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Abstract
In multivariate event data, the instantaneous rate of
an event’s occurrence may be sensitive to the tem-
poral sequence in which other influencing events
have occurred in the history. For example, an
agent’s actions are typically driven by its own pre-
ceding actions as well as those of other relevant
agents in some order. We introduce a novel sta-
tistical/causal model for capturing such an order-
sensitive historical dependence, where an event’s
arrival rate is determined by the order in which its
underlying causal events have occurred in the re-
cent past. We propose an algorithm to discover
these causal events and learn the most influential
orders using time-stamped event occurrence data.
We show that the proposed model fits various event
datasets involving single as well as multiple agents
better than baseline models. We also illustrate po-
tentially useful insights from our proposed model
for an analyst during the discovery process through
analysis on a real-world political event dataset.

1 Introduction
There has been an explosion of datasets in recent years in-
volving events of various types occurring irregularly over the
timeline. Many of these involve the actions of single or mul-
tiple agents, potentially along with other pertinent observa-
tions; examples include electronic health records and wear-
able device data, socio-political event data, financial data
around trades by automated agents, and user behavior in on-
line retail and entertainment. Such datasets enable statistical
approaches for learning about agent actions/interactions [Re-
mondino and Correndo, 2005; Grover et al., 2018].

In this paper, we treat agent actions as event occurrences
and deploy machine learning techniques to capture the sta-
tistical/causal relationships between various types of events.
Our model explicitly aims to capture the effect of the or-
der in which preceding events have occurred. Specifically,
an event’s arrival rate is assumed to be determined by the
recent historical order in which its underlying causal events

∗DISTRIBUTION STATEMENT A. Approved for public re-
lease: distribution unlimited

have occurred. Our work fits within the high-level frame-
work of graphical event models [Didelez, 2008; Meek, 2014;
Gunawardana and Meek, 2016], which are continuous-time
graphical representations of marked point processes [Cox and
Lewis, 1972; Aalen et al., 2008].

Although the proposed model is fairly general and widely
applicable, our emphasis on order-dependence is motivated
by real-world situations pertaining to agent interactions. As
an illustration, consider two countries X and Y who have his-
torically been in conflict. In politics, an escalating sequence
of actions is often more likely to result in extreme actions
such as declaration of war. For instance, if X first makes a
negative statement about Y and then Y threatens X, it may be
more likely for X to retaliate strongly and declare war on Y
than if the reverse order of actions had occurred.

Explicitly recognizing the order of preceding events may
also be important for modeling the behavior of individual
agents. For instance, the sequence of a big loss followed by
a big win may induce different behaviors in a gambler com-
pared to the reverse sequence, or for that matter compared
to the situation where they only face either a big loss or a
big win. Modeling and learning about the influence of causal
orders from event data could provide an analyst with an en-
hanced understanding of the underlying process.
Contributions. Our primary contributions are: (1) the for-
mulation of a novel order-dependent event model that explic-
itly distinguishes the causal impact of different orders in an
event dataset. As far as we are aware, this is the first model to
simultaneously take a marked point process view of an event
dataset and consider preceding causal event orders; (2) an
efficient algorithm for learning the proposed model from an
event dataset; (3) an experimental comparison with relevant
baselines on event datasets involving both single and multi-
ple agents; and (4) investigative analysis on a political event
dataset extract that illustrates the benefits of explicitly identi-
fying order-dependence during the discovery process.

2 Model Formulation
We first introduce some basic notation and provide relevant
background before describing details of our proposed model.

2.1 Notation & Background
An event dataset (or event stream) is a sequence of time-
stamped events of the form D = {(li, ti)}Ni=1, where ti is
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the occurrence time of the ith event, ti ∈ R+, assumed tem-
porally ordered between start time t0 = 0 and final time
tN+1 = T , and li is an event label/type belonging to an alpha-
bet L with cardinality M = |L|. For simplicity, all equations
assume a single event stream but they can be easily extended
to multiple independent event streams.
Example 1. The event dataset in Fig. 1(a) will be a running
example to illustrate the concepts. There are N = 13 events
over event label set L = {A,B,C} with cardinality M = 3
over a period of around a month (T = 30 days).

A mathematically principled way to model multivariate
event streams is through a marked point process. This cap-
tures the dynamics of events occurring in continuous time
using conditional intensity functions, which are time-varying
quantities that measure the rate at which an event label oc-
curs. In general, the conditional intensity for event label X at
time t can be written as a function of the history at that time,
ht, i.e. it is denoted λx(t|ht) where ht = {(li, ti) : ti < t}
represents all the preceding events at time t.

Graphical event models (GEMs) [Didelez, 2008; Gunawar-
dana and Meek, 2016] provide a framework for how vari-
ous event labels are generated over time, given the histori-
cal occurrences of their parents in some underlying graph.
They are graphical representations of a marked point process
over event labels, analogous to how Bayesian networks are
graphical representations of joint distributions over random
variables [Pearl, 2014]. A GEM includes a directed graph
G = (L, E), which has nodes for every event label L and
directed edges E represented as ordered pairs from L × L.
The conditional intensity for an arbitrary label X at any time
t depends only on historical occurrences of its parent event
labels, implying that λx(t|ht) = λx(t|[h(U)]t), where U are
X’s parents and [h(U)]t is the history restricted to labels in
set U, [h(U)]t = {(li, ti) : ti < t, li ∈ U}.

It is important to reiterate that a GEM is merely a high-
level framework – more information about the historical de-
pendence of conditional intensity rates needs to be provided
before the model can even be fully specified and subsequently
learned. In this work we propose a specific model where the
order in the history plays a critical role.

2.2 An Order-dependent Event Model
We are interested in a model where the historical order of the
occurrences of a node’s parent event labels in a GEM could
potentially affect the rate at which it occurs at any time. Since
the same event label could occur several times in the his-
tory in an event dataset, this could lead to an infinite num-
ber of distinct historical possibilities. We therefore introduce
a masking function to disregard specific instances of events
that repeat, only retaining distinct event occurrences.
Definition 1. A masking function φ(·) takes a sequence
of event tuples as input, and returns a sub-sequence where
a label is never repeated. Formally, φ(·) takes as input
some temporally ordered sequence s = {(lj , tj)} and re-
turns s′ = {(lk, tk) ∈ s : lk 6= lm for k 6= m}. The
event label order resulting from applying this masking func-
tion is obtained from ordering the labels in s′ in time, i.e.
{lk : (lk, tk) ∈ s′, tk < tm∀k < m}.

Here we only consider two cases of tuple masking function
φ(·) due to their simplicity and potential applicability across
domains: the ‘first’ and ‘last’ cases, depending on whether
only the first or last occurrence of an event label in a sequence
is retained to determine order. We imagine that a case’s suit-
ability depends on the application under consideration.
Example 2 (cont.). Consider label C’s occurrence in
Fig. 1(a) at time t = 10. If the ‘first’ masking function is
applied to the history at this time, the resulting historical or-
der is B,C,A, whereas ‘last’ results in order B,A,C.
Definition 2. An order instantiation for a set of labels Z is a
permutation of a subset of Z. The order instantiation at time
t in an event dataset D over a preceding time window w can
be determined by applying masking function φ(·) to events
restricted to labels Z occurring within [max (t− w, 0), t).

Example 3 (cont.). Suppose C has parents A and B, like in
Fig. 1(b). Fig. 1(a) shows the order instantiations at each of
the five occurrences of event label C over its parent labels
for a window of 5 days – there are two occurrences of the
orderA,B, two of orderB and one ofB,A. In this particular
situation, both the ‘first’ and ‘last’ masking function cases
result in identical order instantiations.

We can now formalize the proposed model:
Definition 3. An ordinal graphical event model (OGEM) for
event label set L includes:

• A graph G where there is a node for every event label.

• Windows for every node in G,W = {wX : X ∈ L}.
• A set of conditional intensity rate parameters Λ, one for

every node and possible order instantiation with respect
to the node’s parents, Λ = {ΛX : X ∈ L} = {λx|o :
X ∈ L, ∀o}. Here o denotes an order instantiation,
which is a permutation of a subset of X’s parents U –
there are

∑|U|
i=0

|U|!
i! possible orders.

Example 4 (cont.). Fig. 1(b) depicts an example OGEM over
L = {A,B,C}. Note that the graph can be cyclic and even
have self-loops indicating self-dependence. The conditional
intensity parameters are also shown; for instance, there are 5
parameters forC – one for every order instantiation of its par-
ents {A,B}. Parameter λC|A is the rate at which event label
C occurs given that only A (among its parents) has occurred
in the recent preceding window wC , whereas λC|A,B is the
rate when the recent history involves an occurrence of A fol-
lowed by B. While learning from data, the order is determined
by the masking function φ(·).

The closest model to an OGEM is the proximal GEM
(PGEM) [Bhattacharjya et al., 2018], where an event label’s
conditional intensity rate depends only on whether or not its
parents have occurred in some recent time window. We next
formalize that a PGEM is unable to distinguish conditional
intensity rates from different parental orders.
Theorem 4. Suppose event label X with parents U is gener-
ated from order-dependent conditional intensity rates {λx|o :
∀o}, where o is an order instantiation of U. For two orders
o′ and o′′ over the same subset of U s.t. λx|o′ 6= λx|o′′ , a
PGEM is unable to distinguish between these rates.
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(a) (b)

Figure 1: (a) Example event stream with N = 13 events of M = 3 types of events occurring over T = 30 days. The figure also indicates the
order instantiations for each occurrence of event label C, assuming that C has parents A and B and for a window wC = 5. (b) Illustrative
ordinal graphical event model with 3 nodes (event labels), each with a window and a set of conditional intensity parameters.

Proof. Suppose orders o′ and o′′ are over variables K ⊆ U
variables. While learning from a dataset, both orders map to
the binary parental instantiation u of U where variables in
K and U \ K are 1 and 0 respectively. Thus, both orders
contribute to the estimate for λ̂x|u in the PGEM, which is
unable to identify the true parameters λx|o′ and λx|o′′ .

An OGEM is intended to explicitly capture the effect of
the order of an event label’s causes, unlike prior literature
like PGEM that considers order-neutral event models. For
instance, orders that are particularly influential in causing an
event would have relatively high conditional intensity param-
eters. Understanding these influences could be beneficial for
analysts during the process of discovery.

3 Learning
We present an approach for learning an OGEM from an event
dataset D. We treat the windows W as hyper-parameters,
and focus on learning the graph G and conditional intensity
parameters Λ. Like any other GEM, the OGEM graph is po-
tentially cyclic, therefore the parents and parameters for each
node/event label can be learned individually. We first show
how to learn conditional intensities {λx|o : ∀o} for a node X
given its parents U (in G), which relies on computing ordinal
summary statistics (Algorithm 1), and then briefly summarize
a heuristic graph search method to learn X’s parents U.

3.1 Learning Parameters
An OGEM is a particular kind of GEM where the conditional
intensity rates are piece-wise constant over time, with rate
changes occurring whenever there is a change in the order
instantiation in history. The log likelihood of any particular
event label X for an event dataset D can therefore be com-
puted using summary statistics of counts and durations in D,
as well as the model’s conditional intensity rates:

logLX(D) =
∑
o

(
−λx|oD(o) +N(x;o) ln(λx|o)

)
, (1)

whereN(x;o) refers to the number of timesX is observed in
the dataset and that the order instantiation o is true in the rele-
vant preceding windowwX , andD(o) is the duration over the
entire time period where the condition o is true. The fact that
the counts and durations depend on the window wX is hidden
in the notation for the sake of simplicity. From equation (1),

Algorithm 1 Ordinal Summary Statistics
1: procedure SUMMARYSTATS(event label X , parents U, win-

dow wX , masking function φ(·), dataset D)
2: Active history h← ∅
3: N(x;o)← 0, D(o)← 0, ∀o
4: D(∅) += t1 − t0 . Increment empty set dur.
5: for (li, ti) ∈ D do . Scan all events in dataset
6: if li ∈ U then
7: Append (li, ti) to h
8: o = UpdateOrder(h,φ(·) )
9: if li == X then

10: N(x;o) += 1 . Increment count
11: Set current time tc = ti
12: for (lj , tj) ∈ h do . Scan events in active history
13: Set inactive time t∗ = tj + wX

14: if t∗ ≥ ti+1 then
15: Break
16: else . Stay until some history is active
17: D(o) += t∗ − tc . Increment duration
18: Remove this event (lj , tj) from h
19: o = UpdateOrder(h,φ(·) )
20: Set current time tc = t∗
21: D(o) += ti+1 − tc . Increment duration
22: Return counts N(x;o) and durations D(o), ∀o

the maximum likelihood estimates for conditional intensity
parameters are λ̂x|o = N(x;o)

D(o) . Thus, if the parents of a node
are known, it is straightforward to compute the conditional
intensity rates using the summary statistics.

In Algo. 1, we outline how to scan the entire dataset to
compute the required counts N(x;o) and durations D(o) for
an event label X , given its parents U, window wX and a
masking function φ(·). Computing counts is relatively easy
if the order instantiation at the current time is known – when-
ever the label under consideration X is encountered, the rel-
evant count is incremented by one (lines 9-10).

Computing durations is more involved and requires main-
taining an active history h. When a parent label is encoun-
tered, the corresponding event is appended to h (lines 6-7).
Since the order instantiation could potentially change several
times between event occurrences, the entire duration between
these epochs needs to be appropriately partitioned across or-
der instantiations. These changes are identified by scanning
h and determining when a historical event becomes inactive
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before the next event occurrence (loop in lines 12-20). A sub-
routine ‘UpdateOrder’ applies the masking function to the ac-
tive history and returns an order whenever the active history
is modified (lines 8 and 19).
Example 5 (cont.). Algo. 1 was run on the event dataset in
Figure 1(a) to obtain counts and durations for event label C,
with parents {A,B} and wC = 5 days. The maximum like-
lihood estimates of intensity rates are: λ̂C|∅ = 0, λ̂C|A = 0,
λ̂C|B = 0.18, λ̂C|A,B = 0.17, λ̂C|B,A = 0.33. Similar to
earlier, here the numbers are identical regardless of whether
the ‘first’ or ‘last’ masking function is used. In this particular
example, the rate at which C happens almost doubles when
B happens before A as compared to the reverse order.

It may be possible for some order instantiations to never
be observed in the data, resulting in counts (and therefore es-
timates for conditional intensities) of zero. This issue can
be severe when the number of parents is large, since the num-
ber of OGEM parameters increases super-exponentially in the
number of parents. As we describe in the next sub-section,
our parent search approach restricts model complexity, forc-
ing the learner to choose a small number of parents for a small
dataset, making it more likely to have sufficient support in the
data. For our experiments, we deal with this issue by setting
the conditional intensity rate to some small default rate, de-
noted λ0, whenever an order instantiation is not observed in
the train set. This is treated as a model hyper-parameter.

3.2 Learning Parents
We use a score-and-search approach to find the parents of
each node and therefore the underlying graph G. A score is
used to incorporate model complexity along with the log like-
lihood on a dataset. For instance, the Bayesian information
criterion (BIC) score for an event label X with parents U is:

SX(U;D) = logLX(D)− γ |ΛX |
2

log(T ), (2)

where logLX(D) is the log likelihood for X from equa-
tion (1) computed at the maximum likelihood estimates for
rates, |ΛX | is the number of free parameters (conditional in-
tensity rates) for X in the model and γ is a penalty weight
on the complexity (second) term. Unless otherwise speci-
fied, γ is set to 1. The overall score of a graph G is S(G) =∑

X SX(U;D) since the scores are decomposable.
For our experiments, we use a forward and backward

search procedure to iteratively find the best parental set U
for each event label X . Specifically, we iteratively add one
candidate event label Z to U and test if it results in a better
score SX(U ∪ Z) than the current best score. If so, we up-
date U and query the next Z. After finishing adding as many
nodes as beneficial for the score, we then iteratively test if
removing an event label Z from U would improve the score,
updating U if it does indeed result in a better score. Such a
greedy procedure is popular for learning probabilistic graph-
ical models in general due to its efficiency and consistency,
i.e. ability to recover the true graph with asymptotic data.
Theorem 5. A forward backward score-based learning al-
gorithm for OGEM graph G and parameters Λ given hyper-
parameters W with summary statistics computed using

Algo. 1 with either the ‘first’ or ‘last’ masking function has
worst case time complexity O(M3N), where M and N are
the number of event labels and events respectively.
Proof. For a single node, Algo. 1 runs in O(N) time, assum-
ing the ‘UpdateOrder’ subroutine is O(1); this is possible for
both the masking function cases considered. The worst case
in the forward (backward) search is that all nodes will be
added (removed), which is O(M2). This is repeated for all
M nodes to complete the entire graph and model.
Theorem 6. Let G′

be the learned graph from a for-
ward backward score-based structure learning algorithm for
OGEM graph G. Under the no detailed balance assump-
tion [Gunawardana and Meek, 2016], with sufficient data,
P (G′

= G)→ 1 as T →∞.

Proof. OGEMs fall within the piece-wise constant intensity
model (PCIM) class of GEMs; we refer the reader to prior
work [Gunawardana and Meek, 2016].

4 Experiments
We demonstrate the efficacy of OGEMs using the following
select datasets involving single and multiple agents.

4.1 Datasets
ICEWS [O’Brien, 2010]. Socio-political events such as in
the Integrated Crisis and Early Warning System (ICEWS) po-
litical event dataset are an important real-world example of
numerous, asynchronous agent interaction events on a time-
line. ICEWS involves dyadic events where a source actor
performs an action on a target actor, for instance ‘Police
(Brazil) Assault Protester (Brazil).’ Actors and actions are
coded according to the Conflict and Mediation Event Obser-
vations (CAMEO) ontology, which was created for interac-
tions among domestic and international actors [Gerner et al.,
2002]. For our first experiment, we used 4 out of 5 coun-
tries from the ICEWS extract in Bhattacharjya et al. [2018],
which includes events involving 5 types of actors and 5 types
of actions, occurring from Jan 1, 2012 to Dec 31, 2015. (One
country was omitted due to the inconsistency between event
labels while splitting the data into three sets for experiments.)
Mimic-II [Saeed et al., 2011]. These are patient electronic
health records from Intensive Care Unit visits over 7 years.
Each patient experiences a sequence of visit events, where
each event involves a time stamp and diagnosis. We filter out
small sequences to obtain 650 patients with 204 disease types.
Diabetes [Frank and Asuncion, 2010]. Events for around
70 diabetic patients are considered: these include different
types of meal ingestion, exercise and insulin dosage, along
with two additional processed event labels corresponding to
the increase and decrease of blood glucose measurement lev-
els. These latter events are obtained after discretization of
blood glucose measurements into three states.
LinkedIn [Xu et al., 2017]. This includes employment and
(when applicable) college enrollment related information of
2489 anonymous LinkedIn users. Each event stream in-
cludes a user’s time-stamped records of professional expe-
rience, such as joining a new role in a company. We filter the
data to popular companies and end up with 1000 users.
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Dataset PGEM OGEM NHP

ICEWS
Argentina -1386.05 -1369 -1338.65
Brazil -2000.47 -2057.45 -1892.57
Colombia -534.46 -517.82 -559.61
Mexico -796.50 -771.17 -919.82

Mimic -495.41 -476.07 -

Diabetes -2966.23 -2883.62 -

LinkedIn -1479.26 -1478.38 -

Table 1: Log likelihood for the models on the test sets.

4.2 Model Fit
We conduct an experiment to evaluate how well the proposed
model fits the afore-mentioned datasets.
Experimental Setup. Each dataset is split into three sets:
train (70%), dev (15%) and test (15%), only retaining event
labels that are common to all three splits. Single stream
datasets like ICEWS countries are split by time, e.g. if
T = 1000 days, then events up to time 700 days are in train.
Multiple stream datasets like LinkedIn are split by stream id,
e.g. for K = 1000 users, streams for 700 of them consti-
tute the train set. A model’s performance is measured by the
log likelihood on the held-out test set. During both training
and testing, we disallow positive log likelihoods to minimize
over fitting, capping it at zero for any node. Hyper-parameter
choices for OGEM and the baselines are as follows:
• OGEM: We search over a default rate hyper-parameter

grid of λ0 = {0.001, 0.005, 0.01, 0.05, 0.1}. Window
hyper-parameter grids are dataset specific, chosen as:

– ICEWS: wX={1, 3, 7, 10, 15, 30, 60} (days) ∀X
– Mimic: wX={0.1, 0.2, 0.5, 1, 1.5, 2, 5} (years) ∀X
– Diabetes: wX={0.01, 0.05, 0.1, 0.5, 1, 5} (days) ∀X
– LinkedIn: wX={2, 5, 7, 10, 15, 20} (years) ∀X

• PGEM: The closest baseline is the proximal GEM, which
allows different windows for different parents but does not
distinguish between orders of causal events. We deploy
the learning approach in Bhattacharjya et al. [2018], which
also identifies windows using a heuristic. We use left lim-
iting parameter ε = 0.001 and default rate λ0 as the only
hyper-parameter with the same grid as OGEM.

• NHP: Primarily just for reference, we also learn a neural
Hawkes process [Mei and Eisner, 2017], a state-of-the-art
neural architecture for event models. Neural networks are
expected to do much better than fully parametric ones on
the model fitting task due to the large number of parame-
ters. NHP does not however learn a graphical model and is
less interpretable than the other models considered, mak-
ing it less useful for discovery. For NHP, the only hyper-
parameter is the number of epochs for training.
For all models, the optimal hyper-parameter setting is cho-

sen by training models under various settings using the train
set and finding the best performing setting on the dev set. The
optimal trained model is then evaluated on the test set.

Results. Table 1 compares the log likelihood evaluated on
test sets across models. In the OGEM column, we show
the masking function case (‘first’/‘last’) that performs bet-
ter. Aside from Brazil, where PGEM performs well, OGEM
exhibits superior performance. OGEM also does reasonably
compared to NHP, beating it on two of the four ICEWS coun-
tries; NHP was anticipated to perform substantially better on
this task. Note that NHP was not run on the multiple stream
datasets because there is a peculiarity about these datasets that
makes it an inappropriate baseline: they are processed to al-
most always have events at time t = 0, and the neural network
exploits this by always artificially spiking the conditional in-
tensity rate at the start time. As a result, we only compare
OGEM with PGEM for these datasets.

4.3 Causal Orders Analysis
The power of the OGEM is that it is able to reveal orders of
causal events that are influential for a particular event of inter-
est. Here we investigate an application of OGEMs for social
unrest related events on an extract of ICEWS data from Jan-
uary 1, 2006 till December 31, 2010. We restrict attention to
the following six actors: Police, Citizen, Government, Head
of Government, Protester, Military; these are among the most
frequently participating actors for these countries.

Experimental Setup. We consider the social unrest event
label ‘Police; Fight; Citizen’ and learn its OGEM parents
and parameters, using event data corresponding to three Latin
American countries – Argentina, Mexico and Venezuela.
Other events were also studied but results for only one event
are provided as an illustration due to space restrictions. For
this analysis, we use the ‘first’ masking function φ(·), penalty
weight γ = 0.1 on the complexity term, default rate λ0 =
0.001 and window wX = 30 days.

Results. Selected results from our analysis are shown in Ta-
ble 2. Each column in the table ranks the orders (sequences)
of event labels of the identified parents based on the model’s
estimated conditional intensity rates. We arbitrarily choose
three orders each to display. We point the reader’s attention
to some observations about the ways in which the preceding
order affects the rate of an interaction event in ICEWS:

• In both Argentina and Mexico, missing preceding events
have an impact on the rate. For instance, when the mili-
tary cooperates materially with the police in Argentina, for
instance to provide arms – and importantly when no other
causal events occur – the rate of a police fight-related event
is very high. Contrast this with the bottom order where the
rate decreases, perhaps because the police’s resources are
consumed elsewhere.

• The impact of the order of two events is prominent for
Venezuela where switching the order of two parent events
alters the rate substantially. Here the recent action of a cit-
izen making a (presumably negative) statement about the
government after the government makes an international
statement results in a higher rate of the event of interest
than if the international government statement comes later.
This is an example of the finer expressiveness of OGEMs,
in accordance with Theorem 4.
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Argentina Mexico Venezuela
1. (Military; Material Coop.; Police) 4 1. (Citizen; Yield; Military) 0.5 1. (Govt.; Statement; Head of Govt.-Mexico) 0.71

2. (Citizen; Statement; Govt.)
1. (Citizen; Reject; Head of Govt.) 0.5 1. (Citizen; Yield; Military) 0.31 1. (Citizen; Statement; Govt.) 0.04
2. (Police; Fight; Govt.) 2. (Citizen; Demand; Govt) 2. (Govt.; Statement; Head of Govt.-Mexico)
1. (Military; Material Coop.; Police) 0.12 1. (Citizen; Demand; Govt) 0.08 1. (Citizen; Statement; Govt.) 0.04
2. (Police; Fight; Govt.)

Table 2: Ranking the causal effect of sequences for the event of interest ‘Police; Fight; Citizen’ by intensity rate.

5 Related Work
Our proposed model leverages data in the form of streams of
irregularly occurring time-stamped events. We briefly sum-
marize the most relevant literature around event modeling.

5.1 Event Sequences
Sequences of events go by various terms, including
episodes [Mannila et al., 1997], narratives [Chambers and Ju-
rafsky, 2008], storylines [Radinsky and Horvitz, 2013] and
scenarios [Hashimoto et al., 2014]. (Here we have used
the term ‘order’ or ‘sequence’.) Several analytical domains
have long pursued event sequence models, such as in point
processes in statistics [Cox and Lewis, 1972] and frequent
episode mining in data mining [Mannila et al., 1997]. Pre-
dicting from sequences without time-stamped information
has also been widely studied in machine learning [Rudin et
al., 2012] and in natural language processing, particularly
for narrative cloze and related tasks [Radinsky and Horvitz,
2013; Granroth-Wilding and Clark, 2016]. Our work is dif-
ferent from this more recent literature in that: 1) we take
continuous-time event streams as input, and 2) we pursue a
graphical modeling approach where the sequence of only the
underlying causes matters.

5.2 Temporal Point Processes and Graphs
The framework of graphical event models (GEMs) [Didelez,
2008; Meek, 2014] captures the inter-event dependency in
continuous-time event data by representing a marked point
process, which models event dynamics using conditional
intensity functions. The specific variants of GEMs typi-
cally differ in how they parametrize intensity functions, ex:
through generalized linear models [Rajaram et al., 2005], de-
cision trees [Gunawardana et al., 2011], forests [Weiss and
Page, 2013] and proximal windows [Bhattacharjya et al.,
2018]. Due to the success of deep learning in many domains,
deep neural network methods have also been proposed to
model event streams, such as recurrent neural network mod-
els [Xiao et al., 2017; Du et al., 2016] and neural Hawkes
processes [Mei and Eisner, 2017].

A related stream of work considers probabilistic generative
models for relational event models [DuBois and Smyth, 2010;
Schein et al., 2015], where events have a dyadic character,
i.e. they can be described in terms of a pair of actors (say,
sender and receiver) that are coupled with a certain relation
(say, action) like in the ICEWS dataset.

Note that there are other general graphical representations
that are peripherally related to our work, including discrete
time models such as dynamic Bayesian networks [Dean and

Kanazawa, 1989] and graphs for time series [Eichler, 1999].
Specialized graphs for multi-agent problems have also been
proposed [Grover et al., 2018; Bhargava and Williams, 2019].
However, GEMs related work appears to be the most relevant
graphical modeling literature; we have shown how our pro-
posed model fits within the broader GEMs framework.

6 Conclusions
We have introduced a novel model for capturing order-
dependent causal influences in event datasets, motivated by
representing the behavior of single or multiple agents us-
ing only data about their actions/interactions. This pro-
vides a data-driven and domain-agnostic alternative to tra-
ditional approaches involving hand-crafted models requiring
prior domain knowledge. We presented an efficient algo-
rithm for learning the graphical structure and parameters of
an OGEM, demonstrating comparable or better model fitting
performance than baselines on various benchmark datasets.

An OGEM’s ability to expose the order-sensitive nature
of the rate of observing certain agent interactions provides
a facet of analysis that would not be attained by alternate
order-neutral graphical event models. This was highlighted
theoretically but also experimentally, through an investiga-
tion conducted on agent interactions in the ICEWS political
event dataset. We believe that analysts in professions such as
business, intelligence and finance would find such an inter-
pretable model and its order-related insights beneficial.

A major limitation in the current OGEM formulation is that
the number of parameters is super-exponential in the number
of parents. While we have partially addressed this issue here
by penalizing model complexity, this opens up possibilities
for future work around more compact parameter representa-
tions. Another potential challenge is around the choice of
masking function to determine historical order; in domains
where events recur rapidly, the ‘first’ and ‘last’ cases may
be inappropriate and possibly even subvert causal analysis
with poorly chosen windows. Another line of future work
would therefore be to automatically learn some of the hyper-
parameters, notably the windows of historical dependence.
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