16 pixel in accordance with a pre-
vious study [Ghifary et al., 2015]3. Similar to [Ghifary et al.,
2015], we used two convolution layers with 32 and 48 filters
of 5 × 5 kernels, followed by a max-pooling layer and two
fully connected layers with 100 hidden units. A discrimina-
tor with 100 hidden units is connected to the output of the

1open door 1, open door 2, close door 1, close door 2, open
fridge, close fridge, open dishwasher, close dishwasher, open drawer
1, close drawer 1, open drawer 2, close drawer 2, open drawer 3,
close drawer 3, clean table, drink from cup, toggle switch, and null

2walking forward, walking left, walking right, walking upstairs,
walking downstairs, running forward, jumping, sitting, standing,
sleeping, elevator up, and elevator down

3We used the dataset distributed at https://github.com/ghif/mtae.

first fully connected layer. The PACS dataset is a relatively
new benchmark dataset designed for cross-domain recogni-
tion [Li et al., 2017]. It comprises 9991 images in total across
seven categories (dog, elephant, giraffe, guitar, house, horse,
and person) and four domains of different stylistic depictions
(photo, painting, cartoon, and sketch). The diverse depiction
styles provide a significant domain gap. We use the Ima-
geNet pre-trained AlexNet CNN [Krizhevsky et al., 2012] as
a base network, following previous studies[Li et al., 2017;
Li et al., 2018a]. A discriminator with 1024 hidden units is
connected to the output of the last fully connected layer.

Baselines
CNN trained on the aggregation of data from all source do-
mains. Although there are special treatments for domain gen-
eralization, [Li et al., 2017] reports that CNN outperforms
many domain generalization methods on the PACS dataset.
AII [Xie et al., 2017] is the main baseline. AII+GP uses a
variant of AII with an additional gradient penalty regulariza-
tion used in GAN [Mescheder et al., 2018]. RevGrad is a
slightly modified version of AII, which uses the gradient re-
versal layer [Ganin et al., 2016] to train all the networks (fea-
ture extractor, classifier, and discriminator) at the same time.
NS is the non-saturating version of AII described in section
4 of this paper. CrossGrad [Shankar et al., 2018], regarded
as a state-of-the-art method in domain generalization tasks.
Note that it does not intend to learn invariant representation,
so we use CrossGrad only for comparing domain generaliza-
tion performance. IIDM is our proposal. We used the gra-
dient penalty as well. We also tested the semantic alignment
version and denoted it as IIDM+.

Optimization
For all datasets and methods, we used RMSprop for opti-
mization. For all datasets except PACS, we set the learn-
ing rate to 0.001 and the batch size to 128. For PACS,
we set the learning rate to 5e − 5 and the batch size to
64. The number of iterations was 10k, 5k, 20k, and 30k
for MNISTR, PACS, Opp, and USC, respectively. For a
fair comparison, hyperparameters were tuned on a valida-
tion set for each baseline. For the adversarial-training-
based method, we optimized weighting parameter λ from
{0.001, 0.01, 0.1, 1.0}, except for MNISTR, for which it was
optimized from {0.01, 0.1, 1.0, 10.0}. The value of α for
CrossGrad was selected from {0.1, 0.25, 0.5, 0.75, 0.9}. Un-
less mentioned otherwise, we set the decay rate γ to 0.7.

Evaluation
In all the experiments, we selected the data of one or several
domains for the test set and used the data of a disjoint domain
as the training/validation data. We split the data of the dis-
joint domain into groupings of 80% and 20%. We denote the
test domain by a suffix (e.g., MNISTR-M0 denotes that the
model is trained with the data from M15, M30, M45, M60,
and M75 and evaluated on M0). We conducted 20 validations
during training at equal intervals. In each validation, we mea-
sured the label classification accuracy (Y-acc) and the level of
invariance. For measuring the level of invariance, we trained
a post-hoc classifier qeval with 800 hidden units 1k iterations
(by RMSprop optimizer, with a learning rate of 0.001 and a
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(a) AII (b) NS (c) Proposal

Figure 4: Quantitative comparison of AII, NS and IIDM (proposed method) on the toy datasets with various configurations. IIDM consistently
achieves near-optimal invariance.

batch size of 128) with the data that is used to train the feature
extractor.

5.2 Results
Simulation
Figure 4 compares the performance of (a) AII (b) NS, and
(c) IIDM on different configurations of {K,κ}, where color
denotes different K, marker denotes different κ. The dashed
line denotes optimal values. The experimental settings are the
same as in Section 2.2. The results clearly support the bene-
fits of the proposed method. (1) In all configurations, IIDM
reaches the theoretical maximum values within the first few
iterations. (2) In all configurations, AII and NS are unstable
as shown in the vibration of the estimated conditional entropy.
When κ = 1, AII and NS are far from the maximum condi-
tional entropy. AII and NS with κ = 8 give much better per-
formance, but its behabior is still unstable and convergence is
significantly slower than the IIDM.

User Anonymization
Table 1 represents the lowest user-classification accuracy (the
lower the better) with specific performance degradation com-
pared to CNN on classification accuracy. For example, the
columns with 0.01 represent the lowest user-classification ac-
curacy with less than 0.01 point performance degradation.
The best performance is underlined and highlighted in bold,
and the second-best performance is highlighted in bold. Note
that the value ’None’ represents the method always reduc-
ing the label classification performance significantly. As a
results, IIDM performs best on seven out of ten configura-
tions, suggesting the clear benefit of our proposal on the user
anonymization task.

Domain Generalization
Table 2 summarizes the classification performance on two
different datasets: MNISTR, and PACS. The top row of each
table represents the test domain. We report the mean accu-
racy as well as the standard error of five seeds for MNISTR
and three seeds for PACS. The best performance is under-
lined and highlighted in bold, and the second-best perfor-
mance is only highlighted in bold. We can make the fol-
lowing observations: (1) IIDM and IIDM+ show the best or
comparable performance on all conditions except the sketch
domain. Although the semantic alignment extension does not

dataset Opp-S1 Opp-S2 Opp-S3 Opp-S4 USC
threshold 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03

CNN 0.939 0.939 0.973 0.973 0.984 0.967 0.983 0.983 0.683 0.683
AII 0.631 0.517 0.590 0.590 0.694 0.659 0.589 0.586 0.512 0.179

AII+GP 0.619 0.619 0.521 0.521 0.471 0.471 0.673 0.510 0.580 0.569
NS 0.635 0.452 0.614 0.523 0.484 0.484 0.499 0.482 None None

IIDM 0.462 0.417 0.415 0.415 0.409 0.409 0.486 0.486 0.499 0.499
IIDM+ 0.502 0.433 0.474 0.474 0.495 0.495 0.631 0.461 0.478 0.478

Table 1: Performance comparison of user anonymization tasks. The
value is the lowest user-classification accuracy with specific perfor-
mance degradation (0.01, 0.03 points) from CNN.

help with a simpler task (MNISTR), it improves the perfor-
mance on the PACS dataset, giving approximately 1.0 point
performance gain. (2) RevGrad and AII often fail to improve
performance even when compared with a standard CNN. The
score of AII+GP suggests that the gradient penalty helps to
improve performance, but the improvements are lower than
our proposal. (3) The Wilcoxon rank-sum test shows that
IIDM is statistically better than CNN, RevGrad, AII, AII+GP,
and CrossGrad with p < 0.01.

Figure 5 compares AII and IIDM on different (a) weigh-
ing parameter γ, (b) the number of the discriminator up-
dates κ, and (c) the network architecture of the discrimina-
tor. The dataset used is MNISTR with M0 as a test do-
main. In each figure, color represents a different method (red:
AII, blue: IIDM) and marker denotes different configurations.
The value represents the attribute classification accuracy (the
lower the better invariant) of a post-hoc classifier qeval(a|z).
For λ we used 1.0 by default. For κ and the architecture, we
used the default settings described in Section 5.1. The re-
sults show that our proposal consistently learns better invari-
ant representations regardless of the choice of hyperparam-
eters. These results suggest that our proposal is better than
searching for such hyperparameters. Note that, λ = 10.0 for
AII seems to attain better invariance, but it was degenerated to
the random representations and gives a random performance
on the classification of y.

6 Conclusion
This paper examines the optimization difficulty of AII (high-
lighted in Figure 1) and proposes a new method to attain in-
variance to nuisance attributes, by rethinking the AII’s objec-
tive from a divergence minimization perspective. By formally
linking the goal of AII with the pairwise divergence mini-
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M0 M15 M30 M45 M60 M75 Avg

CNN 84.0± 1.7 99.1± 0.5 97.6± 0.9 91.9± 1.8 97.5± 0.5 87.7± 1.7 92.97
RevGrad 84.4± 1.6 98.8± 0.2 97.9± 0.8 92.1± 0.8 95.7± 2.2 85.9± 4.7 92.45

AII 83.8± 2.1 98.5± 0.4 97.4± 0.9 91.0± 1.4 97.0± 0.4 87.4± 2.4 92.52
AII+GP 86.2± 1.4 98.5± 0.2 97.9± 0.5 91.2± 0.7 97.0± 0.9 87.9± 2.0 93.11

CrossGrad 85.3± 0.9 98.9± 0.5 97.6± 0.8 90.9± 1.0 98.2± 0.4 87.5± 2.0 93.09
IIDM 88.0± 1.6 98.2± 1.0 98.1± 0.7 94.3± 0.8 98.0± 0.7 88.9± 1.3 94.25

IIDM+ 88.3± 0.9 98.6± 0.5 98.1± 0.6 93.0± 1.8 98.1± 0.9 86.9± 2.5 93.85

(a) MNISTR

photo art cartoon sketch Avg

CNN 80.8± 1.3 58.1± 2.6 62.7± 2.6 60.6± 4.5 65.57
RevGrad 82.9± 1.3 57.2± 1.9 61.6± 0.6 54.6± 4.6 64.06

AII 81.1± 0.7 59.1± 1.7 60.7± 3.1 62.1± 3.0 65.75
AII+GP 81.8± 0.4 60.7± 0.2 64.0± 2.1 60.6± 3.3 66.76

CrossGrad 81.4± 1.8 58.1± 4.7 60.5± 3.1 60.5± 1.3 65.15
IIDM 82.9± 1.2 61.7± 1.5 63.4± 0.7 59.5± 0.5 66.89

IIDM+ 84.8± 0.6 62.3± 1.6 64.8± 1.5 60.2± 2.5 68.04

(b) PACS

Table 2: Classification accuracies on unseen domains.

(a) λ (b) κ (c) architecture of φ

Figure 5: Comparison of AII and IIDM with different configurations on MNISTR dataset (M0 as test domain). The number in parenthesis
represents the corresponding configuration.

mization of conditional distribution of representations given
attributes (Proposition 1), we identify a cause of its optimiza-
tion difficulty; it does not ensure proper divergence minimiza-
tion, which is a requirement of the invariant representations.
We propose a simple way to effectively incorporate this re-
quirement into the adversarial invariance framework, which
leverages the power of the adversarial game but solves it more
stably. Namely, the proposed method minimizes KL diver-
gence defined over a space of attribute classifier’s output (eq.
3), which is closely related to the divergence over the repre-
sentation space, which we want to minimize. While the mod-
ification is easy to implement, it gives a significant perfor-
mance gain; Our proposal consistently achieves near-optimal
invariance in a toy dataset (Figure 4), where AII results in
significantly unstable behavior. Our method is also good at
user anonymization tasks (Table 1), and domain generaliza-
tion tasks (Table 2). All these results suggest that the pro-
posed method works well, and the divergence minimization
interpretation introduced in this paper is significant.
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