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Abstract

The positive unlabeled (PU) learning aims to train a
binary classifier from a set of positive labeled sam-
ples and other unlabeled samples. Much research
has been done on this special branch of weakly su-
pervised classification problems. Since only part
of the positive class is labeled, the classical PU
model trains the classifier assuming the class-prior
is known. However, the true class prior is usu-
ally difficult to obtain and must be learned from
the given data, and the traditional methods may not
work. In this paper, we formulate a convex for-
mulation to jointly solve the class-prior unknown
problem and train an accurate classifier with no
need of any class-prior assumptions or additional
negative samples. The class prior is estimated by
pursuing the optimal solution of gradient threshold-
ing and the classifier is simultaneously trained by
performing empirical unbiased risk. The detailed
derivation and theoretical analysis of the proposed
model are outlined, and a comparison of our exper-
iments with other representative methods prove the
superiority of our method.

1 Introduction

For traditional supervised classification problems, both pos-
itive and negative labels should be known before building
a suitable binary classifier. However, in practical applica-
tion, negative data labels are difficult to obtain, such as date
sets, where only the relevant class is known, and the nega-
tive class is very large and dense [Kiryo er al., 2017]. At
this time, without the assistance of negative labels, analysis
of positive and unlabeled (PU) data, which tries to learn a bi-
nary classifier by using only part of the labeled positive sam-
ples and other mixed samples, is used in practical applica-
tions. This special weakly supervised learning problem has
been utilized in many real-world scenarios [Yu er al., 2002;
Li and Liu, 2003; Fang et al., 2020a; Li et al., 2010;
Xu et al., 2017; Wang et al., 2018], such as web page clas-
sification, text classification, time series classification, multi-
class classification, and remote-sensing images classification,
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etc.

For better understanding of the PU learning, we give one
typical example, the personalized information pushing of
webs. We may only know what the users’ interests by their
browsing records, but do not know what users’ dislike. There-
fore, to ensure matching between push information and users’
demands, it is necessary to adopt an appropriate content filter-
ing approach. Since only part of the preferences are provided,
PU learning methods can push the text of users’ needs while
filtering out the irrelevant information.

Presently, mainstream PU data analysis methods can be
classified into the following three categories. The first cat-
egory is heuristic methods, which identify reliable negative
examples from the unlabeled data and then train the classifier
using the given positive samples as well as the learned reli-
able negative examples. The representative method of heuris-
tic learning is the two-step approach, such as S-EM [Liu et
al., 2002], PEBL [Yu et al., 2002], and Roc-SVM [Li and
Liu, 2003]. The main disadvantage of most heuristic meth-
ods is that the classification accuracy is seriously affected
by the selection of reliable negative examples. In the sec-
ond category, all unlabeled data is treated as noisy negative
examples, and the classifier is trained by introducing small
weights to negative examples. This procedure makes unla-
beled positive examples have a lower penalization, such that
they are labeled as negatives. Lee and Liu [2003] explain that
ideally, the known positive data is pure and reliable, and lo-
gistic regression is performed after weighting the noisy sam-
ples. In reality, however the positive data may also misla-
beled, and Liu and Dai proposed a biased SVM (B-SVM)
[2003] method that directly uses the asymmetric cost formu-
lation of the SVM algorithm. Since these approaches need a
training process to estimate the “bias”, a volatile classifica-
tion will result when the training set is limited or the positive
samples are unreliable. The third category associates the clas-
sifier with the risk of classification and transfers PU learning
into a cost-sensitive learning problem [Gong et al., 2019b].
For example, Plessis [2014; 2015] proposed a convex formu-
lation for PU learning and utilizes several different loss func-
tions to maintain unbiased solutions. Further to the achieve-
ment of superior computational and memory performance,
Sansone etc. [2018] proposed a scalable PU learning algo-
rithm that converts the unbiased PU model into a sequence of
quadratic programming (QP) subproblems. These methods
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usually employ a reweighing process to calibrate the data dis-
tribution because of the absence of negative samples; there-
fore, knowledge of the positive class prior is crucial. Addi-
tionally, there are also some setting-free PU methods, such as
the label disambiguation-based methods [Zhang et al., 2019;
Gong et al., 2019al, which enlarge the margin of potential
positive examples and negative ones, as well as some boost-
strap sampling-based methods that create ensemble models
for PU learning [Claesen er al., 2015; Yang et al., 2017].

Although a variety of methods have been proposed, the at-
tempt to correctly label a data point will still interpreted by
the absence of negative class. Fortunately, this defect can
be rectified by explicitly acquiring the class prior, which is
utilized as incorporated information for modeling or as a pre-
processing step to assign weights to unlabeled data. Since
the class prior is always unknown, in practical applications,
research based on class-prior estimation has been active in
past decades [Elkan and Noto, 2008; Christoffel et al., 2016;
Bekker and Davis, 2018].

To overcome the drawbacks of the aforementioned meth-
ods and to expand on the mixture proportion estimation the-
ory [Ramaswamy ef al., 20161, we follow the third category
and formulate a convex risk minimization joint class-prior ap-
proximation model for PU data analysis. In this model, we
utilize an unbiased estimation of the classification risk of PU
data, using double hinge loss to train the classifier, and pursue
the class prior in a kernel embedding space with a mixture
proportion approximation term. In particular, a proportion
regularization term is added to balance the decision boundary
and the prior estimation, as well as improve the accuracy.

The proposed PU learning model, which is named as
“CAPU” in short, is effectively solved by the gradient thresh-
olding algorithm. The theoretical analysis proves that the
convergence of our model and the experimental results on ex-
tensive datasets demonstrate the superiority of the proposed
algorithm compared to other state-of-the-art methods.

2 Preliminaries of PU Learning

Assume the d dimensional pattern 2 € R? and its class la-
bel y € {1,—1} follows the class-probability density, with
p(x,y). For the given i.i.d. positive dataset Xp and unla-
beled dataset X7, we have:

Xpo={w}iZ, ~plaly =1),
Xy = Az} ~ p(x)
=mp(zly =1) + (1 - m)p(ely = —1),
where p(x) is the marginal density, and 7 := p(y = 1) is the
positive class-prior probability in unlabeled data.
The goal is to learn an arbitrary decision function g : R? —
R to binary classify the PU data and utilize £ : R — R as the

loss function to quantify the values of yg(x). Then, the risks
of classifier g under the loss function ¢ are:

RP( ) = Eonp(aly=1)[€(9(2))],
Ru(9) = Epnp(a) [L(9(2))],

Ru,p(9) = Eonpaly=1)[€(g9(2))],

Run(9) = Eonpely=—1) [€(—=g(2))],
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where Rp(g), Ru,p and Ry, n(g) denote the classification
risks of the positive and unlabeled samples, and Eq (5, []
denotes the expectation of x over the probability distribution
p(z,y).

The binary classification risk is a sum of the weighted pos-
itive class loss and negative class loss; therefore, the risk of
our PU problem can be expressed as:

R(g) = Ep(ac,y) [g(yg(l'))}
=1Ru,p(9) + (1 —m)Ru,n(9)-

The first term in Eq. (1) is equal to the risk of the posi-
tive samples, which means that Ry p(g) = Rp(g). More-
over, since no negative samples are labeled, naively training
a classifier using only positive and unlabeled data may cause
a bias. To overcome this problem, du Plessis er al. [2014;
2015] devised a risk deformation formula that is equivalent
to traditional supervised classification risk. The second term
in Eq. (1) is replaced by

(1 - 71-),R’U7N(g) = (1 - 7T)H-Eatrwp(x\y:71)[z(_g(x)]
= Erwp('c) [E(—g(m))] - 71—H‘Ear:'vp(ach/:l) M(_g(l)] )

)]

= Ru(—9) —mRp(—9).
Introducing a convex surrogate loss /(m) = ((m) +
{(—m) = —m, the risk is yielded to the following convex

optimization problem and solved efficiently:
R(9) = 7Rp(9) + Ru(—g) = 7Ei[~g] + Ru(—g). ()

3 Our Method

In this section, we first establish our CAPU model, and then
list brief theoretical analysis and optimization process of our
model.

3.1 Model
Giving a dataset X = {Xp;Xvu} = {(z1,51), .., (%n,,

Yny)s (Tnyt1,Ynp+1)s o (Tny Yn) } With ny, positive samples
and n,, unlabeled samples, where n = n, + n,. In practice,
we use a linear-in-parameter function to denote g:

g(x) = a’p(z) +b, )
where ¢ is the set of kernel basis function which will be dis-

cussed later in this section. Then the empirical risk R of Eq.
(3) using n samples is:

Rig) == 20w — b
= 5
| i - &)
+ — Zﬁ(fa o(x;) —b) + Pladle
Yi=1

where A is the regularization parameter, and « is the param-
eter vector applied to minimize the ¢5-regularized empirical
risk. To solve this optimization problem, a convex loss func-
tion [Ye et al., 2018], double hinge loss, is introduced to Eq.
(5). The formulation of DH loss is:

1

lpu(z) = max(—z,max(o,% — 5Z))
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The PU model with a convex loss can be easily solved us-
ing the quadratic programming method. These risk estima-
tors are based on the assumption that the class-prior prob-
ability 7 is known. However, in real-word applications, 7
is difficult to obtain and must be learned from data, which
makes the risk evaluation model unsolvable. Therefore, com-
bining a mixture proportion estimator, we proposed a Class-
prior Approximation model for PU learning (CAPU), this op-
timization function can simultaneously pursue the class prior
and optimize the parameters of the classifier.

If the distribution of Xy obeys i.i.d and can be approxi-
mately represented by a linear combination of positive and
negative distributions:

Py =7*Pup+ (1 —7")Pyn-. (6)

where Py, Py, p and Py, n are the distributions of Xy, Xy p
and X n in feature space X, respectively, and 7* represents
the true value of T,

For general semi-supervised classification learning that
has both positive and negative labels, the labeled samples
should have similar distributions to the unlabeled samples:
Xp, Xup ~ plzly = 1) and Xy, Xun ~ plzly = —1),
and the mixture proportion estimation (MPE) methods [Ra-
maswamy ef al., 2016; Yu et al., 2018] can solve this prob-
lem. It assumes there exists a reproducing kernel Hilbert
space (RKHS) H, where ¢ : X — H represents the ker-
nel mapping © — k(z, -). The class proportion 7 is solved by
minimizing the distance between the mixture and the given
samples in the reproducing kernel Hilbert space (RKHS):

d(m) = fl|¢(Py) = 7¢(Pp) = (1 =m)o(Pn)ll (7

Intuitively, this equation equals the maximum mean dis-
crepancy (MMD), where d() is a reconstruction from Pp
and Py to the mixture Py;. In practical applications, it must
be replaced by empirical function:

d(m) = min||¢(Py) — 7¢(Pp) -

_mmH—Z(b z; ——Zqﬁ xi) @)
1—m
- ;as(a:nu

which is a convex quadratic programming problem and can be
solved using standard procedures. However, for practical PU
analysis, the MPE model usually fails to separate the unla-
beled negative samples from the mixture, since only positive
samples are known. The third term of Eq. (8) is not identi-
fiable; therefore, the optimal solution 7 tends to be 1, which
will cause serious misclassification.

To better suit PU data, we rewrite Eq. (6) in the following
form:

(1 —m)o(Py)|

Pun =60"Py + (1 —0")Pu,p,

where 0* = 1_17r*. So for the deformation from 6 to ,

there is a probability weighted vector v C R"™ given by
v = {y; € [0,1),>,v; = 1}, which makes the follow-
ing empirical squared maximum mean discrepancy (MMD)

2016

lower bounded:

Ny, Np

1nf||—z¢ (z4) ZVZ¢

With a combination of the empirical risk and squared
MMD, the objective function of our CAPU model is for-
mulated using the same RBF kernel, (¢(z;),d(z;)) =

exp(— w) We can tell the coefficient v; corresponds to
the positive class turn out to be smaller, and that corresponds
to negative class are larger, which just opposite to o™ ¢(x;).
To further makes our objective function more robust, we as-
sume the separability vector v and the parameter a satisfy
v ~ —1¢(z)Ta. Therefore, the objective function of our

CAPU model F with the selected DH loss is written as:

)% (9)

]:'DH(a,b,@,u) =@

0—1 1 & T
Tb+ aZfDH(—a d(x;) — b)+

+7Z¢xz ZV1¢ H2

+Bllv + ﬁszs(x)Tan?.

(10)

Compared to state-of-the-art method, the proposed model
expects to simultaneously approximate the class prior of unla-
beled samples and learn a fit classifier. In particular, we intro-
duce a slack variable £ € R™* to transform the double hinge
loss function, and utilize y} = [177;9 Ep, o 1T |, where 1; is
a k-dimensional all ones vector, to transform Eq. (10), whose
equivalent dual problem can be expressed as:

1 R D S
—~TUKUTy 1 KUy - =6"1,
5, oY SY TRl
0—1 -
T
)T K (g — K1
+ (no —v)" K(po —v) + B(v + )
1 0—1 1
— —KUT)T 1 KU"
KU Y Uy
1 1 1 1
s.t. v+ -0 = 71nua Onu =v- =0 = 717@7
2 w 2 Ny

1 0—1
Onu 55 = 71nu7 lT =

Ny nu Y 0’
v =0, 121/:1.

Where 7, € R™ are the Lagrange multipliers introduced to
derive the dual formulation, K € R™*™ is the Gram matrix
given by K; ; = (¢(z;),¢(x;)), 1 = [1,...,1,0,...,0]T €
R"™*1 has n, ones elements, and U € R™*™ is a concate-
nation of a n, X n, null matrix and a n,-size identity ma-
trix. > represents the operation elements-wise. The proposed
CAPU model can be efficiently computed via solving a stan-
dard quadratic programming using the gradient thresholding
estimator.
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3.2 Theoretical Analysis

To solve the parameters of the proposed CAPU model, we uti-
lize the gradient thresholding estimator which first estimate
7 (or equivalently ) and then using standard quadratic pro-
gramming method to find (%, d, 7). () represents the optimal
value of the current variable. Before solving this model, some
theoretical analysis is listed for the proposed model.

First, our objective function can be viewed as a function
related to parameter 6:

1

F(0) = = 5Eontaly=n[-9(2)]

+ (1= 0)p(Pp) + 06(Py) — vp(P)|* +C
Then the following Lemma holds,

Lemma 1. Let the kernel k be such that k(x,x) < 1 for all
x € X. Then with probability at least 1 — 0, the following
holds if n, > 2(6*)*log(3)

np — 2n,
1 1)
I6(Pu) —0Pu)l <+ ;%(5)
log(2
16(Pp) — 6(Pp)| < ;T + ngf)
9 log(3)

16(Pn) — &(Pn)| < 1207 + V1 /20

where C' = 2[b| + + + 3 (1o — v)"K (o — v) + 2v"v. The
first statement can be derived by deducing Rademacher com-
plexity and the approximation of Eq. (10). The second and
third statements are learned from Theorem 2 of Smola et al.
[2007] and the last statement utilizes Hoeffding’s inequality.

Lemma 1 proves that F(6) is upper bounded for 6 € [1, 6*].
Lemma 2. Forall § € [1,0*] we have:

2602 — 26 62
9* 6*2
n vnC log(g)
0 0\/2n, ’

F(0) > F(0) — (26> =20 + 1)

F(0) < (26% — 20 +

2v/nC N log(%))

0 0./2n, =
Theorem 1. Assume the kernel k, the distributions Xp and
Xy satisfy the separability condition with average level T,

the margin is ¢ > 0, and the tolerance is d, then for arbitrary
A > 0, we have

FO*+A) > (c+ HA—*d)2 -

n(t —d) b
0 +A O+ A

2017

Algorithm 1 The optimization process of the proposed model

Input: The given positive samples xp := {z;}}7, and the
unlabeled samples zy := {z;}*,
Parameter: The width of Gaussian kernel o, hyperparame-
ters A and /3 and threshold 4 = 1/ min(ny, n,,)
Output: 0,7,6,0
Constants: ¢ = 0.04, 0., = 10

1: Let6; =1, 0, = Opax

2: while 6, — 6, > edo
3. 9 — 91,+0r

: 2
4: 91 =0 - 6/4
5w =505, L
6: .7:1 = ]‘:(91)
7. 0, =0+ 6/4
/l;)F2 = [1;:,92 IEP, fff Zu]
8: Fo = ./.:.(92)
0. 5= YTJTL
10:  if s > /i then
11: 0, = 0.
12:  else
13: 91 = 9
14:  end if

15: end while .

16: return — fand7=1—-1/60

17: Optimize the objective function méin F(0)
Y,0,V

18: returny,Jd,v

Through the above analysis, we can finally derive that the
slope of function F () satisfies:

Lemma 3. Let the kernel k be such that k(z,z) < 1 for
all x € X. Assume the kernel k, the distributions Pp and
P satisfy the separability condition with average level T,
the margin is ¢ > 0 and the tolerance is d. Then the gradient

of F(0) at some 0,. < 0* is also upper and lower bounded.

Proof. (Sketch) This lemma can be derived from Lemma 2
and Theorem 1. Considering that 7(6) is a convex function

of 6, the gradient of F(6) at some § < 6* is also upper and
lower bounded. O

3.3 Optimization

Since there is a reciprocal form of # in our objective func-
tion, the general optimization method is difficult to apply.
Through above analysis, we derived that our objective func-
tion F(6) is upper bounded and converges to 6** at a rate of
O(n, ). Therefore, the gradient thresholding algorithm via
binary search is designed to solve the proposed model. De-
tailed descriptions of the computation are given in Algorithm
1, where F (0) is the first objective function and the setting of
threshold  is followed by Lemma 3.

This gradient thresholding estimator first gives the upper
and lower bounds (6; and 6,.) to constrain the value of 6, and
it conducts the binary search by minimizing the value of F (0)
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at 0+e¢/4, respectively. The current bounds of 6 and the termi-
nation of Algorithm 1 is determined by the computed slope.

The minimization of Fj is a standard quadratic programming
problem and can be optimized by the general purpose con-
vex programming solver, such as CVXOPT, Gurobi or MAT-
LAB’s internal ‘quadprog’ function.

4 Experimental Procedure

In this section, we systematically evaluate the effectiveness of
the proposed CAPU method compared with other state-of-the
art PU methods in a synthetic dataset and real-world datasets
taken from UCI Machine Learning Repository.

Synthetic Dataset. The parametric analysis and evalua-
tions were implemented in the synthetic dataset. This data
comprises two clusters generated from Gaussian distributions
centered at (0, 0) and (2, 2), and the variance of both clusters
is 1. In total, it contains 800 samples whereas 200 examples
are labeled as positives. The size of the unlabeled samples is
fixed at 600. Then, the proposed CAPU model was conducted
with a class prior varies from [0.3, 0.5, 0.7].

Real-world Datasets. We utilize four real-world datasets
downloaded from the UCI Machine Learning Repository to
evaluate the performance of our proposed algorithm. These
datasets include the audit, ionosphere, diabetes and vertebral,
and their configurations are listed in Table 2. Based on the
sizes of the different datasets, we set the number of positive
samples as 100 and the unlabeled samples as 400 for the audit
dataset. The sizes of n,, and n,, are 50 and 200, respectively,
for the diabetes dataset. And for the ionosphere and vertebral
datasets, we set n,, = 25 and n,, = 100. For each dataset,
m € [30%,50%, 70%)] samples of the unlabel to be positive
and the rest samples are negative.

Comparable Methods. The proposed CAPU method is
compared with related works such as EN! [Elkan and Noto,
20081, PE? [Du Plessis and Sugiyama, 2014], KM? [Ra-
maswamy et al., 2016], and TIcE* [Bekker and Davis, 2018].
The aforementioned methods have made great efforts in es-
timating the true class prior. Considering that the KM and
TIcE do not provide a classification process, we report the
accuracies utilizing a benchmark PU learning method: the
unbiased PU (UPU)’ [Du Plessis et al., 2015]. For further
accuracy comparison, the UPU [Du Plessis et al., 2015] and
an improved method, USMO?° [Sansone er al., 2018], are also
tested with the truth vale of .

!The coding work of EN method can be found at https:/github.
com/aldro61/pu-learning

*The code for PE is
http://www.mcduplessis.com/index.php/
class-prior-estimation-from-positive-and-unlabeled-data/

3The code for KM method is taken from http:/web.eecs.umich.
edu/~cscott/code/kernel_ MPE.zip

“The code for TICE method can be found at https://dtai.cs.
kuleuven.be/software/tice

5The coding work of UPU method can be found at https:/github.
com/kiryor/nnPUlearning

The code for USMO method is available at https://github.com/
emsansone/USMO

taken from
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" Method— 0.3 0.5 0.7
0.588(0.288)  0.646(0.146)  0.690(0.010)
EN 63.45+20.12¢  68.341+25.90v  73.03+17.50v
0.403(0.103)  0.593(0.007)  0.774(0.074)
PE 53.0544.68¢  55.5944.14  73.5143.83¢
0.299(0.001)  0.505(0.005)  0.702(0.002)
KM+UPU 61274877  54.05+33.05¢  81.99+2.44 v
0.505(0.205)  0.755(0.255)  0.903(0.203)
TICE+UPU  59.6143.86/  66.1943.25¢ 823540V
UPU 60.1346.34v 65274132  82.35+0¢
USMO  83.644658/  92.2642.00  84.7346.10v
0379(0.079)  0.503(0.003)  0.715(0.015)
CAPU 85.38-£6.2 92334235  90.48+1.28

Table 1: The comparative results of the various methods on the syn-
tectic dataset when the class prior is set as 30%, 50% and 70% of
the unlabeled data. The estimates/the absolute class prior error and
the F-scores (%) over 20 trials are reported. The best record under
each 7 is marked in bold. “v"” indicates that the proposed method is
significantly better than the corresponding method via paired t-test.

4.1 Results

To create PU samples from each dataset, we derived three dif-
ferent settings of positive and unlabeled samples as follows.
We first set a fraction of the positives as the labeled samples,
then we select part of the remaining positive and negative in-
stances as the unlabeled set. The class-prior in the unlabeled
set varies in [0.3,0.5,0.7]. This procedure was repeated 20
times for each setting for each dataset, and the evaluation
matrices applied for performance comparisons are the mean
class-prior estimates 7, the mean absolute errors |7 — 7| and
the F-scores [Fang et al., 2020b] over 20 trials.

The results of all methods on the synthetic dataset are re-
ported in Table 1. In this two-cluster Gaussian distributed
dataset, KM has the nearest class-prior estimation when 7 =
0.3 and 0.5, and the proposed CAPU method generally has
secondary performance. When applying the classification
evaluation, our method achieves the best classification accu-
racy compared with other methods.

Table 2 illustrates the comparative result of the proposed
CAPU method and other methods on four UCI datasets. We
found that in most occasions, our method have the superior
class-prior approximation, while in few cases, the KM and
TICcE methods are better than CAPU. But for the classifica-
tion accuracies, our model achieves the best in most occa-
sions even the true class prior is given for USMO and UPU
methods.

4.2 Parametric Analysis

There are three parameters included in our CAPU model: the
width o of the RBF kernel, and the trade off parameters A and
B. Therefore, this section examines the parametric sensitivity
of our model on the synthetic dataset.

Figure 1 shows the mean absolute error |7 — 7| and the
F-scores related to o on the three settings of the synthetic
dataset. It is known that the smaller values of the error repre-
sents the better estimates, and the higher F-scores mean better
classification accuracy. It is shown that in all three settings,
the performance of our CAPU model is best when the kernel
width 0 = 1. To evaluate the accuracy associated with hy-
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Dataset (N, d) ™ EN PE KM+UPU TICE+UPU UPU USMO CAPU
0.3 0.638(0.338) 0.247(0.053) 0.171(0.129) 0.353(0.053) - - 0.262(0.038)
60.96+2.34 v 63.76+£3.50 v/ 83.74+5.12 v 87.3244.99 v 91.05+1.34 v 82.35+0 v/ 93.04+1.34
audit (774,17) 0.5 0.863(0.363) 0.423(0.077) 0.305(0.295) 0.464(0.036) - - 0.520(0.020)
66.52+0.32 v 49.07+2.46 v¢  72.574£9.00 v 88.51+5.14 v 91.93£1.08 vV 92.05+£2.71 v 96.38+2.29
0.7 0.899(0.199) 0.587(0.113) 0.511(0.189) 0.537(0.163) - - 0.724(0.024)
82.34+£0.21 v 68.80£2.63 v 81.274+6.14 v©  82.584+6.14 v 90.56+1.34 v 84.66+7.90 v  98.21+1.54
0.3 0.923(0. 623) 0.260(0.040) 0.276(0.024) 0.239(0.061) - - 0.280(0.020)
46.15+0 v/ 4146119 v 55.00+£6.22 v 56.23+342 v 56.06+£2.98 v 78.18+5.23 74.03+7.07
ionosphere  (351,33) 0.5 0.977(0.477) 0.350(0.150) 0.480(0.020) 0.321(0.079) - - 0.506(0.006)
66.67+0 v/ 54.86+7.87 v 63.75£7.07 v 65.81+£545v  62.63+8.00 v  68.27+1.63 v 71.21+10.47
0.7 1(0.3) 0.461(0.239) 0.411(0.289) 0.837(0.137) - - 0.800(0.100)
62.35+0 v 69.54+8.80 v 69.57£22.94 v 69.54+8.80 v 59.20+2.00 v/ 75.75+£7.66 76.12+12.94
0.3 1(0.7) 0.556(0.256) 0.454(0.154) 0.597(0.297) - - 0.326(0.026)
46.15+0 v/ 41.49+4.08 v 4795£12.0v  51.71+£6.84 v 44.76+£9.85 v 5743462V  65.38+7.90
diabetes (768,8) 0.5 1(0.5) 0.680(0.180) 0.339(0.161) 0.626(0.126) - - 0.753(0.253)
66.67+0 v/ 60.64+6.23 v 61.15£8.86 v 64.41+4.37 v 61.33+6.50 v’ 70.68+8.80 72.41+7.40
0.7 1(0.3) 0.748(0.048) 0.443(0.257) 0.537(0.163) - - 0.741(0.041)
62.34+0 v/ 76.62+7.92 69.72£10.8 v 72.68£9.13 v 74.19£3.93 71.35+6.78 v 77.90+8.16
0.3 0.758(0.458) 0.567(0.267) 0.410(0.110) 0.237(0.063) - - 0.627(0.327)
44.384+26.36 v 42.12+11.52 v 54.09£11.38 v¢  54.6449.92 v 53.57+833 v 67.37£10.53 v 70.31£12.79
vertebral (310,6) 0.5 0.828(0.328) 0.671(0.171) 0.505(0.005) 0.597(0.097) - - 0.740(0.240)
67.31+£3.57 v 60.99+7.60 v 57.97434.78 v 64.42+4.73 v 61.39+6.00 v 73.85+13.88  74.65+10.53
0.7 0.884(0.184) 0.818(0.118) 0.306(0.394) 0.661(0.039) - - 0.733(0.033)
7226£049 v 7897+6.33 v 67.14+£11.49 v 73.2448.64 v 80.56+£1.34  68.79+11.67 v 81.90£10.17

Table 2: The comparative results of various methods on real-world datasets when the class prior is set as 30%, 50% and 70% of the unlabeled
data. The estimates/the absolute class-prior error and the F-scores (%) over 20 trials are reported. The best record under each 7 is marked in
bold. “v"” indicates that the proposed method is significantly better than the corresponding method via paired t-test.
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Figure 1: The Gaussian kernel width evaluations of the proposed
CAPU model on the synthetic dataset with 7 = 0.3,0.5,0.7 over
20 trials. The left axis reports the absolute class-prior error |7 — 7]
and the right axis reports the F-score (%) measurement.

2019

perparameters A and f3, Figure 2 shows a 3-D cube where the
z-axis show the mean F-score values of CAPU over 20 times’
repeated tests. It can be seen that the proposed CAPU model
is not much sensitive to /3, but to \.

4.3 Discussion

Through out previous analysis, we found that when estimat-
ing the class prior, our method has similar performances to
other methods. But for classification accuracy, our method
gets the best F-score in most cases. In this section, we dis-
cuss the reasons for this result.

Firstly, traditional PU learning models based on the risk
minimization treat misclassification errors as proportions of
labeled positives and unlabeled negatives, which determines
that it is always crucial to know the class prior, such as in
UPU and USMO methods. However, the necessary knowl-
edge of 7 is obviously inconsistent with reality. Therefore,
some research based on class-prior estimation has been pro-
posed, such as the KM and TIcE methods. These methods
provide additional information for later analysis, but they
only provide an estimation of the positive proportions. In
addition, there are also some methods based on class-prior
correction and classification, such as the benchmark EN and
PE methods, which can estimate class prior as well as classify
data. We found that these methods have unstable performance
with huge estimation errors, which then easily leads to poor
classification results.

Compared with the aforementioned research, our method is
undoubtedly more suitable for PU data analysis. This model
overcomes the lack of class-prior information for the general
PU method, and it can classify the dataset with superior ac-
curacy compared to other methods.
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Figure 2: The hyperparameters A and [ evaluations of the proposed CAPU model on the synthetic dataset with 7 = 0.3,0.5, 0.7 over 20

trials.

5 Conclusion

This paper proposed a novel PU learning method with class
prior approximation. Different from previous analyses, we
convert PU learning to a direct class-prior estimation and
classification problem by introducing the mixture proportion
estimation to the loss minimization function. Furthermore, an
additional regularization term balances the classifying vector
and the proportion estimation result. A gradient threshold-
ing algorithm is utilized based on rigorous theoretical anal-
ysis. Experimental results on both synthetic and real-world
datasets clearly show that CAPU is superior to other state-of-
the-art methods.
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