
Neural Representation and Learning of Hierarchical 2-additive Choquet Integrals
Roman Bresson1,2∗ , Johanne Cohen 2 , Eyke Hüllermeier 3 , Christophe

Labreuche 1 and Michèle Sebag 2

1 Thales Research and Technology, 91767 Palaiseau, France
2 LRI, CNRS - INRIA, Université Paris-Saclay, 91400 Orsay, France

3 Department of Computer Science, Paderborn University, 33098 Paderborn, Germany
{roman.bresson, christophe.labreuche}@thalesgroup.com, {johanne.cohen, michele.sebag}@lri.fr,

eyke@upb.de

Abstract
Multi-Criteria Decision Making (MCDM) aims at
modelling expert preferences and assisting decision
makers in identifying options best accommodat-
ing expert criteria. An instance of MCDM model,
the Choquet integral is widely used in real-world
applications, due to its ability to capture interac-
tions between criteria while retaining interpretabil-
ity. Aimed at a better scalability and modular-
ity, hierarchical Choquet integrals involve inter-
mediate aggregations of the interacting criteria, at
the cost of a more complex elicitation. The pa-
per presents a machine learning-based approach for
the automatic identification of hierarchical MCDM
models, composed of 2-additive Choquet integral
aggregators and of marginal utility functions on
the raw features from data reflecting expert prefer-
ences. The proposed NEUR-HCI framework relies
on a specific neural architecture, enforcing by de-
sign the Choquet model constraints and supporting
its end-to-end training. The empirical validation
of NEUR-HCI on real-world and artificial bench-
marks demonstrates the merits of the approach
compared to state-of-art baselines.

1 Introduction
Preference modelling is at the cross-road of operational re-
search and machine learning, with applications ranging from
critical (e.g. medicine or defence) to commercial (e.g. prod-
uct recommendation, entertainment) to social (e.g., educa-
tion) domains. This paper focuses on multi-criteria decision
making (MCDM), aimed at ordering the decision alternatives
based on their quality w.r.t. diverse criteria, as illustrated in
the context of car evaluation1:
Example 1. A company must buy a car. The possible alterna-
tives (car references) are evaluated along six criteria: buying
price (1), maintenance cost (2), number of doors (3), passen-
ger capacity (4), boot size (5), safety rating (6). The choice is
based on the aggregation of the criteria values, according to
the preference model elicited by the experts.
∗Contact Author
1Dataset: https://archive.ics.uci.edu/ml/datasets/car+evaluation

In the following, MCDM is tackled in the framework of
Multi-Attribute Utility Theory (MAUT) [Fishburn, 1970]. A
MAUT model associates each alternative with a score based
on the aggregation of the utility of the various criteria val-
ues, thus enabling the selection, classification and/or ranking
of alternatives. Note that in many domains, and chiefly in
critical ones, this model mostly serves to advise a human de-
cision maker (DM), who appreciates the (context-dependent)
relevance of the suggested alternative, and has the final word.
It is thus essential that the MAUT model be interpretable: to
be validated by the domain experts, and to be appreciated by
the decision maker on the spot.

In MAUT, a very popular aggregation function is the Cho-
quet integral (CI), offering a good trade-off between represen-
tation power (CI being a non-linear aggregator able to model
several types of interactions) and interpretability (its com-
plexity being limited from the selected CI parametric class)
[?]. In this paper, only 2-additive CIs, representing the inter-
actions among at most two criteria, will be considered.

Still, when considering up to some dozen criteria, their ag-
gregation can become hard to both design and interpret. Fol-
lowing [Miller, 1956], decision makers hardly ever handle
more than 9 concepts in their working memory. Hierarchi-
cal Choquet integrals (HCIs) address this limitation through a
divide-and-conquer approach, gradually aggregating the orig-
inal criteria to form higher-level (abstract) criteria. As a small
number of criteria are aggregated at each step, the model rec-
ommendations can easily be traced, verified and understood.

Traditionally, HCIs are manually designed by the do-
main experts, providing all of the needed domain knowl-
edge through constraints; combinatorial optimization meth-
ods can thus be launched to optimize each aggregator and
find a proper CI parametrization thereof [Benabbou et al.,
2017]. The manual design methodology however faces two
well-known bottlenecks: the shortage of the expert time, and
the law of diminishing returns, making it increasingly more
difficult to improve the models as their quality increases.

When expert preferences/constraints are available from
data, an alternative to manual model design is offered by au-
tomatically building MCDM models through supervised ma-
chine learning (tackling classification, regression and/or pref-
erence learning problems depending on the available data)
[Sobrie, 2016; Fürnkranz and Hüllermeier, 2011]. The chal-
lenge is for the resulting ML model to be amenable to control

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1984



and verification from the expert, and to easy interpretation by
the DM.

The contribution of this paper is the NEUR-HCI frame-
work, automatically extracting a hierarchical CI model from
i/ the available data, ii/ the hierarchical aggregation tree-
structure defined on the criteria.

The model verification and interpretation are ensured as
NEUR-HCI enforces by design all HCI model constraints
(e.g. monotonicity and idempotency). Specifically, NEUR-
HCI automatically translates the HCI tree structure into the
architecture of a neural net, the weights of which are op-
timized through back-propagation from the available data.
NEUR-HCI thus gets the best of both worlds, retaining the
interpretability of the HCI representation class, and the af-
fordable training complexity of neural nets.

Interestingly, NEUR-HCI also learns the so-called
marginal utility functions (i.e. monotonic rescaling of the raw
attributes), supporting a simpler description of the eventual
model. As said, the NEUR-HCI model is modular by design,
enabling experts to validate and if needed re-structure the ag-
gregation tree.

The paper is organized as follows. Section 2 introduces
the formal background and briefly discusses related work.
Sections 3 and 4 are respectively devoted to the NEUR-HCI
model representation (marginal utilities and their aggregation
through Choquet integrals), and the end-to-end training of
these models using back-propagation. Section 5 presents the
experimental setting and empirical validation of NEUR-HCI
compared to the state of the art.

2 Formal Background
2.1 Notations
Let N = {1, . . . , n} denote a set of attributes, with Xi the
domain of the i-th attribute. Alternatives are defined as ele-
ments in X = X1 × · · · ×Xn.

A decision model is a function U : X → [0, 1], referred
to as utility function, inducing a total order on X . Utility
functions are classically represented in decomposable form
[Krantz et al., 1971], that is, U(x) = A(u1(x1), . . . , un(xn))
with ui : Xi → [0, 1] a marginal utility function mapping
domainXi onto [0, 1], andA : [0, 1]n → [0, 1] an aggregation
function.

Utility functions are used either to select the best alterna-
tive, to rank the alternatives, or to partition alternatives into
q ordered classes defined by thresholds θ1, . . . , θq+1, with x
falling in the j-th class iff θj ≤ U(x) < θj+1.

Marginal Utility Functions In most MCDM problems, the
marginal utility function defined on domain Xi reflects a nat-
ural preference (denoted %i) with respect to the i-th attribute.
In Example 1, for instance, the smaller the buying cost, the
better, and the bigger the car boot, the better:

xi %i x
′
i ⇔ ui(xi) ≥ ui(x′i) ∀xi, x′i ∈ Xi (1)

In this paper, according to MCDM usage, ui is assumed to be
continuous, monotonous, and reaching its bounds (0 and 1)
on the closure of domain Xi.

2.2 Aggregation Functions
An aggregation model A : [0, 1]n → [0, 1] is a function de-
fined on a vector of utilities a = (a1, . . . , an), which returns
an aggregated value in [0, 1]. Among the simplest aggregation
models is the weighted sum of utilities Aw(a) =

∑n
i=1 wiai,

parameterized by weights w = (w1, ..., wn). It is emphasized
that, while a weighted sum of utilities is easily interpretable,
it cannot account for any interaction among criteria.
Choquet Integral. To overcome the limitations of the
weighted sum, one might associate weights to subsets of cri-
teria, e.g., accounting for the fact that the buying cost and the
boot size might be related. A fuzzy measure on a set N is a
set function µ : 2N → [0, 1] satisfying two properties:

Normalization: µ(∅) = 0 and µ(N) = 1, (2)
Monotonicity: A ⊆ B ⊆ N ⇒ µ(A) ≤ µ(B). (3)

The (discrete) Choquet integral, parameterized by a fuzzy
measure µ, is defined on utility vectors as:

Cµ(a) =
n∑
i=1

(aτ(i) − aτ(i−1))µ({τ(i), τ(i+ 1), ..., τ (n)})

with τ a permutation on N such that aτ(i) ≤ aτ(i+1) and
a0 = 0 by definition. A Choquet integral thus involves 2n −
2 parameters µ(M) for any proper nonempty subset M ⊂
N . As an aggregation model, the Choquet integral can easily
be interpreted from the weights associated to any subset of
criteria. Choquet integrals satisfy many properties [Grabisch
and Labreuche, 2010], such as the monotonicity w.r.t. their
inputs: for each a, a′ ∈ [0, 1]n,

(∀i ∈ N, ai ≥ a′i)⇒ Cµ(a) ≥ Cµ(a′). (4)
Example 2. Let us assume that the vector of utility a =
(0.4, 0.4) is preferred to both (0, 1) and (1, 0), meaning an
option with balanced scores on both criteria is preferred to
both specialized options. It is easily seen that this preference
cannot be captured by a weighted sum, while it can be repre-
sented by a Choquet integral with µ({1}) = µ({2}) < 0.4.

A fuzzy measure is said to be k-additive (k < n) iff it
can represent interactions among at most k criteria [Grabisch,
1997]. The particular case of 2-additive measures, considered
in the following, admits a specific expression (Eq. (7)).

2.3 Hierarchical Models
When the number of criteria increases, models can become
difficult to interpret by the decision maker. A common prac-
tice therefore is to structure the criteria along a hierarchy.
Formally, subsets of criteria are grouped and aggregated into
so-called intermediate criteria. These intermediate criteria
are iteratively aggregated (possibly with initial criteria) until
yielding a single score. Intuitively, hierarchical models in-
volve a moderate number of criteria in each aggregation step,
so that the output of each step can be easily understood.
Example 3. Considering the criteria in Example 1, Fig. 1
depicts a criteria hierarchy aggregating the 6 initial critera
to form 3 intermediate criteria: Overall price (7), comfort
(8), technical properties (9), that are themselves aggregated
to form the root node (10) yielding the overall score. The
value in each node is computed as the Choquet integral from
its children node values.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1985



10

7

1 2

9

8

3 4 5

6

Figure 1: Hierarchy of criteria for Example 1 (see text).

Compared to models with a single aggregation, thereafter
referred to as flat models, hierarchical models offer several
advantages:

• Representation power: hierarchical models are strictly
more representative than flat models;

• Sparsity: hierarchical models involve fewer parameters
than flat ones (see Ex. 4); likewise, the grouping of cri-
teria into a smaller number of intermediate ones makes
it easier for the decision maker to interpret the model;

• Representation of domain knowledge: hierarchical mod-
els can be tailored to reflect pieces of expert knowledge
and thus better fit the mental representation of the deci-
sion maker;

• Hierarchical structures can be inspected at different lev-
els of detail: if the decision maker needs to better un-
derstand the value of a given intermediate criterion, they
can look at the values on its children nodes and get a
fine-grained explanation thereof [Labreuche and Fossier,
2018].

Example 4 (Example 1 cont.). As said, a flat CI model in-
cluding n attributes involves 2n − 2 parameters. The hierar-
chical model depicted in Fig. 1 includes 3 intermediate nodes
with 2 children nodes, involving 2 parameters each, and 1
intermediate node with 3 children nodes, involving 6 param-
eters; the total number of parameters is thus 12, to be com-
pared to 26 − 2 = 62 parameters for the flat model.

Letting a hierarchical model be defined as a directed rooted
tree T with leaves L = {`i | i ∈ N} and a set of non-
leaf nodes G, the set of children of g ∈ G is denoted by
Ch(g) ⊆ G ∪ L, with Ch(g) 6= ∅. Let fuzzy measure µg
(resp. a marginal utility function ui) be associated with each
node g (respectively, each leaf `i). The score so of each node
o is computed recursively as follows:

• so(x) = ui(xi) if o ∈ L
• so(x) = Cµo

(
(sc(x) | c ∈ Ch(o))

)
if o ∈ g

The global score is sR(x) with R the root of T .

2.4 Related Work
MCDM models are commonly specified by marginal util-
ity functions, aggregated through e.g. Choquet integrals.
Thus, a (continuous or ordinal) utility score can be associ-
ated with each alternative, and different alternatives can be
ranked based on these utilities. Current approaches focus on
optimizing, eliciting or learning a single (flat) Choquet inte-
gral based on suitable training examples.

In constraint-based approaches, each training instance
imposes a constraint on the sought utility model. [Grabisch
et al., 2008] determine the fuzzy measures and their parame-
ters complying with all these constraints. In [Benabbou et al.,
2017], the constraint approach is extended and a min-max re-
gret optimization problem is defined to gradually acquire the
most informative constraints in the spirit of active learning
approaches. The main limitation of the approach is its inabil-
ity to deal with noisy and/or inconsistent training samples,
possibly preventing the constraint problem from being satis-
fiable.

Based on a set of alternatives and the associated utilities,
[Grabisch, 1995; Alavi et al., 2009] tackle the identification
of a fuzzy measure as a supervised statistical learning prob-
lem, using gradient descent to optimize a logistic regression
model, and using additional constraints to ensure that the so-
lution defines a proper fuzzy measure (e.g., satisfies mono-
tonicity). Along the same line, logistic regression is extended
to learn Choquet integrals along a binary classification or
ranking setting [Fallah Tehrani et al., 2012].

More recently, these methods are generalized to non-
monotonic fuzzy measures in [Havens and Anderson, 2018].
Finally, [Bourdache et al., 2019] use Bayesian linear regres-
sion to find the model parameters of e.g. 2-additive Choquet
integrals or ordered weighted averages.

In the Additive Utility framework, [Bous and Pirlot, 2013]
propose a probabilistic approach for learning the marginal
utility functions of an additive utility model (a special case
of the CI with marginal utilities). While other approaches to
learning the Choquet integral assume marginal utility func-
tions to be given, Choquistic Utilitaristic Regression (CUR)
learns the aggregation and the marginal utilities simultane-
ously [Fallah Tehrani et al., 2014]. The associated (non
convex) optimization problem is solved using a quadratic-
programming solver.

A method for learning hierarchical aggregation models,
called fuzzy pattern trees, is proposed in [Huang et al., 2008;
Senge and Hüllermeier, 2011], using generalized averaging
functions and/or triangular norms or co-norms as aggregation
functions.

In [Senge and Hüllermeier, 2015], the averaging functions
are realized in the form of Choquet integrals, restricted to bi-
nary hierarchical tree-structures.

Discussion: The state of the art in (H)CI learning is re-
stricted to either flat Choquet integrals2, or binary hierarchical
tree-structure. NEUR-HCI ambitions to address these limita-
tions by learning the parameterization of 2-additive HCI mod-
els together with marginal utilities in an efficient way, assum-
ing that the hierarchical structure be given. As will be shown,
NEUR-HCI satisfies by design the formal (e.g. monotonicity)
or semantic (e.g. based on the expert hierarchy) constraints,
thereby enforcing the soundness, interpretabiliy and semantic
meaningfulness of the eventual model.

2Furthermore these approaches, e.g. [Fallah Tehrani et al., 2012;
Fallah Tehrani et al., 2014], hardly extend to HCI as they rely on
a black-box sequential quadratic optimizer, and would face a non-
convex optimization problem in the hierarchical case.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1986



3 A Neural Representation of Utilities
This section details how to jointly learn the marginal utilities
and the parameters of their hierarchical aggregation, accord-
ing to the tree-structure hierarchy provided by the expert. The
difficulty is twofold: on the one hand, the underlying opti-
mization problem is non-convex; on the other hand, the hier-
archical structure of the aggregation makes it difficult to use a
gradient-based approach3. Both difficulties are addressed by
translating the sought model into a neural architecture, rep-
resenting the marginal utilities and their aggregation through
2-additive Choquet integrals, and complying by design with
their requirements. As said, only monotonic marginal util-
ities are considered in the following; the extension to more
complex utilities is left for further work.

3.1 Representation of Marginal Utilities
A marginal utility ui : Xi 7→ [0, 1] is a function mapping the
i-th attribute domainXi to the unit interval. It is assumed that
each domain4 Xi to be set to R, and it is further assumed that
the marginal utility ui increases with xi.

Marginal utility ui is represented as a weighted sum of sig-
moids, as in [Fallah Tehrani et al., 2014]:

ui(xi) =

p∑
k=0

rki
1 + e−(η

k
i xi−βk

i )
, (5)

where hyper-parameter p sets the maximum number of sig-
moids involved in the representation5 ; βki and ηki respectively
are the bias and precision parameters of the k-th sigmoid, and
rki its weight.

It is easy to see that ui satisfies the monotonicity and nor-
malization constraints under the following conditions:

∀k ∈ {1, . . . , p} : ηki > 0, rki > 0 and
p∑
k=1

rki = 1 (6)

Accordingly, ui can be represented as a one hidden layer neu-
ral net (Fig. 2), involving p hidden neurons with sigmoidal
activation function. Parameters η and r are clipped to 0 if
they happen to become negative in the learning process; the
fact that the r-values sum to one is ensured through batch
normalization. This marginal utility, thereafter referred to as
utility module, takes xi as input and returns utility ui(xi).

3.2 Representation of the Choquet Integral
As said, only 2-additive Choquet integrals are considered in
the following, leaving the extension of the approach to k-
additive integrals for future work. According to [Grabisch,
1997], a (flat) 2-additive Choquet integral on u = (u1 . . . un)
can be written as follows:

Cµ(u) =
n∑
i=1

wiui +
∑

1≤i<j≤n

(
w∧i,j(ui ∧ uj) + w∨i,j(ui ∨ uj)

)
(7)

3An alternative would be offered by considering categorical vari-
ables, taking inspiration from e.g. [Jang et al., 2017].

4In the case of a categorical attribute, e.g., color or name, rang-
ing in {1, . . . ,m}, these values are ordered after the expert’s prefer-
ences and mapped onto 1/m, 2/m, . . . , 1.

5The actual number of sigmoids is minimized through L1 regu-
larization, Eq. 10.

p1i

p2i

p3i

ui

xi

b

Utility

Hidden
layerInput

Bias

β3
i

β2
i

β1
i

η3i
η2i

η1i
r1i

r2i

r3i

Figure 2: A utility module with 3 hidden nodes (p = 3).

u1

u2

A

A

B

C

Output

Hidden
layer

Utility
layer

Output
layer

Figure 3: A 2-additive Choquet module with 2 inputs, involving
three categories of hidden neurons noted A, B and C (see text).

where ∧ and ∨ denote the min and max operators, respec-
tively, and the weights wi, w∧i,j , w

∨
i,j are all non-negative and

sum to one.
Most interestingly, the non-negativity constraints

∀i ∈ {1 . . . n} : wi ≥ 0;
∀i, j ∈ {1 . . . n} : i < j, w∧i,j ≥ 0
∀i, j ∈ {1 . . . n} : i < j, w∨i,j ≥ 0

(8)

are necessary and sufficient conditions to ensure that the 2-
additive Choquet integral is monotonous. The monotonicity
property can thus be obtained through n2 constraints. Like-
wise, the constraint

n∑
i=1

wi +

n∑
i,j=1,i<j

w∧i,j + w∨i,j = 1 (9)

is a necessary and sufficient condition to ensure the normal-
ization of the Choquet integral. As shown below, these con-
straints can be enforced in a straightforward manner within
the proposed neural architecture, making the representation
of admissible utility functions and Choquet integrals signifi-
cantly simpler.

Non-negativity constraints (Eq. 8) are enforced through a
change of variables6. Formally, letting σ denote the differen-
tiable softplus function, with σ(z) = ln(1 + exp(z)), then
weight wi is sought as σ(zi) for some real-valued zi. Like-
wise, real-valued z∨i,j (respectively z∧i,j) is introduced with
w∨i,j = σ(z∨i,j) (resp. w∧i,j = σ(z∧i,j)).

6The option of clipping wi, w
∧
i,j and w∨i,j to 0 when they happen

to become negative along the learning process, was discarded as it
entailed a high instability of the trained model.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1987



The normalization constraint (Eq. 9) is enforced through a
batch normalization layer [Ioffe and Szegedy, 2015].

Overall, a 2-additive Choquet integral over an n-
dimensional utility vector u = (u1, . . . un), thereafter re-
ferred to as Choquet module, is represented as a neural archi-
tecture with a single hidden-layer with n2 neurons (Fig. 3),
considering three types of neurons:

A : n neurons involve a single output ui and return wiui
(with wi = σ(zi))

B : n(n−1)
2 neurons, denoted h∧i,j with inputs ui and uj ,

return σ(z∧i,j)× (ui ∧ uj) (corresponding to a weighted
max-pooling on criteria i and j);

C : n(n−1)
2 neurons, denoted h∨i,j with inputs ui and uj ,

return σ(z∨i,j)× (ui ∨ uj) (corresponding to a weighted
min-pooling on criteria i and j);

4 Learning the Hierarchical Choquet Integral
Building upon the above neural modules encoding marginal
utility functions and 2-additive Choquet integrals, NEUR-
HCI defines an neural architecture representing the overall
hierarchical Choquet integral, combining marginal utilities
according to the hierarchical tree structure of criteria aggre-
gation provided by the expert. Back-propagation is leveraged
to achieve the end-to-end learning of the overall neural net
parameters, by exploiting the available data and optimizing a
standard supervised learning criterion.

4.1 Neural Hierarchical Choquet Integral
Letting T denote the hierarchical aggregation structure on n
criteria (Section 2.3), the target neural architecture is built
by i/ creating a utility module C(`i) for each leaf `i and ii/
creating a Choquet module Cg for each node g ∈ G. The
connection graph among the neural modules follows the tree
structure of T , that is, the output of Cj for j ranging in Ch(g)
form the input of Cg .

Example 5. The hierarchical Choquet integral described in
Example 1 is implemented through 6 utility modules (one for
each leaf) and 4 Choquet modules representing nodes 7, 8, 9
and 10, respectively, and denoted C7 (with input C1 and C2),
C8 (with inputs C3, C4 and C5), C9 (with inputs C6 and C8)
and finally C10 (with inputs C8 and C9).

Overall, the output of the neural net denoted C(x) depends
on the weight vector concatenating the parameters of the util-
ity and Choquet modules, denoted θ.

4.2 End-to-End Learning
The above neural architecture is trained using back-
propagation, along three settings depending on the available
dataset E .

Binary Classification In the simplest setting, E =
{(x(j), y(j)), j = 1 . . .m}, where y(j) is the binary label as-
sociated to alternative x(j) ∈ X , indicating whether this alter-
native is good or bad. The neural net is trained using a stan-
dard classification criterion (e.g. cross-entropy) augmented

with a L1 parsimony term aimed at minimizing the number
of sigmoids in each marginal utility function:

L(θ) =
∑m
j=1

[
y(j) log(C(x(j)) + (1− y(j)) log(1− C(x(j)))

]
+K

∑n
i=1

∑p
k=1 r

i
k

(10)
with K the weight of the regularization term.

Regression Another setting is when E = {(x(j), y(j)), j =
1 . . .m} and y(j) ∈ [0, 1] is the real-valued utility of alterna-
tive x(j). In this case, the neural net is trained using a standard
regression criterion (e.g. mean squared error) augmented with
a parsimony term as above:

L(θ) =
m∑
j=1

(
y(j) − C(x(j))

)2
+K

n∑
i=1

p∑
k=1

rik

Ranking A third setting is when E = {(x(j,1), x(j,2)), j =
1 . . .m} when the expert only indicates preferences x(j,1) �
x(j,2) between pairs of alternatives. The overall neural ar-
chitecture is trained akin a Siamese network [Bromley et al.,
1993; Burges et al., 2006]:

L(θ) =
m∑
j=1

(
C(x(j,2))− C(x(j,1))− η

)
+
+K

n∑
i=1

p∑
k=1

rik ,

with A+ = max(A, 0), η a margin hyper-parameter (meant
to enforce the fact that C(x(j,1)) > C(x(j,2)) + η, and K the
weight of the parsimony term as above.
Discussion. Let us consider the model space made of neural
architectures, where each scalar input is passed through a util-
ity module, the output of the utility modules are aggregated
through a Choquet module, and the output of the Choquet
modules are iteratively aggregated along other Choquet mod-
ules, following a tree-structure hierarchy T . By construction,
this model space can represent any HCI-U (hierarchical Cho-
quet Integral with utilities) when the number p of sigmoids
goes to infinity [Cybenko, 1989]; furthermore, any model
in this space is a valid HCI-U, satisfying monotonicity and
normalization constraints by design. The identifiability issue,
that is, whether the NEUR-HCI weight parameter θ is unique
in the large sample limit, is left for further work.

5 Empirical Validation
This section reports on the empirical performance of NEUR-
HCI comparatively to the state of the art.

5.1 Experimental Setting
The first goal of the experiments is to assess the robustness
of NEUR-HCI along the classification, regression and rank-
ing settings. The second goal is to investigate the respective
impacts of learning marginal utilities and using a hierarchi-
cal aggregation. Accordingly, four NEUR-HCI variants have
been considered: NCI learns a flat Choquet integral; NCI+U
learns a flat CI together with marginal utilities; NHCI learns
a hierarchical CI with a tree-structured hierarchy; NHCI+U
learns an HCI together with marginal utilities.

NEUR-HCI variants are compared to the following base-
lines: Multilayer perceptron (MLP) with 1 fully connected

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1988



Dataset MLP Logistic Reg. CUR NCI NCI+U NHCI NHCI+U
CPU 0.015 ± 0.021 0.091±0.051 0.024 ± 0.025 0.045±0.039 0.023±0.024 0.030±0.027 0.023±0.026
CEV 0.004 ± 0.004 0.110±0.023 0.084±0.067 0.059±0.012 0.051±0.023 0.035±0.009 0.019±0.017
LEV 0.135 ± 0.021 0.161± 0.022 0.143±0.0213 0.136 ± 0.022 0.135 ± 0.019 N/A N/A
MPG 0.113 ± 0.036 0.090 ± 0.030 0.112 ± 0.099 0.086 ± 0.027 0.079 ± 0.027 0.085 ± 0.029 0.082 ± 0.027
DB 0.143 ± 0.069 0.164± 0.071 0.235 ± 0.017 0.139±0.067 0.132± 0.068 0.141 ± 0.068 0.135 ± 0.068
MG 0.179 ± 0.028 0.196 ± 0.027 0.166± 0.022 0.195 ± 0.027 0.166 ± 0.026 0.201 ± 0.030 0.191 ± 0.028

Journal 0.180 ±0.063 0.250±0.070 0.218±0.086 0.207±0.065 0.197±0.060 0.219±0.065 0.216±0.062
Boston 0.124 ± 0.030 0.145±0.033 0.1360± 0.085 0.127±0.031 0.129±0.032 0.121±0.032 0.129±0.031
Titanic 0.182 ± 0.025 0.202 ± 0.027 0.185 ± 0.041 0.192±0.0264 0.193 ± 0.027 0.203±0.027 0.194±0.027

Table 1: NEUR-HCI, Classification setting: Classification error (average and variance over 1,000 runs).

Dataset MLP Linear Reg. NCI NCI+U NHCI NHCI+U
CPU 0.0005 ± 0.0016 0.0022±0.0019 0.0023±0.0032 0.0009±0.0013 0.0026±0.0023 0.0009±0.0011
CEV 0.0094 ± 0.003 0.0434±0.0442 0.0437±0.0037 0.0264±0.0027 0.0197±0.0017 0.0176±0.0017
LEV 0.0312 ± 0.0254 0.0252±0.0029 0.0252±0.0031 0.0252±0.0029 N/A N/A
MPG 0.0047 ± 0.0008 0.0089±0.0019 0.0084±0.0018 0.0056±0.0013 0.0091±0.0018 0.0057±0.0012

Journal 0.0410 ± 0.010 0.0524±0.0128 0.0631±0.0127 0.0385±0.0112 0.0629 ± 0.0127 0.0391 ± 0.0117
Boston 0.0079 ± 0.0030 0.0174±0.0038 0.0157 ±0.0037 0.0072±0.0023 0.0151 ± 0.0033 0.0077 ± 0.0023

Table 2: NEUR-HCI, Regression setting: Mean square error (average and variance over 1,000 runs)

Dataset MLP Linear Reg. NCI NCI+U NHCI NHCI+U
CPU 0.0005 ± 0.002 0.0006 ± 0.003 0.0007 ± 0.003 0.0006 ± 0.003 0.0009 ± 0.003 0.0010 ± 0.004
CEV 0.0174 ± 0.012 0.0642±0.011 0.0243±0.005 0.0099±0.002 0.0165±0.004 0.0088±0.003
LEV 0.0178 ± 0.025 0.0179±0.023 0.0178 ±0.024 0.0177±0.023 N/A N/A
MPG 0.0613 ± 0.012 0.0642±0.011 0.0610±0.011 0.0612±0.011 0.0633±0.012 0.0621±0.011
DB 0.1355 ± 0.0796 0.1257±0.079 0.1216±0.081 0.0942±0.069 0.1231 ± 0.092 0.0962 ± 0.081
MG 0.2601 ± 0.046 0.2661±0.047 0.2668±0.045 0.2381±0.037 0.2701±0.052 0.2446 ±0.036

Journal 0.1801 ± 0.064 0.1802±0.065 0.1761±0.063 0.1838±0.066 0.1711±0.063 0.1889±0.065
Boston 0.0659 ± 0.016 0.0790±0.014 0.0790±0.015 0.0669±0.012 0.0752 ± 0.014 0.0681 ± 0.014
Titanic 0.1521 ± 0.027 0.1651 ± 0.029 0.1632 ±0.028 0.1533 ±0.028 0.166 ± 0.028 0.1542 ± 0.029

Arguments 1 0.0157 ± 0.015 0.0195±0.016 0.0145±0.012 0.0141±0.012 0.0141±0.012 0.0140±0.012
Arguments 2 0.0588 ± 0.028 0.0653±0.031 0.0644±0.028 0.0581±0.027 0.0572±0.027 0.0572±0.028
Arguments 3 0.0740 ± 0.039 0.0941±0.042 0.0783±0.040 0.0784±0.040 0.0761±0.039 0.0771±0.041

Table 3: NEUR-HCI, Ranking setting: percentage of mis-ordered pairs (average and variance over 1,000 runs)

hidden layer of n2 neurons, sigmoid activation function; Lo-
gistic regression (in the classification setting); Linear regres-
sion (in the regression and ranking settings); Choquistic Util-
itaristic Regression7 (CUR, in the classification setting) [Fal-
lah Tehrani et al., 2014].

The standard MCDM benchmarks include CPU, CEV,
LEV, MPG, DenBosch (DB), Mammographics (MG), Jour-
nal8, Boston Housing9, Titanic10 and the Dagstuhl-15512 Ar-
guments Quality corpus11 [Wachsmuth et al., 2017]. The
last one, reporting the preferences of three decision makers,
yields three sub-datasets referred to as Arguments 1, Argu-
ments 2, Arguments 3 (each one being associated with a sin-

7As the binarization used with CUR was not available, we ran
CUR on the same splits and labels as NEUR-HCI for a fair com-
parison; this might explain the performance differences w.r.t. the
original paper.

8https://cs.uni-paderborn.de/?id=63916
9http://lib.stat.cmu.edu/datasets/boston

10https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/
problem12.html

11http://argumentation.bplaced.net/arguana/data

gle decision maker). A hierarchy is given for the CEV and
Arguments datasets; for all other datasets but LEV, the au-
thors managed to build a hierarchy; for LEV, no hierarchy
was agreed upon (indicated as NA in the results). Overall, the
number of features ranges from 4 to 15; the number of exam-
ples ranges from 119 to 1728. Ranking datasets are built from
classification (respectively regression) datasets, setting that
x(i) � x(j) whenever y(i) > y(j) (resp. y(i) > y(j) + .05).

Each feature is associated with its monotonicity, i.e.
whether the global score U(x) increases with xi 12. All the
features and labels in the training sets, were normalized lin-
early in [0, 1].

The performance indicators are measured as follows. Each
dataset is randomly split into an 80% train and 20% test sets;
the performance of the model trained from the train set is
measured on the test set, and averaged over 1,000 random
splits. Each time, all of the methods are evaluated on the

12The monotonicity is heuristically determined from the dataset,
and decreasing criteria are multiplied by −1 to comply with the fact
that a Choquet integral is non-decreasing w.r.t. its inputs.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1989



same 1000 splits. Depending on the setting, the performance
indicator is the misclassification rate, the mean squared error,
and the swapping rate in the ranking setting.

NEUR-HCI hyper-parameters include the regularization
weight K, set to 0 after a few preliminary experiments.

5.2 Analysis of the Results
Tables 1, 2 and 3 respectively report the NEUR-HCI perfor-
mances in the classification, regression and ranking settings.
The best result for each dataset is displayed in bold 13. The
MLP and NEUR-HCI computational costs are below 5 min-
utes for each dataset on an Intel i7. The CUR computational
cost is not comparable (Matlab implementation).

As could have been expected, MLP generally behaves well;
its number of weights, cubic in the number of criteria, how-
ever precludes the interpretation of the model. NEUR-HCI
behaves on par or better than the other interpretable models,
CUR and linear models.

A first remark is that learning marginal utilities does im-
prove the performance: NCI+U and NHCI+U perform better
than their NCI and NHCI counterparts. While this improve-
ment can be naturally explained from the increased depth of
the neural architecture and thus the higher complexity of the
model, it does not come at the expense of the model interpre-
tation.

A second remark is that hierarchical models outperform
flat models on both datasets with an expert hierarchy (CEV
and Arguments). On some other datasets, e.g. MPG, DG, MB,
the hierarchy adversely affects the performance; as said, this
hierarchy is merely guessed by the authors. This suggests that
a flat model is preferable to one with an irrelevant hierarchy.

Most interestingly in terms of model identification, the so-
lution trained from a given dataset along independent runs
is very stable, i.e. the parameters always converge towards
the same values14. Table 4 reports the variance over 100
runs of the 21 model parameters (the Möbius representation
[Grabisch and Labreuche, 2010]) on the CPU dataset. Fur-
ther work will investigate the identifiability of the HCI within
NEUR-HCI in the large sample limit.

The model stability makes room for the easy visual inspec-
tion of the model. Indeed, a 2-additive model can be repre-
sented in the 2D plane, with the importance of the i-th cri-
terion (respectively the synergy between i-th and j-th crite-
ria) depicted as the color of the (i, i) (respectively (i, j) and
(j, i)) squares: the darker the more important. As illustrated
on Fig. 4, the most important criteria in the CEV domain
are the safety rating (criterion 6) and to a lesser extent the
passenger capacity (criterion 4); criteria 4 and 6 also happen
to have a strong synergy. The buying price and the security
rating also have a significant synergy. It is emphasized that
this straightforward visualization enables the decision maker
to instantly check the trained model; the estimated synergies
can be confronted to the expectations and if needed the model

13when several results are in bold, this means that the difference
is not statistically significant

14A similar behavior is observed on artificial datasets, where
NEUR-HCI exactly recovers the model used to label the data.

0.008±0.001 0.008±0.002 0.013±0.003
0.0±0.0 0.016±0.006 0.017±0.007

-0.007±0.006 0.001±0.001 0.131±0.005
0.03±0.011 0.168±0.008 0.004±0.004

0.121±0.006 0.025±0.008 0.129±0.003
0.047±0.005 -0.013±0.007 0.025±0.007
0.08±0.006 0.169±0.009 0.03±0.007

Table 4: CPU dataset (regression setting): Mean and standard devi-
ation of the model parameters (Möbius values) over 100 runs.

Figure 4: CEV dataset: Visual inspection of the trained model,
showing the importance of criteria 4 and 6, of their synergy, and
to a lesser extent the synergy of criteria 1 and 6.

can be revised by augmenting the dataset, adding samples to
illustrate the desired effects.

6 Conclusion and Perspectives
The NEUR-HCI framework presented in the paper relies
on mapping a particular class of MCDM models, the 2-
additive hierarchical Choquet integrals, onto neural architec-
tures. This original mapping relies on the definition of two
elementary blocks: utility modules and Choquet modules. A
2-HCI with a given hierarchical aggregation structure T is
mapped onto a neural net with a first layer made of utility
modules, and other layers iteratively aggregating the criteria
through Choquet modules according to T . The merit of the
approach is twofold: on the one hand, the neural net complies
by design with the 2-HCI constraints; on the other hand, its
end-to-end training from data is achieved efficiently through
back-propagation. The empirical validation of the approach
demonstrates its good performance compared to other inter-
pretable MCDMs, and the stability of the learned model.

The stability and interpretability of these models open
some perspectives for further research in representation learn-
ing, as they enable to instantly confront the learned models
with the expert expectations.

Future work will also consider the extension of the ap-
proach to 3-additive Choquet integrals, and aim to learn the
aggregation tree structure from the data. Another research
direction will investigate the identifiability of the 2-HCI.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1990



References
[Alavi et al., 2009] Sajid H. Alavi, Javad Jassbi, Paulo J. A.

Serra, and Rita A. Ribeiro. Defining Fuzzy Measures: A
Comparative Study with Genetic and Gradient Descent Al-
gorithms. In J. A. Tenreiro Machado, Béla Pátkai, and
Imre J. Rudas, editors, Intelligent Engineering Systems
and Computational Cybernetics, pages 427–437. Springer,
2009.

[Benabbou et al., 2017] Nawal Benabbou, Patrice Perny, and
Paolo Viappiani. Incremental elicitation of Choquet ca-
pacities for multicriteria choice, ranking and sorting prob-
lems. Artificial Intelligence, 246:152–180, 2017.

[Bourdache et al., 2019] Nadjet Bourdache, Patrice Perny,
and Olivier Spanjaard. Incremental Elicitation of Rank-
Dependent Aggregation Functions based on Bayesian Lin-
ear Regression. In IJCAI-19, pages 2023–2029, 2019.

[Bous and Pirlot, 2013] Géraldine Bous and Marc Pirlot.
Learning Multicriteria Utility Functions with Random
Utility Models. In ADT-13, pages 101–115. 2013.

[Bromley et al., 1993] Jane Bromley, Isabelle Guyon, Yann
Lecun, Eduard Säckinger, and Roopak Shah. Signature
verification using a siamese time delay neural network. Int.
J. of Pattern Recognition and AI, 7:737–744, 1993.

[Burges et al., 2006] Christopher J. C. Burges, Robert
Ragno, and Quoc Viet Le. Learning to rank with non-
smooth cost functions. In Bernhard Schölkopf, John C.
Platt, and Thomas Hofmann, editors, Neural Informa-
tion Processing Systems NIPS, pages 193–200. MIT Press,
2006.

[Cybenko, 1989] G. Cybenko. Approximations by superpo-
sitions of sigmoidal functions. Mathematics of Control,
Signals, and Systems, 2(4):303–314, 1989.

[Fallah Tehrani et al., 2014] Ali Fallah Tehrani, Christophe
Labreuche, and Eyke Hüllermeier. Choquistic Utilitaris-
tic Regression. In DA2PL-14, 2014.

[Fallah Tehrani et al., 2012] Ali Fallah Tehrani, Weiwei
Cheng, Krzysztof Dembczyński, and Eyke Hüllermeier.
Learning monotone nonlinear models using the Choquet
integral. Machine Learning, 89(1):183–211, 2012.

[Fishburn, 1970] Peter C Fishburn. Utility theory for deci-
sion making. Wiley, 1970.

[Fürnkranz and Hüllermeier, 2011] Johannes Fürnkranz and
Eyke Hüllermeier. Preference Learning and Ranking by
Pairwise Comparison. In Johannes Fürnkranz and Eyke
Hüllermeier, editors, Preference Learning, pages 65–82.
Springer, 2011.

[Grabisch and Labreuche, 2010] Michel Grabisch and
Christophe Labreuche. A decade of application of the
Choquet and Sugeno integrals in multi-criteria decision
aid. ANOR, 175:247–286, 2010.

[Grabisch et al., 2008] Michel Grabisch, Ivan Kojadinovic,
and Patrick Meyer. A review of methods for capacity iden-
tification in Choquet integral based multi-attribute utility
theory. Eur. J. of Operational Res., 186(2):766–785, 2008.

[Grabisch, 1995] M. Grabisch. A new algorithm for identi-
fying fuzzy measures and its application to pattern recog-
nition. In FUZZ-IEEE-95, pages 145–150, 1995.

[Grabisch, 1997] Michel Grabisch. K-order Additive Dis-
crete Fuzzy Measures and Their Representation. Fuzzy
Sets and Systems, 92:167–189, 1997.

[Havens and Anderson, 2018] Timothy C Havens and
Derek T Anderson. Machine Learning of Choquet
Integral Regression with Respect to a Bounded Capacity
(or Non-monotonic Fuzzy Measure). In FUZZ-IEEE-18,
2018.

[Huang et al., 2008] Z. Huang, T.D. Gedeon, and
M. Nikravesh. Pattern tree induction: A new ma-
chine learning method. IEEE TFS, 16(4):958–970,
2008.

[Ioffe and Szegedy, 2015] S. Ioffe and C. Szegedy. Batch
normalization: Accelerating deep network training by re-
ducing internal covariate shift. In ICML-15, 2015.

[Jang et al., 2017] Eric Jang, Shixiang Gu, and Ben Poole.
Categorical reparameterization with gumbel-softmax. In
Int. Conf. on Learning Representations ICLR. OpenRe-
view.net, 2017.

[Krantz et al., 1971] D.H. Krantz, R.D. Luce, P. Suppes, and
A. Tversky. Foundations of measurement: vol. 1, additive
and polynomial representations. Academic Press, 1971.

[Labreuche and Fossier, 2018] Christophe Labreuche and
Simon Fossier. Explaining Multi-Criteria Decision Aid-
ing Models with an Extended Shapley Value. In IJCAI,
pages 331–339, 2018.

[Miller, 1956] George Abram Miller. The magical number
seven plus or minus two: some limits on our capacity for
processing information. Psychological review, 63 2:81–
97, 1956.

[Senge and Hüllermeier, 2015] R. Senge and E. Hüllermeier.
Fast fuzzy pattern tree learning for classification. IEEE
Transactions on Fuzzy Systems, 23(6):2024–2033, 2015.

[Senge and Hüllermeier, 2011] R Senge and E Hüllermeier.
Top-Down Induction of Fuzzy Pattern Trees. IEEE Trans-
actions on Fuzzy Systems, 19(2):241–252, 2011.

[Sobrie, 2016] Olivier Sobrie. Learning preferences with
multiple-criteria models. PhD thesis, Univ. of Mons, 2016.

[Wachsmuth et al., 2017] H. Wachsmuth, N. Naderi, Y. Hou,
Y. Bilu, V. Prabhakaran, T.A. Thijm, G. Hirst, and B. Stein.
Computational argumentation quality assessment in natu-
ral language. In Proc. 15th Conf. of the European Chapter
of the Ass. for Computational Linguistics, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1991


	Introduction
	Formal Background
	Notations
	Aggregation Functions
	Hierarchical Models
	Related Work

	A Neural Representation of Utilities
	Representation of Marginal Utilities
	Representation of the Choquet Integral

	Learning the Hierarchical Choquet Integral
	Neural Hierarchical Choquet Integral
	End-to-End Learning

	Empirical Validation
	Experimental Setting
	Analysis of the Results

	Conclusion and Perspectives

