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Abstract

In this paper, we aim to boost the performance
of deep metric learning by using the self-attention
(SA) mechanism. However, due to the pairwise
similarity measurement, the cost of storing and
manipulating the complete attention maps makes
it infeasible for large inputs such as images. To
solve this problem, we propose a compressed self-
attention with low-rank approximation (CSALR)
module, which significantly reduces the computa-
tion and memory costs without sacrificing the ac-
curacy. In CSALR, the original attention map is
decomposed into a landmark attention map and a
combination coefficient map with a small number
of landmark feature vectors sampled from the input
feature map by average pooling. Thanks to the ef-
ficiency of CSALR, we can apply CSALR to high-
resolution shallow convolutional layers and imple-
ment a multi-head form of CSALR, which further
boosts the performance. We evaluate the proposed
CSALR on person re-identification which is a typ-
ical metric learning task. Extensive experiments
shows the effectiveness and efficiency of CSALR
in deep metric learning and its superiority over the
baselines.

1 Introduction
Metric learning aims to construct well-structured distance
metrics, which can be used to perform various tasks, such
as k-NN classification, clustering, and information retrieval.
Recently, deep metric learning with CNNs has shown a
large improvement in learning embedding features that have
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small intra-class and large inter-class distance. Deep met-
ric learning has a wide range of application in computer
vision, such as person re-identification [Ye et al., 2018;
Wang et al., 2018c], face recognition [Deng et al., 2019;
Liu et al., 2018], and keypoint descriptor learning [Mishchuk
et al., 2017; Xu et al., 2019].

However, due to various geometric and photometric
changes such as scale change, viewpoint change, and illumi-
nation change, and the limited receptive field of convolutional
kernels, the learned embedding features are not discrimina-
tive enough to ensure the intra-class compactness and the
inter-class discrepancy, which would affect the performance
of deep metric learning.

To tackle this problem, we enhance the discriminative
power of CNNs with self-attention (SA) mechanism [Vaswani
et al., 2017], which can capture long-range contextual de-
pendencies adaptively. SA calculates the response at each
position as a weighted sum of all the feature vectors, where
the weights (i.e., attention maps) are determined by the pair-
wise similarities among all the feature vectors. However, the
pairwise similarity measurement in SA leads to high compu-
tation and memory costs, making it infeasible for large in-
puts. Although [Chen et al., 2020] proposed a compressed
self-attention (CSA) module, it lacks the theoretical guaran-
tee for the accurate reconstruction of the original attention
maps.

Therefore, we propose a compressed self-attention with
low-rank approximation (CSALR) module, which reduces the
computation and memory costs greatly without sacrificing the
accuracy compared with the original SA. Taking advantage of
the property that the feature vectors in a feature map are re-
dundant, especially for the spatially adjacent ones, we decom-
pose the complete attention map into a landmark attention
map and a combination coefficient map with a small number
of landmark feature vectors, which are sampled from the in-
put feature map by average pooling. Then we apply the land-
mark attention map to the input feature map to produce the
landmark output, and then apply the combination coefficient
map to the landmark output to obtain the output feature map.

The high efficiency of CSALR brings additional benefits.
First, we can apply CSALR to high-resolution shallow con-
volutional layers which lack long-range dependencies. Sec-
ond, we can implement a multi-head form of CSALR where
we partition the feature maps into several groups along the
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channel dimension and apply CSALR in each group indepen-
dently, which makes the features more discriminative. We
evaluate the proposed CSALR on person re-identification,
which is a typical metric learning task. Extensive experiments
validate the significance of CSALR in deep metric learning.

2 Related Work
2.1 Deep Metric Learning
Deep metric learning employs deep convolutional neural net-
works (CNNs) to learn embedding features which have small
intra-class and large inter-class distance. However, due to the
limited receptive field of CNNs and the challenging geomet-
ric and photometric changes, the learned embedding features
are not discriminative enough. Recently, some researchers
focus on designing a more effective loss function to force the
networks to learn more representative embedding features.
For example, [Fan et al., 2019] proposed a modified soft-
max function to learn a discriminative hypersphere manifold
embedding for person re-identification. [Deng et al., 2019]
proposed an additive angular margin loss to enhance the dis-
criminative power of the network for face recognition.

Other researchers focus on designing a more robust net-
work architecture. For instance, [Sun et al., 2018] proposed a
body partition strategy and a partition refinement method for
person re-identification. [Kalayeh et al., 2018] adopted se-
mantic parsing strategy to extract the features of human body
parts for person re-identification. There are also some works
applying SA in deep metric learning, such as [Si et al., 2018]
and [Han et al., 2018]. However, due to the high computa-
tion and memory costs of SA, SA is only applied to the part
level or global level features, which is difficult to make full
use of SA mechanism. [Chen et al., 2020] proposed a com-
pressed form of self-attention, however, it cannot guarantee
that the reconstructed attention maps can actually approxi-
mate the original attention maps, which may degrade the per-
formance.

2.2 Self-Attention Mechanism
Self-attention (SA) mechanism was originally proposed for
machine translation [Vaswani et al., 2017], then it has been
successfully applied in computer vision, such as video anal-
ysis [Wang et al., 2018b], image segmentation [Fu et al.,
2019], and image generation [Zhang et al., 2018]. SA also
has a close relationship to community search[Fang et al.,
2020b; Fang et al., 2020a]. The implementation of SA mech-
anism for CNNs is as follows.

As shown in Figure 1, given an input feature map I ∈
RC×H×W , whereC,H andW represent the channels, height
and width of I, respectively, we first map I to two embed-
ding feature maps Q,K ∈ RC′×H×W , and a new feature
map V ∈ RC×H×W by 1 × 1 convolutions. Then, the at-
tention map A ∈ RHW×HW between Q and K is computed
as follows:

Aij =
exp(Qᵀ

iKj)∑HW
l=1 exp(Qᵀ

iKl)
, (1)

where Qi,Kj ∈ RC denotes the feature vectors at the i-th
and j-th position of Q and K, respectively, and Aij is a pair-
wise similarity measuring the j-th position’s impact on the

Figure 1: The illustration of the original self-attention mechanism.

i-th position. Then, we apply the attention map A to the fea-
ture map V, and perform a gated residual connection with the
input I to obtain the output O ∈ RC×H×W as follows:

Oi = Ii + α
HW∑
j=1

AijVj , (2)

where α is a learnable scale parameter which is initialized to
0 and gradually learns its value during training.

In contrast to convolutions, SA can capture long-range con-
textual dependencies by aggregating all the feature vectors
based on the pairwise similarities among them. However, the
pairwise similarity measurement leads to massive consump-
tion of computation and memory, especially for a large input,
making it challenging to utilize SA mechanism fully.

3 Compressed Self-Attention with Low-Rank
Approximation

In this section, we first propose a low-rank approximation
to any square matrix. Then we present a compressed self-
attention with low-rank approximation (CSALR) module. Fi-
nally, we introduce a general framework for deep metric
learning with the CSALR modules.

3.1 Low-Rank Approximation via Sampling
Given a square matrix An,n ∈ Rn×n, we propose to ap-
proximate it by randomly sampling m rows and m columns
of An,n without replacement, and then setting An,n ≈
An,mA

−1
m,mAm,n, where An,m is the n × m block of An,n,

and with similar definitions for other blocks. The proposed
method is similar to the Nyström method [Baker, 1977], how-
ever, it does not require An,n to be a positive (semi-)definite
matrix. We give the proof as follows.

Given the eigensystem of a full matrix An,n ∈ Rn×n:

An,nUn,n = Un,nΛn,n, (3)

where Un,n,Λn,n ∈ Rn×n are the eigenfunction matrix and
the diagonal eigenvalue matrix of An,n, respectively.

Following the Nyström method [Baker, 1977], we approx-
imate (3) by randomly sampling m columns of An,n as fol-
lows:

n

m
An,mUm,n ≈ Un,nΛn,n, (4)

Then we match (4) against (3), and arrive at
n

m
An,mUm,n ≈ An,nUn,n, (5)
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randomly choose m rows of An,m in (5), and arrive at

n

m
Am,mUm,n ≈ Am,nUn,n, (6)

multiply both sides of (6) by A−1m,m, An,m (from left) and
U−1n,n (from right) successively, and arrive at

n

m
An,mUm,nU

−1
n,n ≈ An,mA

−1
m,mAm,n, (7)

match (4) against (7), and arrive at

Un,nΛn,nU
−1
n,n ≈ An,mA

−1
m,mAm,n, (8)

match (8) against (3), and arrive at

An,n ≈ An,mA
−1
m,mAm,n. (9)

Equation (9) is the proposed low-rank approximation to the
square matrix An,n. It doesn’t require An,n to be positive
(semi-)definite or symmetric. We can sample different rows
and columns of An,n to form the block Am,m, as long as
Am,m is full rank.

3.2 CSALR Module
In this section, we propose a compressed self-attention with
low-rank approximation (CSALR) module, where we com-
press the original attention maps with the proposed low-rank
approximation to reduce both the computation and memory
costs. We observe that the feature vectors in a feature map
are inherently redundant, especially those spatially adjacent
to each other. Thus we can decompose the complete attention
map into a landmark attention map and a combination coef-
ficient map with a small number of landmark feature vectors
sampled from the input feature map by average pooling.

As shown in Figure 2, given an input feature map I ∈
RC×H×W , we first obtain the feature maps Q, K and V as
the original SA mechanism in Figure 1 (Section 2.2). Same
with (1), the complete attention map An,n is computed as fol-
lows:

An,n =

[
exp(Qᵀ

iKj)∑n
l=1 exp(Q

ᵀ
iKl)

]
n×n

, (10)

where n = H ×W is the total number of the feature vectors
in Q or K. We consider the normalization with softmax in the
following low-rank approximation for numerical stability.

Then we approximate the complete attention map An,n via
sampling based on Eq.(9). Leveraging the spatial redundancy
of the feature vectors, we sample the landmark feature map
Q’,K’ ∈ RC′×H′×W ′

by applying average pooling to Q and
K, respectively, where the kernel size and the stride of the
pooling layer both equal to

(
H
H′ ,

W
W ′

)
.

Similar to (10), the partial attention maps An,m between Q
and K’, Am,m between Q’ and K’, and Am,n between Q’ and
K are computed as follows:

An,m =

[
exp(Qᵀ

iK
′
j)∑m

l=1 exp(Q
ᵀ
iK
′
l)

]
n×m

, (11)

Am,m =

[
exp(Q′

ᵀ
iK
′
j)∑m

l=1 exp(Q
′ᵀ
iK
′
l)

]
m×m

, (12)

Figure 2: The illustration of the proposed compressed self-attention
mechanism.

Am,n =

[
exp(Q′

ᵀ
iKj)∑n

l=1 exp(Q
′ᵀ
iKl)

]
m×n

, (13)

where Q′i and K ′j are the landmark feature vectors at the
i-th and j-th position of the landmark feature map Q’ and
K’, respectively, m = H ′ × W ′ is the total number of the
feature vectors in Q’ or K’. It is worth noting that since the
normalization is considered, An,m is just a rescaled approxi-
mations of the corresponding n×m block of An,n (same for
Am,m), which is reasonable considering the low-rank prop-
erty of An,n.

Then, according to (9), the complete attention map An,n

can be approximated with the partial attention maps An,m,
Am,m and Am,n as follows:

An,n ≈ An,mA−1m,mAm,n = WB, (14)

where B = Am,n ∈ Rm×n represents the landmark atten-
tion map between the landmark feature vectors and all the
feature vectors, and W = An,mA−1m,m ∈ Rn×m represents
the combination coefficient map based on the relationship be-
tween all the feature vectors and the landmark feature vectors.
The complete attention map An,n is reconstructed by apply-
ing the combination coefficient map W to the landmark atten-
tion map B.

Since the adjacent feature vectors in space are more simi-
lar, the sub attention map of each feature vector is more simi-
lar to that of the landmark feature vector corresponding to the
same pooling patch, whose combination coefficient should be
larger. Thus we transform An,m and Am,m as follows:

An,m =

[
exp(Qᵀ

iK
′
j)∑m

l=1 exp(Q
ᵀ
iK
′
l)

+ 1(Qi,K
′
j)

]
n×m

, (15)

Am,m =

[
exp(Q′

ᵀ
iK
′
j)∑m

l=1 exp(Q
′ᵀ
iK
′
l)

+ 1(Q′i,K
′
j)

]
m×m

, (16)

where 1(Qi,K
′
j) denotes that if the feature vector Qi and

the landmark feature vectorK ′j correspond to the same pool-
ing patch, its value is 1, otherwise, its value is 0 (same for
1(Q′i,K

′
j)). It is worth noting that (16) guarantees that

A−1m,m always exists.
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Then we apply the landmark attention map B to the feature
map V to produce the landmark output E ∈ RC×H′W ′

, and
then apply the combination coefficient map W to the land-
mark output E, and perform a gated residual connection with
the input I to obtain the output feature map O ∈ RC×H×W

as follows:

Oi = Ii + α
H′W ′∑
k=1

Wik

HW∑
j=1

BkjVj = Ii + α
H′W ′∑
k=1

WikEk,

(17)
where α is a learnable scale parameter which is initialized to
0 and gradually learns its value during training.

The low-rank decomposition of the original attention maps
in (14) significantly reduces the computation and memory
costs, and the inherent redundancy of the feature vectors
avoids performance degradation caused by compression. In
experiments, we find that setting m � n does not decrease
the accuracy.

The high efficiency of CSALR allows us to implement a
multi-head form of CSALR. We partition the feature maps
into several groups along the channel dimension and apply
CSALR in each group independently. Then we fuse the dif-
ferent groups with 1 × 1 convolution. In this way, each
group can handle a specific relationship between the features
alone, which helps to diversify the long-range interactions
and makes the features more discriminative.

3.3 CSALR in Deep Metric Learning

The proposed CSALR module can be easily applied to the
existing backbones to capture long-range contextual depen-
dencies efficiently, providing a general framework for deep
metric learning. The computational and memory efficiency
of CSALR allows us to apply CSALR to high-resolution shal-
low convolutional layers and implement a multi-head form of
CSALR.

As shown in Figure 3, the framework includes a backbone
network, CSALR modules, and deep supervision branches.
We apply the CSALR module to each stage of the back-
bone network. In this way, the high-resolution shallow con-
volutional layers, whose receptive filed is limited, can ben-
efit more from the long-range interactions. To diversify the
long-range interactions, we implement the multi-head form
of CSALR. To assist the learning of attention maps, we apply
deep supervision to each CSALR module. It’s worth noting
that the residual connection of CSALR is drawn out of the
CSALR module in Figure 3.

In each deep supervision branch, we first perform an
element-wise multiplication between the input feature map
and the output of CSALR module and obtain a new feature
map, then we apply a global average pooling layer to the fea-
ture map and obtain a feature vector, and then we project the
feature vector linearly with a fully connected layer and ap-
ply a loss function to the result. In experiments, we find that
the element-wise multiplication is better than the element-
wise summation, so we implement deep supervision before
the residual connection. The final loss function of the frame-

Figure 3: The general framework of applying our CSALR module
in deep metric learning.

work is as follows:

Lsum = LF + λ

N∑
i=1

LDSi, (18)

where LF is the loss of the main branch, and LDSi is the loss
of the i-th deep supervision branch. N is the total number
of CSALR modules. λ is a balance factor between LF and
LDS .

When applying the proposed framework to boost the per-
formance of the specific metric learning algorithms, we just
modify the backbone networks of the original models with-
out changing the remaining settings. Thus, the loss LF is the
same as the original algorithm. The loss LDS is cross en-
tropy in our experiments. When comparing CSALR with SA
or CSA, we just replace the CSALR module with the SA or
CSA module in the framework, without changing the deep
supervision branches or the corresponding loss functions.

4 Experiments
We validate the proposed CSALR on person re-identification,
which is a typical metric learning task. We choose two repre-
sentative methods in person re-identification, i.e., PCB [Sun
et al., 2018] and PCB-RPP [Sun et al., 2018], as our base-
lines. We modify the backbone networks of the baseline mod-
els without changing other settings. We provide both qualita-
tive and qualitative comparisons to demonstrate the effective-
ness and efficiency of CSALR in deep metric learning.

4.1 Datasets
We use three datasets for evaluation, i.e., Market-1501
[Zheng et al., 2015], DukeMTMC-reID [Ristani et al.,
2016; Zheng et al., 2017], and CUHK03-NP [Zhong et al.,
2017]. Market-1501 contains 751 training IDs with 12,936
images and 750 query IDs with 3,368 query images and
19,732 gallery images, which are captured by 6 cameras.
DukeMTMC-ReID contains 702 training IDs with 16,522 im-
ages and 702 query IDs with 2,228 query images and 17,661
gallery images, which are captured by 8 cameras. CUHK03-
NP contains 767 training IDs with 7,365 images and 700
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Models Market-1501 DukeMTMC-reID CUHK03-NP
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

DuATM [Si et al., 2018] 91.4 97.1 — 76.6 81.8 90.1 — 64.6 — — — —
Mancs [Wang et al., 2018a] 93.1 — — 82.3 84.9 — — 71.8 65.5 — — 60.5
SphereReID [Fan et al., 2019] 94.4 98.0 98.7 83.6 83.9 90.6 92.4 68.5 — — — —
PCB [Sun et al., 2018] 92.3 97.2 98.2 77.4 81.7 89.7 91.9 66.1 59.7 77.7 85.2 53.2
PCB + SA 93.8 97.7 98.5 82.2 85.3 92.7 94.8 73.4 65.9 82.3 88.4 62.7
PCB + CSA [Chen et al., 2020] 93.7 98.2 98.8 82.3 85.5 92.8 94.5 73.5 67.2 83.9 88.9 63.7
PCB + CSALR 93.9 97.8 98.6 82.4 86.1 93.2 95.1 74.0 67.6 82.4 88.4 64.0
PCB-RPP [Sun et al., 2018] 93.8 97.5 98.5 81.6 83.3 90.5 92.5 69.2 62.8 79.8 86.8 56.7
PCB-RPP + SA 93.3 97.5 98.7 83.2 84.9 92.8 94.7 72.9 66.1 84.0 89.0 64.6
PCB-RPP + CSA [Chen et al., 2020] 93.9 97.8 98.8 83.5 85.4 93.1 94.5 73.1 67.4 83.6 89.1 65.0
PCB-RPP + CSALR 94.0 98.1 98.8 83.8 85.4 93.3 95.0 73.8 68.8 84.4 89.1 65.3

Table 1: Comparison of the models with and without the proposed CSALR. SA means the original self-attention.

query IDs with 1,400 query images and 5,332 gallery images,
where each identity is captured by 2 disjoint cameras. It of-
fers two kinds of bounding boxes, one is hand-labeled, the
other is DMP-detected, and we use the latter.

For evaluation, we use the cumulative matching character-
istic (CMC) for rank-1, rank-5, rank-10 and the mean average
precision (mAP) as our metrics. We evaluate all the methods
under the single-query mode. For simplicity, we do not use
re-ranking [Zhong et al., 2017] for post-processing, which
can improve mAP by a large margin.

4.2 Implementation Details
We use a similar setting to [Sun et al., 2018]. The backbone is
ResNet-50 with pre-trained weights from ImageNet. We use
the proposed framework with CSALR to enhance the back-
bone. We apply the CSALR module to each residual block of
the backbone except the last one, leading to 3 CSALR mod-
ules in total. In Eq. (9), the loss LF is the same as PCB and
PCB-RPP, and the loss LDS is cross entropy. The balance
factor λ is set to 1.0. We implement the multi-head form of
CSALR. For each CSALR module, the number of sampled
points in each group is set to 96, and the number of groups is
set to 2. When comparing CSALR with SA or CSA, we re-
place the CSALR module with the SA or CSA module in the
framework without changing other settings. It’s worth noting
that we do not implement the multi-head form of SA, since it
costs too much computation and memory resources.

For data processing, the input images are all resized to
384 × 128. We apply random horizontal flipping with 0.5
and normalization as data augmentation. For training, we set
the batch size to 64 and the total number of training epochs
to 100. The optimizer is set to Stochastic Gradient Descent
(SGD) with momentum of 0.9 and weight decay of 10−4. The
base learning rate is initialized to 0.1 and decayed by 0.1 after
every 40 epochs, and the learning rate for the backbone net-
work is set to 0.1× the base learning rate. For PCB-RPP, we
first train PCB for 40 epochs, and then train RPP for another
60 epochs with weights initialized from PCB.

4.3 Performance Comparison
As shown in Table 1, the proposed framework with CSALR
modules can effectively boost the performance of all the
original algorithms on Market-1501, DukeMTMC-ReID and

CUHK03-NP with respect to both rank-1 accuracy and mAP.
On the three datasets, for PCB with CSALR, the increase in
rank-1 accuracy is +1.6%, +4.4%, and +7.9%, respectively;
the increase in mAP is +5.0%, +7.9%, and +10.8%, respec-
tively; for PCB-RPP with CSALR, the increase in rank-1
accuracy is +0.2%, +2.1%, and +6.0%, respectively; the
increase in mAP is +2.2%, +4.6%, and +8.6%, respec-
tively. This suggests that CSALR can effectively capture
long-range contextual dependencies and make the extracted
features more discriminative. It’s worth noting that the im-
provement for mAP is larger than that for rank-1 accuracy. In
reality, rank-1 accuracy represents the ability to retrieve the
easiest match in the gallery, while mAP represents the ability
to find all the matches, which indicates that CSALR helps to
find more challenging matches.

We also compare CSALR with SA and CSA. As shown in
Table 1, it’s interesting that although the attention maps are
compressed in CSALR, the performance of CSALR is better
than that of SA. There are two reasons for this phenomenon.
On the one hand, the inherent redundancy of the feature vec-
tors guarantees an accurate approximation of the original at-
tention maps. On the other hand, the multi-head form of
CSALR helps to diversify the long-range interactions, which
compensates for the performance degradation caused by com-
pression. We can also see that the performance of CSALR is
better than that of CSA, which suggests that the approxima-
tion to the attention maps in CSALR is more reasonable and
more accurate than that in CSA.

4.4 Different Number of Sampled Points

We fix the number of groups to 2 and vary the number of
sampled points in each group to see its influence. As shown
in Table 2, the performance rises as the number of sampled
points increases. The reason behind this is that the more the
sampled points, the more accurate the approximation to the
original attention maps and the less the performance degrada-
tion. However, the performance improvement is slight when
the number of sampled points increases from 96 to 192. This
further demonstrates the significant redundancy of the feature
vectors in a feature map, so that we can approximate the com-
plete attention maps accurately with only a small number of
landmark feature vectors.
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Models Sample Num Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB + CSALR 24 93.6 82.1 85.5 73.5
PCB + CSALR 48 93.8 82.3 85.8 73.8
PCB + CSALR 96 93.9 82.4 86.1 74.0
PCB + CSALR 192 93.9 82.6 86.3 74.2

Table 2: Comparison of the models with different number of sam-
pled points in each group of CSALR.

4.5 Different Number of Groups
We fix the number of sampled points to 96 and vary the num-
ber of groups to see its influence. As shown in Table 3, the
performance is best when the number of groups is 2. The
performance drops when the number of groups is smaller or
larger than 2, indicating that the multi-head form of CSALR
helps to diversify the long-range interactions and makes the
extracted features more discriminative. However, too many
groups and too few channels in each group will lead to insuf-
ficient expression of the specific semantics, which harms the
performance of CSALR.

Models Group Num Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB + CSALR 1 93.6 82.0 85.8 73.8
PCB + CSALR 2 93.9 82.4 86.1 74.0
PCB + CSALR 4 93.7 82.3 86.0 73.8
PCB + CSALR 8 93.6 82.1 85.7 73.6

Table 3: Comparison of the models with different numbers of groups
in CSALR.

4.6 CSALR on Different Layers
As shown in Table 4, applying the CSALR modules to both
the shallow and deep layers of the backbone leads to the best
performance. Applying the CSALR modules to shallow lay-
ers is better than deep layers, which demonstrates that the
shallow layers lack long-range dependencies extremely. So
it’s more beneficial to apply SA mechanism to shallow lay-
ers, and our CSALR module is very efficient considering the
large size of the shallow layers.

Models Attn Stages Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB no 92.3 77.4 81.7 66.1
PCB + CSALR 1st stage 93.3 81.4 84.8 73.0
PCB + CSALR 2nd,3rd stages 92.9 80.9 84.4 72.3
PCB + CSALR 1st,2nd,3rd stages 93.9 82.4 86.1 74.0

Table 4: Comparison of the models with CSALR on different layers
of the backbone.

4.7 Resource Costs Comparison
As shown in Table 5, for SA and CSALR with 1, 2, 4, 8
groups, compared with the original method, the relative in-
crease in memory cost is +118.45%, +19.88%, +39.67%,
+61.27%, and +85.08%, respectively; the decrease in FPS
is −54.17%, −12.70%, −20.86%, −28.10%, and −34.52%,
respectively. We can see that the methods with CSALR con-
sume much less computation and memory resources than the

Models Group Num Memory (MB/image) FPS
PCB — 137.64 581.81
PCB + SA 1 300.68 266.67
PCB + CSALR 1 165.00 507.93
PCB + CSALR 2 192.25 460.43
PCB + CSALR 4 221.97 418.30
PCB + CSALR 8 254.75 380.95

Table 5: Comparison of the speed and memory cost of the models
with and without SA or CSALR.

Figure 4: Visualization of the original attention maps and the recon-
structed attention maps.

methods with SA, even if the number of groups is set to 8.
Thus, we can apply CSALR with more flexibility.

4.8 Analysis of Attention Maps
As shown in Figure 4, for each selected point (marked in a
specific color) in the image, the corresponding attention map
focus on the most relevant parts in the whole image, which
indicates that the SA mechanism can capture long-range con-
textual dependencies adaptively. We can also see that the
reconstructed attention maps are very similar to the origi-
nal attention maps, which indicates that the feature vectors
in a feature map have significant redundancy. We can ap-
proximate the complete attention maps accurately with only
a small number of landmark feature vectors.

5 Conclusion
In this paper, we aim to boost the performance of deep met-
ric learning with self-attention (SA) mechanism, which can
capture long-range contextual dependencies adaptively. Ac-
cordingly, we propose a compressed self-attention with low-
rank approximation (CSALR), which significantly reduces the
computation and memory costs without sacrificing the accu-
racy. Qualitative and quantitative experiments demonstrate
the significance of CSALR in deep metric learning.
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