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Abstract

Learning interpretable representations in an unsu-
pervised setting is an important yet a challenging
task. Existing unsupervised interpretable meth-
ods focus on extracting independent salient features
from data. However they miss out the fact that
the entanglement of salient features may also be
informative. Acknowledging these entanglements
can improve the interpretability, resulting in ex-
traction of higher quality and a wider variety of
salient features. In this paper, we propose a new
method to enable Generative Adversarial Networks
(GANG) to discover salient features that may be en-
tangled in an informative manner, instead of ex-
tracting only disentangled features. Specifically,
we propose a regularizer to punish the disagree-
ment between the extracted feature interactions and
a given dependency structure while training. We
model these interactions using a Bayesian network,
estimate the maximum likelihood parameters and
calculate a negative likelihood score to measure
the disagreement. Upon qualitatively and quanti-
tatively evaluating the proposed method using both
synthetic and real-world datasets, we show that our
proposed regularizer guides GANS to learn repre-
sentations with disentanglement scores competing
with the state-of-the-art, while extracting a wider
variety of salient features.

1 Introduction

Deep generative models can learn to represent high-
dimensional and complex distributions by leveraging large
amounts of unannotated samples. However, these models
typically sacrifice the interpretability of the representations
learned, in favor of accuracy [Ross and Doshi-Velez, 2018].
As the application areas of generative models grow into sensi-
tive domains such as healthcare and security, the demand for
interpretable representations increases. Additionally, trans-
fer learning, zero-shot learning and reinforcement learning
methods also benefit from interpretable representations that
enhance the utility of data [Kim and Mnih, 2018]. To learn
interpretable representations in an unsupervised manner, a
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Figure 1: An example GAN with its input and latent code interac-
tions modeled as a Bayesian network

common practice is encouraging disentanglement by learn-
ing a set of independent factors of variation, corresponding
to the salient features of training data [Gilpin er al., 2018].
However, solely focusing on learning these independent fac-
tors oversees the fact that entanglement of some features may
as well be informative. For instance, the causal relation-
ships among the features may provide more intuitive infor-
mation than only observing their independent marginals. In-
teractions of some features may implicitly form new higher-
order features that improve the interpretability. Ideally, to
achieve complete interpretability, a learner shall be able to
have control over both disentangled and informatively entan-
gled salient features. However, it is challenging to simultane-
ously satisfy these two constraints as most real-world datasets
do not include supervision pointing out the features that are
entangled but salient, or disentangled but not salient.

Being two influential works with distinct approaches for
generative deep learning, Variational Autoencoders and Gen-
erative Adversarial Networks have been extensively used to
design generative models with the aim of learning inter-
pretable representations. However, they focus only on disen-
tangling, thus have no control over the characteristics of the
latent features to be extracted, other than constraining them to
be independent from each other. As a result, these methods
inevitably fail to discover the salient features resulting from
other features’ interactions. In addition, they do not have con-
trol over the granularity of the extracted features, which may
result in extracting independent but non-salient compositions
of salient features.



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

In this paper, we aim to learn interpretable representa-
tions of both disentangled and entangled salient features with
GANSs. A regularizer is proposed to guide the learner to dis-
cover a set of features that interact according to a given de-
pendency structure. Specifically, the relationships between
the observed and latent variables are modeled by using a
Bayesian network, as shown in Figure 1. Then, the difference
between the structure of the Bayesian network and set of in-
teractions among the observed and latent variables is used as
a regularizer during training.

The contributions of this paper are summarized as follows:

e We propose a regularizer to impose structural constraints
on the latent space variable interactions, which works
effectively to explore the salient features of data.

e Our solution is shown to work on various synthetic and
real-world datasets, achieving competitive disentangle-
ment and better generalization than the state-of-the-art.

e We validate that our regularizer can discover a wider va-
riety of salient features than the state-of-the-art methods,
by considering both disentangled and informatively en-
tangled factors.

2 Related Work

In real-world applications, supervision requires labeling,
which is labor-intensive and time-consuming. Unsupervised
learning methods excel at such applications by exploring hid-
den structures from unlabeled data [Ranzato ef al., 2007;
Perry et al., 2010]. This motivates unsupervised disentan-
gled representation learning, in which the model aims to dis-
cover independent factors of variations [Schmidhuber, 1992;
Tang et al., 2013].

VAE:s try to explicitly construct density functions from data
by making variational approximations [Kingma and Welling,
2013]. Specifically, to make the explicit modeling tractable,
VAEs define a lower bound for the log-likelihood and max-
imize this lower bound instead. [Higgins er al., 2017] pro-
posed B-VAE that uses an adjustable hyperparameter addi-
tional to the VAE objective. This addition helps adjusting
the strength of regularization based on the KL-divergence be-
tween the observation and the variational posterior. On the
other hand, [Kim and Mnih, 2018] encouraged the latent code
distribution to be factorial. Specifically, the variational ob-
jective is regularized by the negative cross-entropy loss of
a discriminator that tries to classify dimensionally permuted
batches. [Dupont, 2018] used Gumbel-Softmax sampling and
jointly modeled continuous and discrete factors for disentan-
glement. [Esmaeili et al., 2018] proposed a two-level hierar-
chical objective for VAEs, by modeling the dependencies be-
tween groups of latent variables. [Adel et al., 2018] proposed
two interpretable learning frameworks. First, they proposed
a generalized version of VAEs to be used as an interpreter
for already trained models. Then, they defined a model that
is optimized by simultaneously maximizing informativeness
and the compression objectives.

GANSs belong to the family of implicit density among the
deep generative models that can learn via maximum likeli-
hood [Goodfellow, 2016]. GANSs set up a game between two
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players: generator and discriminator. While the generator
learns producing samples with high reconstruction fidelity,
discriminator learns to separate the generator output from the
training data. Compared to VAEs, GANs do not need varia-
tional bounds and are proven to be asymptotically consistent
[Martin and Lon, 2017]. On the other hand, GAN training re-
quires finding the Nash equilibrium of the game between the
generator and the discriminator, which is generally a more
difficult task than loss minimization with VAEs. [Radford et
al., 2015] proposed DCGAN to bridge the gap between Con-
volutional Neural Networks (CNNs) and unsupervised learn-
ing. DCGAN is able to learn image representations that sup-
port basic linear algebra. [Chen et al., 2016] proposed Info-
GAN that regularizes GAN’s adversarial loss function with
the difference between the observation and the latent code.
The mutual information between the subsets of observed and
latent code variables has been used to regularize the objective
function. Then, a variational approximation to this regular-
izer has been provided to facilitate implementation. It has
been shown that InfoGAN’s regularizer ties a subset of ob-
served values to the salient visual characteristics of the gen-
erator output in an unsupervised way. [Kurutach et al., 2018]
proposed Causal InfoGAN to combine interpretable repre-
sentation learning with planning. Their proposed framework
learns a generative model of sequential observations, where
the generative process is induced by a transition within a low-
dimensional planning model.

The existing works focus on learning representations that
contain independent factors of variation to achieve better dis-
entanglement. These works share the implicit assumption that
all independent factors of variation correspond to salient fea-
tures of data. This assumption overlooks two major points.
First, in real-life data, some salient features may be products
of the interactions of others. Ignoring these interactions may
result in failure to discover additional salient features, while
missing the chance of gaining extra insight into data. Second,
deep models can learn complex mappings to generate inde-
pendent factors that are not necessarily interpretable. There-
fore, the independent factors of variation learned by a deep
model may not always contribute to the interpretability of the
representation. These two points suggest that to achieve bet-
ter interpretability, one needs to consider both disentangled
and informatively entangled salient features.

3 Background: InfoGAN

Let G represent the generator component of a GAN map-
ping a noise vector z € R% to an implicit approximation
of the sample probability distribution. The noise vector z is
typically drawn from a factored distribution such as a Gaus-
sian with identity covariance. We refer to the training data
as real and the instances generated by G as fake. Let D be
the discriminator component of GAN that learns to classify
the input instances as real or fake. The state-of-the-art Gen-
erative Adversarial Network for disentangled representation
learning, InfoGAN [Chen et al., 2016], achieves disentan-
glement by regularizing the GAN’s adversarial loss function
with the mutual information between a set of observed vari-
ables and the generator output. It uses a generator to receive a
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two-part observation vector [c € R%,z € R%], where c de-
notes the vector of disentangled variables, and then redefines
the minimax game played by the D and G components as
ming maxp Laq, (G, D) — A (c; G(c,z)). Here, L 44, de-
notes the adversarial loss function proposed in [Goodfellow
et al., 2014] and I(c; G(c,z)) is the mutual information be-
tween the disentangled variables and the fake instance gener-
ated by G. Mutual information maximization encourages the
network to tie the disentangled variables to the generated out-
put, forcing the generator to assign a meaning to these vari-
ables. Since the mutual information component is intractable
to calculate, InfoGAN approximates it by maximizing a vari-
ational lower bound instead.

Even though InfoGAN is empirically shown to be able to
extract and manipulate meaningful visual features unsuper-
vised, the regularizer I(c; G(c, z)) does not guarantee the in-
dependence among the discovered salient features. On the
other hand in real life, these features may be interacting with
each other, resulting in a side effect of one disentangled vari-
able being able to interfere with the value of another vari-
able. The dependency between the salient features also makes
the unsupervised exploration of new features challenging, be-
cause the representation learned by the model may arbitrar-
ily distribute the effect of an unexplored feature onto the ex-
plored ones.

4 Methodology

We study the problem of learning interpretable representa-
tions with GANSs, with the joint consideration of disentangled
and informatively entangled variables. We propose to model
the relationship between the observation and the salient fea-
tures of data using a dependency structure, and impose this
structure as a constraint for GAN training.

4.1 Modeling Variable Relationships

Motivation. To impose a structured relationship between
the observed variables and the salient features, we make use
of the feature extraction ability of the discriminator. Note that
in GAN training, the generator updates itself based on the
discriminator’s output. On the other hand, the discriminator
learns to extract the useful features from the training data to
be able to differentiate a real instance from a fake one. There-
fore, the discriminator is capable of receiving an input, real or
fake, and extracting its useful features in a condensed form.
If we impose a structured relationship between the observed
variables and the latent code extracted by the discriminator,
the observed variables will be tied to the salient features of
the training data. Figure 1 illustrates an example of the pro-
posed model, where the green nodes represent the observed
variables, the red nodes represent the latent code of the dis-
criminator, and the graph consisting of these nodes represents
the dependency structure. In the figure, the network is being
guided to extract three salient features among which the two
of them cause the third, represented by the edges between the
red nodes. On the other hand, the edges connecting the green
nodes to red ones represent the causal relationships between
the observed and latent variables, letting observed variables
control the salient features of generator outputs. Since we
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still want the GAN to generate outputs in a stochastic man-
ner, the structured relationship only includes subsets of the
green and red nodes.

The Bayesian Network Model. We represent the joint dis-
tribution of a set of observed variables and the code gener-
ated by the discriminator as a Bayesian network [Nielsen and
Jensen, 2009] for the following reasons. First, a Bayesian
network structure is capable of representing variable relation-
ships in a finer grain compared to most of the independence
tests [Shen er al., 2019]. Also, because the representation is
of a finer granularity, the amount of data needed to model
the joint distribution of the variables is less than the unstruc-
tured approach. Finally, capturing the causal relationships
among the salient features can improve interpretability: how
some variables are entangled may provide additional intuition
about the data, along with what the independent factors of
variation represent [Lipton, 2018].

Parameter Estimation. Let z,c ~ N(0, I) represent the
incompressible noise vector and the disentangled variables
that are expected to take on meaning after training, respec-
tively. The tuple (z, ¢) then represents the vector of observed
variables. Also let ¢/ € R% be the latent code that is gen-
erated by the discriminator D after feature extraction. Fi-
nally, we denote the sub-network of D that generates ¢’ as
D¢ogqe- A Bayesian network represents a joint probability dis-
tribution as a product of local conditional probability distri-
butions. We start by modeling the local distributions. Let the
parents of each variable ¢} in the latent code ¢’ be given as
pi = {pi1,pi2, ..., Pir }. Note that the disentangled variables
in ¢ do not have parents since they are directly sampled from
N(0, I). On the other hand, any ¢; or ¢; can be a parent
since a salient feature can be in a causal relationship between
an observed variable or another salient feature. Based on this
observation, we formulate the local conditional probability
for ¢} as follows:

P(c;|pi1, igs -y Pik) =
N (wio + wiipin + wizpiz + ... + WikDik; of) =

1 (¢; = wi-pi)?
- I B 7 1
27_[_0_12 exp < 20.2 ) ( )

2

where w; is the weight vector that represents the linear re-
lationship between ¢, and its parents, and o7 is the vari-
ance parameter that captures the Gaussian noise around the
linear relationship. Let c] {c1],ci[2], ..., c;[m]} and
P, = {p:i[1], pi[2], ..., pi[m]} represent the values of disen-
tangled variables and the parents observed in a training batch
of size m, respectively. To estimate the local conditional
probability parameters (w;,o?), we define the logarithm of
the likelihood function as follows:

logL(wZ, ¢, P) =
/!

2
0;

m

2
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We take the derivative of the log-likelihood with respect to
w;j, and set it to zero. After rearranging, we arrive at:

Elc;pi;] = wioE[pi;]+winE[pi1pij]+...+wirE[pirpij]. (3)

To get the estimate for w; € RF*!, we repeat this proce-
dure for each j and solve the resulting linear system of k£ + 1
equations. Note that if ¢}’s parents are only defined as the ob-
served disentangled variables, the solution is straightforward
since we already know that ¢ ~ N(0, I). Else, we use the
data provided in the training batch of size m to calculate the
expectations in Equation (3). We get the value of each w;j, by
solving the resulting system of linear equations. To find o2,
we start by taking the derivative of the log-likelihood with
respect to w;g and get:

Elc}] = wio + wnE[pi] + ... + wirE[pix]. 4)

Taking the derivative of the log-likelihood with respect to o2,
and plugging the Equations (3) and (4) in, we arrive at:

o7 = Cov[d; i) = > > wijwiz, Covlpig, i pig,]. (5)
Jj1 J2

We can now represent the joint probability distribution of the
observed and latent variables as the product of local condi-
tional factors. Specifically for a given connectivity structure
G, we represent the joint distribution parameterized by this
structure and the maximum likelihood estimates of the local
conditional parameters 0g = [(W1,51), ..., (Wn, 6,,)] as fol-
lows:

P(c,c’; G,0g) = [ [ P(cilps; 66)P(ci; N(0,1)).  (6)

Note that by estimating the parameters of each local condi-
tional probability, instead of directly estimating joint distri-
bution parameters, we gain control over the importance of
individual causal relationships, which will be useful while
guiding the GAN training towards a desired structure.

4.2 Regularizing GANs with Structure Loss

In this section, we design a regularizer that utilizes the value
taken by the likelihood function defined in Equation (2), to
guide the GAN training. Since a likelihood function measures
the probability of data given a model, the value this func-
tion takes when the maximum likelihood estimates plugged
in provides a natural metric to measure how well G fits the
data. However, unlike the maximum likelihood estimation
procedures that try to find the best parameters to approximate
an unknown data generating distribution, we manipulate the
distribution itself to find the best data generator to be repre-
sented by a given G.

Using Equations (3) and (5), we could first estimate ég,
then calculate the log-likelihood from Equation (6) to regu-
larize the objective function of GAN. However, this approach
introduces two problems. The first problem of this likelihood
score is as follows. The stability of this approach varies based
on the number of samples in a training batch because ég is es-
timated from a single batch. We address this problem with the
following observation. The feedforward pass of a GAN can
be seen as a mapping from the space of the observed variables
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to a decision. Similarly, a feedforward pass starting from G
and ending at D,,q. defines the following mapping:

GODcode(Oa Z; 9G79D) = Cl; @)

where O and 0p are the parameters of the generator and
the discriminator, respectively. This mapping suggests that
the joint distribution P(c, ¢’; G,0g) can be parameterized by
G o D yge, allowing us to express the likelihood function
as L(0g,0c,0p : C,C’, G). According to Equations (3)
and (5), the maximum likelihood estimation for ég requires
the knowledge of the marginal and pairwise expectations of
the observed and latent variables. Since 0 and 6p define
the mapping in Equation (7), these parameters together with
z,¢ ~ N(0, I) contain the sufficient statistics to estimate g.
Therefore, ég can be absorbed into 6 and 6. Using this ob-
servation and Equation (6), we derive the following objective
to directly update the data generating distribution, the GAN,
towards producing data instances that fit the given graph G:

0c,0p = argmaxg , o log L(0c,0p : C, C', G) =
argming, 5 » > MSE(C'[i], pi; 6c.0p), (8)
ik

where C’[i] and p;x, correspond to a single training batch of
values for ¢} and the k*" parent of p; respectively. Note that
Equation (8) holds because maximizing the log-likelihood is
equivalent to minimizing the Mean Squared Error (MSE) for
linear Gaussian models [Bishop, 2006].

The second problem of the likelihood score is as follows.
Even though the score calculated using Equation (6) increases
if there is a causal relationship between the parents and chil-
dren of G, this score never punishes the relationships ob-
served from data but not specified in G. In other words, the
likelihood score based regularization does not prevent the un-
desired causal relationships among variables. To address this,
we extend Equation (8) and propose our structure loss as:

‘CStT(Ca O/a g) 9G,9D> =
Z Z [MSE(C'[i], pix; 0, 0p)
i k

— MSE(C'[i], Pir; 0c,0p)],  (9)

where p; represents the values taken by the variables that are
not the parents of ¢}. Lg;, increases if the variables are cor-
related with their non-parents, and it decreases if the vari-
ables are correlated with their parents. Using the proposed
loss function, we regularize GAN training as:

ménmgXCAdv(G,D) + A Ls, (C, C', G; 0c,0p). (10)

Regularized by our proposed structure loss, the GAN learns
to represent the training data distribution while the observed
variables and the generated code relationships follow the
specified graphical structure. This gives us control over the
interactions of extracted variables. For example, to extract la-
tent variables that are entirely independent from each other,
we can define a graph structure with one-to-one connectivity
between the observed variables and the latent code. On the
other hand, to extract variables that cause each other, we can
also add connections between the latent variables.
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5 Experiments and Results

In this section, we conduct experiments both on synthetic and
real-world datasets to evaluate the performance of our pro-
posed regularizer. To compare our regularizer and state-of-
the-art methods, the achievable disentanglement scores, qual-
ity of the latent traversals, and the variety and quality of the
discovered salient features are evaluated. In our experiments,
the proposed regularization is implemented on top of the
same discriminator and generator architectures of InfoGAN,
while tuning the parameters using grid search. The state-of-
the-art methods used for comparison have been trained fol-
lowing the parameter and architecture settings described by
their corresponding authors, unless mentioned otherwise.

5.1 Experiments with MNIST Dataset

MNIST [LeCun et al., 2010] consists of 70,000 28 x 28
grayscale images of handwritten digits, involving 10 distinct
categories. Being a real-world dataset with possibly depen-
dent natural factors, MNIST gives us the opportunity to dis-
cuss and validate our observations about both disentangle-
ment and informative entanglement.

Disentanglement. To learn from MNIST, InfoGAN defines
10 categorical and 2 continuous variables to be used in c. To
train a GAN using our proposed regularizer, we set G to the
graph structure shown in Figure 2a for the continuous ran-
dom variables, and set the regularization weight A to 0.2. To
handle the categorical random variables corresponding to the
digit identities, we replace the MSE function in Equation (9)
with KL-Divergence. We use the same graph structure from
the continuous variables, but we set the number of categori-
cal variables in the graph to 10. Figure 3 shows the images
generated by both models after training. Each row in the fig-
ure corresponds to ¢; taking on values varied from —1to 1 in
evenly spaced intervals. Following observations can be made
from this figure. First, even though InfoGAN captures the ro-
tation feature well, the thickness is not sufficiently isolated as
shown in Figures 3b and 3d. For almost all of the digits gen-
erated by InfoGAN, as the thickness increases, the digit also
rotates. Also, the numerical identities of some digits, such as
5, are lost. On the other hand, our proposed method captures
these two distinct visual features successfully without com-
promising the numerical identities of digits, shown in Figures
3a and 3c. We now take a closer look at the outputs from
both methods to evaluate how well they generalize. Figure 4
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(b) thickness and width isolation (c) to discover the feature size

Figure 2: Graph structures used in experiments
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Figure 4: Generalization comparison for ¢; € {—2,0,2}

shows the images generated by setting the values of each c;
to {—2,0,2}. Notably, both of the models are trained using
¢; values sampled from [—1, 1]. Hence, the quality of the out-
put images generated by setting the c; values outside of this
range suggests how well the models are able to generalize.
Comparing Figures 4a and 4b, we observe that our proposed
method generalizes better than InfoGAN by generating out-
puts that carry better numerical identity although they become
thicker. From Figure 4a, we also observe that in the represen-
tation learned using our regularizer, increasing the thickness
also increases the width of the digit. This hints an existence
of an informative entanglement between the width and thick-
ness features, which we discuss in the following experiment.

Informative Entanglement. We show how our depen-
dency structure based regularization can guide the GAN train-
ing to explore additional salient features. By exploiting the
informative entanglements, it becomes possible to disentan-
gle the features that are products of other salient features’ in-
teractions, as well as to discover new features that are en-
tangled but salient. We start by setting G to the graph struc-
ture shown in Figure 2b. This graph structure regularizes the
GAN towards discovering two latent features that are affect-
ing a third one. After training the GAN, we generate samples
by varying all ¢’s from —1 to 1 in evenly spaced intervals,
and show the images generated after training in Figure Sa.
We observe that the variables c¢; and ¢, respectively capture
the width and thickness features, while c3 captures a mixture
of width and thickness similar to our previous experiment.
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Figure 5: New features explored by the proposed regularizer
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Figure 6: Latent space traversals for ¢; € [—1, 1] for 3D Faces

These results show that, we were able to discover two new
features by modeling the entanglement between them and a
third feature. To explore informative entanglements further,
we repeat this experiment using the graph structure shown in
Figure 2c instead. Figure 5b shows the images generated af-
ter training. We observe that the first three features captured
by the model are height, width and thickness, corresponding
to the variables cj, co and c3. From the last row of the figure,
we also see that the interaction of these three variables define
a new entangled salient feature c,4, capturing the size. These
experiment results suggest that the graph structure we feed
to the learner, G, can guide GANSs to discover variables that
follow a desired set of causal relationships.

5.2 Experiments with 3D Faces Dataset

3D faces dataset [Paysan et al., 2009] contains 240, 000 face
models with random variations of rotation, light, shape and
elevation. Since the factors of variation of this dataset are
known, we use it to demonstrate that our proposed regular-
izer is capable of capturing these underlying factors, while
InfoGAN fails to do so. We set our method’s generator and
discriminator learning rates to 5e — 4 and 2e — 4 respectively.
We set A = 0.1 and G to the graph structure shown in Figure
2a. We set the amount of ¢ and ¢’ variables to 4, and ex-
tend the graph accordingly while preserving its connectivity
pattern. We set the dimension of the input noise vector z to
52 for our proposed method, then train both models for 100
epochs. Figure 6 shows the images generated by the mod-
els, after varying each ¢ from —1 to 1 in evenly spaced in-
tervals. From this figure, we observe that the proposed reg-
ularizer was able to guide the GAN to represent the rotation
using ¢y, elevation using c, light using c3 and width using
c4. On the other hand, InfoGAN only extracted three of these
salient features, while the fourth feature being a mixture of
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BEESEE InfoGAN 0.820
SAENE" FactorVAE | 0.874
C T T 1T°1- Proposed | 0.882

Table 1: dSprites samples Table 2: Disent. scores

the other three. This problem is caused by InfoGAN’s lack
of isolation among the captured salient features. Notably, In-
foGAN is able to successfully capture these features using
separate models with different parameter settings, but fails
to capture all four using a single model. Because our regu-
larizer punishes the similarities between the salient features,
the GAN trained with it captured a wider variety of salient
features from the data, without compromising on the feature
isolation as much as InfoGAN does.

5.3 Experiments with dSprites Dataset

[Matthey et al., 2017] consists of 737,280 64 x 64 images
of sprites, shown in Table 1, generated from known indepen-
dent latent factors. This dataset has been designed to score
and compare the disentanglement that different representation
learning models achieve. Therefore, we use dSprites to quan-
titatively measure the proposed method’s disentanglement ca-
pacity with the help of the disentanglement score proposed
in [Kim and Mnih, 2018]. We set the weight A of our pro-
posed regularizer to 0.02 and, G to the graph structure shown
in Figure 2a. We then set the amount of ¢ and ¢’ variables
to 5, and we extend the graph accordingly while preserving
its connectivity pattern. Table 2 shows that we quantitatively
outperform the two state-of-the-art methods, by achieving a
disentanglement score of 0.882/1.0. This becomes possible
as the proposed regularizer employs features extracted by the
discriminator to represent the latent variables. While doing
that, it simultaneously encourages disentanglement and dis-
courages entanglement when G is set as Figure 2a.

6 Conclusion

In this paper, we have studied learning interpretable Gen-
erative Adversarial Networks by imposing structure on the
explored latent feature spaces. A regularizer has been pro-
posed by taking a graph as input and forcing a GAN to extract
salient features that interact according to the graph’s connec-
tivity structure. By qualitatively and quantitatively comparing
to the state-of-the-arts, we have demonstrated that our regu-
larizer can extract additional salient features from data while
achieving promising disentanglement, through imposing var-
ious constraints on the causal structure of the latent space.
Our future work includes (1) designing an algorithm that
learns the optimal graph structure to explore salient features,
and (2) conducting experiments with non-image datasets.
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