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Abstract
Bayesian methods have improved the interpretabil-
ity and stability of neural architecture search
(NAS). In this paper, we propose a novel prob-
abilistic approach, namely Semi-Implicit Vari-
ational Dropout one-shot Neural Architecture
Search (SI-VDNAS), that leverages semi-implicit
variational dropout to support architecture search
with variable operations and edges. SI-VDNAS
achieves stable training that would not be affected
by the over-selection of skip-connect operation.
Experimental results demonstrate that SI-VDNAS
finds a convergent architecture with only 2.7 MB
parameters within 0.8 GPU-days and can achieve
2.60% top-1 error rate on CIFAR-10. The conver-
gent architecture can obtain a top-1 error rate of
16.20% and 25.6% when transferred to CIFAR-100
and ImageNet (mobile setting).

1 Introduction
Deep neural networks (DNNs) have achieved impressive per-
formance in the past decade. However, manually designed
DNNs would suffer from unexpected performance loss and
tedious design in specific tasks. As an important branch of
automatic machine learning (AutoML), neural architecture
search (NAS) allows people to get rid of cumbersome design
of DNNs. Existing NAS approaches based on evolutionary
algorithms or reinforcement learning suffer from excessive
calculations and enormous time cost for finding a suitable
network structure. Recently, gradient-based approaches have
greatly improved the practicality of NAS with a reduced time
cost and amount of calculations in search. One-shot NAS is
popular in gradient-based approaches, in which each search
is evaluated only once to further reduce the time cost. In fact,
one-shot NAS transforms the architecture search into a super-
net simplification problem to improve the search speed.

One-shot NAS commonly uses the weights of candidate
operations [Liu et al., 2019a] as the criterion for selecting
final operations and simplifying the super-net. However, gra-
dient descent algorithm has to be carefully designed in these
methods, as skip-connect operations tend to be preserved with
∗Corresponding author

a large number of epochs and lead to evident degradation of
evaluation performance. This problem can be relieved with
additional hyperparameters to the gradient [Bi et al., 2019],
sigmoid function for selecting operations [Chu et al., 2019]
and violent early stopping mechanism [Liang et al., 2019].
These methods improve weight-based selection of operations
in NAS, but lack interpretability and stability due to the man-
ually designed hyper-parameters and mechanism.

To improve the interpretability of operation selection in
NAS, probabilistic methods have been introduced to deter-
mine the final operations [Xie et al., 2019; Zhou et al., 2019;
Zheng et al., 2019]. Architectures obtained by sampling in-
stead of the size of parameter is natural and more automated,
but the performance is not always satisfactory. Moreover,
Gumbel-softmax function is incorporated with weight-based
operation selection to enable multiple sampling for preserv-
ing variable operations on one edge [Chang et al., 2019].

In this paper, we propose a novel probabilistic approach for
hierarchical and stable one-shot neural architecture search,
namely Semi-Implicit Variational Dropout one-shot NAS (SI-
VDNAS). SI-VDNAS leverages variational dropout based
on an annealed semi-implicit automatic relevance detection
(ARD) prior to sample the super-net and suppress the over-
selection of skip-connect operations. Furthermore, hierarchi-
cal structure is developed to separately achieve the selection
of edges and operations. The benefits of SI-VDNAS are sum-
marized as below.

• SI-VDNAS alleviates the performance loss led by over-
selection of skip-connect operations with semi-implicit
variational dropout.

• SI-VDNAS preserves variable operations and edges in
NAS to improve the evaluation performance.

2 Preliminaries
In the rest of this paper, for clarity, we use p(x) for the prob-
ability density function (PDF) of x and P (x = xi) for the
probability that x = xi.

2.1 One-Shot NAS
One-shot NAS is a sophisticated method, composed of sev-
eral cells, testing once in super-net without testing all possi-
ble structures. In one-shot NAS, a cell is defined as a directed
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acyclic graph (DAG) of N nodes n1, n2, · · · , nN , where di-
rected edge(i, j) (i < j)(from input nodes to intermediate
nodes or previous intermediate nodes to current intermedi-
ate node) connects the i-th node ni and j-th node nj . ni is
processed by the operations o(·) in the search space O. The
cell is assumed to have M input nodes n1

I , n
2
I , · · · , nMI and

a single output node nO. The input nodes are defined as the
outputs in the previous M cells and the output of the cell
is obtained by applying a concatenation operation to all the
N −M − 1 intermediate nodes. Recent approaches for one-
shot NAS commonly adopt gradient descents with parame-
ter sharing to update each candidate operation in each edge
(i, j) in each epoch. Thus, one-shot NAS can keep the search
space unchanged and speed up the search, making it possible
to search under the mobile settings.

2.2 Variational Dropout
We assume that a neural network has L fully-connected lay-
ers, which is consistent with the structure in the super-net
of NAS. Let us denote A ∈ RM×I , W ∈ RI×O and
B ∈ RM×O the input matrix, weight matrix and output ma-
trix for each layer, respectively. Gaussian dropout adds mul-
tiplicative noise ξ ∈ RM×I to the input to each layer. Thus,
B is obtained by B = (A ◦ ξ) ∗ W , where ◦ indicates the
Hadamard product. In Gaussian dropout, the noise ξ is en-
dowed with a Gaussian distribution N (1, δ) with its variance
δ = p/(1 − p) determined by the dropout rate p [Srivastava
et al., 2014]. Multiplying weight wij by a Gaussian noise
ξ ∼ N (1, δ) is equivalent to sampling in a new Gaussian dis-
tribution N (wij , w

2
ijδ). Note that each weight in each layer

can be assigned an individual dropout rate δij , rather than a
global δ. Using the additive reparameterization [Molchanov
et al., 2017], we can substitute θij = wijδij with a low-
variance form θij = wij(1 +

√
δijεij) with εij ∼ N (0, 1).

This additive reparameterization can remove samples from
the calculation graph to allow gradient back propagation.

2.3 Semi-implicit Distribution
Semi-implicit distribution p(x) is defined based on an im-
plicit distribution p(z) and a conditional distribution with ex-
plicit PDF p(x|z).

p(x) =

∫
p(x|z)p(z)dz (1)

Here, p(z) does not have explicit distribution, but its expec-
tation can be estimated based on sampling. Given N samples
from p(z), the semi-implicit distribution p(x) is estimated by

p(x) =

∫
p(x|z)p(z)dz ≈ 1

N

N∑
n=1

p(x|zn), (2)

where zn represents the n-th sample extracted from p(z).

3 Methodology
In this section, we elaborate the proposed SI-VDNAS, in
which a hierarchical structure for NAS is developed based
on the semi-implicit variational dropout with an annealed
ARD prior. Semi-implicit variational dropout is able to obtain

structures with varying numbers of operations on one edge. In
addition to operation selection, the hierarchical structure en-
ables separate selection of varying numbers of edges to im-
prove the interpretability and stability of network search.

3.1 Semi-implicit Variational Dropout for NAS
SI-VDNAS leverages semi-implicit variational dropout to
achieve NAS with an individual dropout rate for each opera-
tion, rather than a shared hyperparameter for all operations.
The dropout noise is supposed to obey the semi-implicit
distribution q(ξ) =

∫
q(ξ|ψ)q(ψ)dψ, where q(ξ|ψ) =

N (ξ|ψ,ψδ) and q(ψ) is a Bernoulli distribution parameter-
ized with δ, i.e., P (ψ = 1) = 1/(1 + δ) and P (ψ = 0) =
δ/(1 + δ). Note that δ is also introduced in the variance of
q(ξ|ψ). Thus, the semi-implicit distribution qδ(ξ) is formu-
lated with regard to δ.

qδ(ξ) =

∫
qδ(ξ|ψ)qδ(ψ)dψ (3)

In one-shot NAS, the dropout noise ξ ∼ qδ(ξ) is as-
signed to each candidate operation o(x) on x. Let us define
τoi,j = γoi,j · ξoi,j for the weight γoi,j of the operation o in the
edge (i, j). For simplicity, we omit the superscripts and sub-
scripts in the rest of this subsection. According to Eq. (3), τ ∼
qδ(τ) =

∫
qδ(τ |ψ)qδ(ψ)dψ with qδ(τ |ψ) = N (τ |γψ, γ2ψδ)

for each τ = γ · ξ. Due to the discrete Bernoulli distribution
qδ(ψ), the integral for the semi-implicit distribution qδ(τ) is
intractable. Thus, we leverage the Monte Carlo sampling to
calculate qδ(τ) from K samples ψ1, · · · , ψK from qδ(ψ).

qδ(τ) =

∫
qδ(τ |ψ)qδ(ψ)dψ ≈ 1

K

K∑
k=1

qδ
(
τ |ψk

)
(4)

Here, we set K = 1 to make stochastic update based
on semi-implicit variational dropout. The Evidence Lower
BOund (ELBO) L(δ) is developed for semi-implicit varia-
tional dropout by taking qδ(ψ) as the posterior distribution.

L(δ) = LD(δ)−DKL (qδ(τ)‖p(τ))

LD(δ) =
N∑
n=1

Eqδ(τ) [log p (yn|xn, τ)] (5)

In Eq. (5), LD(δ) is empirically obtained based on the train-
ing set that consists of N pairs of observations and labels
{xn, yn}, n = 1, · · · , N . Consequently, KL divergence
DKL(qδ(τ)‖p(τ)) is minimized for operation selection under
the properly designed prior p(τ), as shown in Section. 3.2.

3.2 Annealed Semi-implicit ARD Prior
We further design a semi-implicit prior pλ,δ(τ) for semi-
implicit variational dropout.

pλ,δ(τ) =

∫
pλ(τ |φ)pδ(φ)dφ ≈ 1

N

N∑
n=1

pλ (τ |φn) , (6)

where pδ(φ) is also a Bernoulli distribution parameterized
with δ and pλ(τ |φ) = N (τ |λγφ, η−1φ) is a Gaussian PDF
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associated with the variance η−1 of ARD prior and the an-
nealed temperature λ. From Eq. (4) and (6), we formulate the
KL divergence DKL (qδ(τ)‖p(τ)) for minimization.

DKL (qδ(τ)‖pλ,δ(τ)) ≈
∫

1

K

K∑
k=1

qδ
(
τ |ψk

)
·

[log
1

K

K∑
k=1

qδ
(
τ |ψk

)
− log

1

N

N∑
n=1

pλ (τ |φn)]dτ (7)

When we set K = N = 1 for stochastic update, we have

DKL (qδ(τ)‖pλ,δ(τ)) ≈ Eqδ(τ |ψ∗) log
qδ (τ |ψ∗)
pλ (τ |φ∗)

(8)

Here, we use Φ to represent ψ∗ and φ∗, as they are
taken from the same Bernoulli distribution. Thus, we have
DKL(qδ(τ)‖pλ,δ(τ)) ≈ Eqδ(τ |Φ) log(qδ(τ |Φ)/pδ(τ |Φ)).
Proposition 1. The proposed annealed semi-implicit ARD
prior pλ,δ(τ) generalizes the ARD prior N (τ |0, η−1) to in-
duce the KL divergence DKL(qδ(τ)‖pλ,δ(τ)) that are inde-
pendent of the weight parameters γ.

Proof. Given Φ sampled from the Bernoulli distribution
qδ(φ), we have qδ(τ) ≈ qδ(τ |Φ) = N (τ |γΦ, γ2Φδ) and
pλ,δ(τ) ≈ pλ(τ |Φ) = N (τ |λγΦ, η−1Φ). When Φ = 0,
qδ(τ) and pδ(τ) degenerate to the constant 0, which means
their KL divergence equals to 0. For Φ = 1, the KL diver-
gence between qδ(τ) and pλ,δ(τ) is approximated by

DKL(qδ(τ |Φ)||pλ(τ |Φ))

= DKL(N (τ |γΦ, γ2Φδ)||N (τ |λγΦ, η−1Φ))

= −1

2
log ηγ2δ + 2ηγ2[(1− λ)2 + δ]− 1

2
(9)

The optimal value η∗ = arg minηDKL(qδ(τ |Φ)||pλ(τ |Φ)).
From the gradient of DKL(qδ(τ |Φ)||pλ(τ |Φ)), we have

η∗ =
1

γ2[(1− λ)2 + δ]
(10)

Thus, we can approximate DKL(qδ(τ)‖pλ,δ(τ)) by

DKL (qδ(τ)‖pλ,δ(τ)) ≈ 1

2
log[1 + (1− λ)2δ−1] (11)

This KL divergence does not depend on weight parameters
γ. Note that pλ,δ(τ) degenerates to the vanilla ARD prior
N (τ |0, η−1), when λ = 0 and Φ = 1. The KL divergence
degenerates to 0.5 · log(1 + δ−1), which is adopted for the
hierarchical structure in [Liu et al., 2019b].

3.3 Hierarchical Structure
Edge selection is implicit in previous one-shot approaches, in
which only operation weight parameters are used, resulting
ambiguous edge selection and poor evaluation performance.
Edge normalization introduces the edge weight parameters
to assist operation weight parameters in searching the final
structure [Xu et al., 2019]. It can restrict the search of candi-
date edges between nodes, but cannot separately achieve the
selection of edges and operations. In SI-VDNAS, we assign

individual dropout rates to the edge weight parameters as well
as operation weight parameters, separating the edge selection
from the operation selection and achieving architecture with
variable edges.

Let us denote f̃i,j(x) the output of mixed operations in
edge (i, j) and h̃j(x) the mixed edge on the node j. The edge
weight parameters ϕ and the operation weight parameters w
are referred as the architecture parameters γ. Considering
vanilla variational dropout, for the operation weight parame-
ters, we assign the dropout rate ξoi,j ∼ N (ξoi,j |1, δoi,j) to the
input opoi,j(x) and obtain:

f̃i,j(x) =
∑
o∈O

woi,jop
o
i,j(x) · ξoi,j =

∑
o∈O

woi,jξ
o
i,j · opoi,j(x)

(12)
f̃i,j(x) can be calculated using samples from
N (f̃i,j(x)|woi,jopoi,j , (woi,jopoi,j)2δoi,j).

For the edge weight parameters, we assign the dropout rate
ζi,j ∼ N (ζi,j |1, σi,j) to f̃i,j(x). h̃j(x) can be similarly sam-
pled from N (h̃j(x)|ϕi,j f̃i,j(x), (ϕi,j f̃i,j(x))2σi,j).

h̃j(x) =
∑
i<j

ϕi,j f̃i,j(x) ∗ ζi,j =
∑
i<j

ϕi,jζi,j ∗ f̃i,j(x)

=
∑
i<j

ϕi,jζi,j ·
∑
o∈O

woi,jξ
o
i,j · opo(x)

(13)

Without loss of generality, we consider arbitrary one edge
(i, j). Denote µo = wo · ξo ∼ N (µo|wo, (wo)2δo) and
υ = ϕ · ζ ∼ N (υ|ϕ,ϕ2σ). The KL divergence can be de-
veloped for the approximate posterior distribution q(υ, µ) =
q(υ|µ)

∏
o∈O q(µ

o) and the hierarchical prior distribution
p(υ, µ) = p(υ|µ)

∏
o∈O p(µ

o) under independent µ and υ.

DKL(q(υ, µ)||p(υ, µ)) = DKL(q(υ|µ)||p(υ|µ))

+
∑
o∈O

DKL(q(µo)||p(µo)) (14)

Consequently, we introduce semi-implicit variational
dropout. The posterior distribution q(υ|µ) is approximated
by

q(υ|µ) =

∫
q(υ|µ, ψe)q(ψe)dψe ≈ q(υ|µ,Φe)

= N (υ|ϕΦe, ϕ
2Φeσ)

(15)

where Φe is the sample from the Bernoulli distribution q(ψe).
The posterior q(µo) is similarly approximated with Φoo sam-
pled from the Bernoulli distribution q(ψoo).

q(µo) =

∫
q(µo|ψoo)q(ψoo)dψoo ≈ q(µo|Φoo)

= N (µo|woΦoo, (wo)2Φooδ
o)

(16)

Subsequently, we adopt the annealed semi-implicit ARD
prior to formulate the KL divergence for training.

DKL(q(υ|µ)||p(υ|µ) ≈ DKL(q(υ|µ,Φe)||p(υ|µ,Φe))

=

{
0, Φe = 0

0.5 · log[1 + (1− λe)2σ−1], Φe = 1
(17)
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Algorithm 1 Semi-implicit Variational Dropout NAS

Input: Data {xn, yn}1:N , network parameter p, architec-
ture parameter (w,ϕ, δ, σ): operation weight parame-
ter w, edge weight parameter ϕ, dropout rate δ for
operation and σ for edge, operation Bernoulli vari-
able ψo and edge Bernoulli variable ψe, dropout noise
ξ ∼ N (ξ|ψo, ψoδ) for w, the variational posterior
distribution N (µ|wψo, w2ψoδ), dropout noise ζ ∼
N (ζ|ψe, ψeσ) for ϕ, the variational posterior distribu-
tion N (υ|ϕψe, ϕ2ψeσ), prior distribution pλo,δ(µ) with
the annealed temperature λo for operation and pλe,σ(υ|µ)
with the annealed temperature λe for edge.

Output: The individual dropout rate δ for operation and σ
for edge, the operation weight parameter w and the edge
weight parameter ϕ, the sample of ψo and ψe.

1: Initialize w, ϕ, δ and σ.
2: while not converged do
3: Sample Φo and Φe from ψo and ψe respectively.
4: Approximate the semi-implicit posterior distribution

as q(µ) ≈ q(µ|Φo), q(υ|µ) ≈ q(υ|µ,Φe).
Approximate the semi-implicit prior as p(µ) ≈
p(µ|Φo), p(υ|µ) ≈ p(υ|µ,Φe).

5: Calculate DKL(q(υ|µ,Φe)‖p(υ|µ,Φe)) using
Eq. (17) and DKL(q(µ|Φo)‖p(µ|Φo)) using Eq. (18).

6: Update w, ϕ, δ, and σ by gradient descent.
7: Update network parameters p by gradient descent .
8: (1− λnewo )2 = 0.95 · (1− λoldo )2.
9: (1− λnewe )2 = 0.95 · (1− λolde )2.

10: end while
11: return w, ϕ, δ, and σ and final samples Φo, Φe from ψo

and ψe respectively.

DKL(q(µo)||p(µo) ≈ DKL(q(µo|Φoo)||p(µo|Φoo))

=

{
0, Φoo = 0

0.5 · log[1 + (1− λoo)2(δo)−1], Φoo = 1
(18)

From Eq. (17) and (18), we obtain the objective KL diver-
gence in Eq. (14). Algorithm 1 elaborates the implementation
of SI-VDNAS.

4 Experiments
Following the pipeline of DARTS, our experiments can be
divided into 3 stages. In the first stage, we search the archi-
tecture on CIFAR-10 with a simple network. The optimized
architecture in search is stored and stacked to generate a com-
plex network for new training processes from scratch. The
new training processes consist of two stages, i.e., evaluation
on CIFAR-10/100 and ImageNet.

4.1 Datasets
CIFAR-10/100 [Krizhevsky and Hinton, 2009] is a pop-
ular dataset consisting of 60K images, 50K training images
and 10K test images. All these images share the same spatial
resolution of 32×32, and are categorized into 10/100 classes.

ImageNet [Deng et al., 2009] is a large-scale benchmark
for image classification. It contains 1.3M training images and

50K test images that are equally distributed into 1000 classes.
As in [Zoph et al., 2018; Xie et al., 2019; Liu et al., 2019a],
we adopt the mobile setting with a spatial resolution of 224×
224 for input images to limit FLOPS by 600M during testing.

4.2 Architecture Search
Implementation Details
Following DARTS, the super-net is formed by stacking two
kinds of basic cells. Specifically, 6 normal cells and 2 re-
duction cells are stacked to form the super-net. Each cell
contains seven nodes, including two input nodes, four inter-
mediate nodes, and one output node. The output of the four
intermediate nodes are concatenated as the input for the out-
put node. Each cell has 14 candidate edges, where a hybrid
operation consisting of 7 candidate operations is assigned to
each candidate edge.

For fair comparison, we adopt the same candidate oper-
ations as existing one-shot NAS, except for ’none’ opera-
tion. We assign dropout rate to operation weight parame-
ters w and edge weight parameters φ, respectively. So, we
have two stages of our object function. In each stage, we use
the semi-implicit distribution qδ(ξ) =

∫
qδ(ξ|ψ)qδ(ψ)dψ as

the approximate posterior. The implicit distribution qδ(ψ) is
chosen to be the Bernoulli distribution parameterized by the
dropout rate δ. Thus, we can sample the super-net by sam-
pling from qδ(ψ). The final structure is also determined by
the samples of qδ(ψ). The first part of semi-implicit distri-
bution is the Gaussian distribution which is the same as that
of VDNAS when ψ = 1. The prior distribution is chosen to
be the annealed semi-implicit ARD distribution, which is the
generalized version of ARD prior used in previous work [Liu
et al., 2019b]. For our training, we set the annealed tempera-
ture as (1− λnew)2 = 0.95 · (1− λold)2, and the second part
of prior shares the same sample of qδ(ψ).

We utilize the bi-level update algorithm to update the ar-
chitectural parameters and conventional network weights, re-
spectively. For the training, we split the training images into
two subsets with the same size. One subset is used for train-
ing network parameters, the other is used for architectural pa-
rameters. We can not only train the network for 50 epochs
following DARTS to get the optimal structure, but also train
150 epochs for convergence(the number of epochs does not
have to be 150, but it can also be 100 or 300. We can search
to get a convergent result without the need to carefully de-
sign the search process for preventing degeneration), with the
initial number of channels being 16. Following [Chen et al.,
2019], we freeze architectural parameters and only update the
network parameters in first 15 epochs. The batch-size is set
to 64 to enable the searching process on single GPU.

Search Results
The search process requires 8 GPU-hours for optimal struc-
ture within 50 epochs and 20 GPU-hours for a convergent
result within 150 epochs on a single NVIDIA GTX 1080Ti
GPU. The search time can be reduced by about 50% on a
single Tesla V100 GPU. Figure 1 shows the optimal struc-
ture within 50 epochs and the convergent structure within 150
epochs. Due to space limitations, we only show the searched
normal cells, as the number of reduction cells is small.
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Architecture Top-1 (Test) Error (%) Params Search Cost Search MethodCIFAR-10 CIFAR-100 (M) (GPU-days)
DenseNet-BC [Huang et al., 2017] 3.46 17.18 25.6 - manual
AmoebaNet-A + cutout [Real et al., 2019] 3.34± 0.06 - 3.2 3150 evaluation
AmoebaNet-B + cutout [Real et al., 2019] 2.55± 0.05 - 2.8 3150 evaluation
NASNet-A + cutout [Zoph et al., 2018] 2.65 - 3.3 1800 RL
ENAS + cutout [Pham et al., 2018] 2.89 - 4.6 0.5 RL
PNAS [Liu et al., 2018] 3.41± 0.09 - 3.2 225 SMBO
NAONet-WS [Luo et al., 2018] 3.53 - 3.1 0.4 NAO
MdeNAS [Zheng et al., 2019] 2.55 - 3.6 0.16 MDL
DARTS (1st order) + cutout [Liu et al., 2019a] 3.00± 0.14 17.76† 3.3 0.4 gradient-based
DARTS (2nd order) + cutout [Liu et al., 2019a] 2.76± 0.09 17.54† 3.3 1 gradient-based
SNAS (mild) + cutout [Xie et al., 2019] 2.98 - 2.9 1.5 gradient-based
SNAS (moderate) + cutout [Xie et al., 2019] 2.85± 0.02 - 2.8 1.5 gradient-based
SNAS (aggressive) + cutout [Xie et al., 2019] 3.10± 0.04 - 2.3 1.5 gradient-based
PC-DARTS + cutout [Xu et al., 2019] 2.57± 0.07 - 3.6 0.1 gradient-based
P-DARTS + cutout [Chen et al., 2019] 2.50 16.55† 3.4 0.3 gradient-based
BayesNAS + cutout [Zhou et al., 2019] 2.81± 0.04 - 3.4 0.2 gradient-based
DARTS-EGS (M = 4) [Chang et al., 2019] 3.01 - 2.6 1 gradient-based
DARTS-EGS (M = 7) [Chang et al., 2019] 2.79 - 2.9 1 gradient-based
Amended-DARTS,S1 + cutout [Bi et al., 2019] 2.81± 0.21 - 3.5 1.0 gradient-based
Amended-DARTS,S2 + cutout [Bi et al., 2019] 2.60± 0.15 - 3.6 1.1 gradient-based
SI-VDNAS(base) + cutout 2.50± 0.06 15.98 3.6 0.3 gradient-based
SI-VDNAS(convergence) + cutout 2.60± 0.05 16.20 2.7 0.8 gradient-based

Table 1: Comparison with state-of-the-art NAS methods for image classification on CIFAR-10/100. For each method, top-1 test error (%),
number of parameters (M) and search cost (GPU-days) are evaluated. Here, lower error rate stands for better performance and † indicates that
the experiments are conducted by P-DARTS.
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Figure 1: Searched normal cells on CIFAR-10.

4.3 Architecture Evaluation
Evaluation on CIFAR-10/100
Evaluation on CIFAR-10/100 follows that of DARTS and P-
DARTS [Chen et al., 2019]. The network is composed of 20
cells (18 normal cells and 2 reduction cells). Each cell has
the same architecture learned in our searching stage. The ini-
tial number of channels is set to 36. The network weights
are trained from scratch using all the 50K training images
with a batch size of 96. The network is trained for 600
epochs. We use the SGD optimizer with an initial learn-
ing rate of 0.025 (annealed down to zero following a cosine
schedule without restart), a momentum of 0.9, a weight decay
of 3× 10−4/5× 10−4 and a norm gradient clipping at 5. We

apply the drop-path trick with the probability of 0.3. Cutout
is also used in our evaluation. Table 1 summarizes the results
obtained by the state-of-the-arts and SI-VDNAS on CIFAR-
10/100. SI-VDNAS outperforms all the benchmarks in terms
of test accuracy. It can achieve 2.50% top-1 error rate with
3.6M parameters in 0.3 GPU-days. The convergent architec-
ture of SI-VDNAS also achieves 2.60% top-1 error rate and
2.7M parameters in 0.8 GPU-days.

Evaluation on ImageNet
We further evaluate the searched architectures from CIFAR-
10 on ImageNet to validate its generalizability. The evalua-
tion process is similar to DARTS. The input images share the
resolution of 224×224 for Mobile Setting. Three convolution
layers of stride 2 are first employed to reduce the sizes of in-
put images from 224× 224 to 28× 28. The network consists
of 12 normal cells and 2 reduction cells. The initial number
of channels is set to 48. The network is trained from scratch
for 250 epochs using a batch size of 1024. We use the SGD
optimizer with a momentum of 0.9, an initial learning rate of
0.5 (decayed down to zero linearly) and a weight decay of
3 × 10−5. We also adopt label smoothing and an auxiliary
loss tower during training. Learning rate warm-up is applied
for the first 5 epochs.

Table 2 provides the evaluation results. The effectiveness
of transferring SI-VDNAS is demonstrated. The basic archi-
tecture searched on CIFAR-10 can achieve 25.3% top-1 er-
ror rate and 8.0% top-5 error rate with 5.0 MB parameters
and 577M FLOPS. The convergent architecture searched on
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Architecture Test Error (%) Params FLOPS Search Cost Search MethodTop-1 Top-5 (M) (M) (GPU-days)
Inception-v1 [Szegedy et al., 2015] 30.2 10.1 6.6 1448 - manual
MobileNet [Howard et al., 2017] 29.4 10.5 4.2 569 - manual
ShuffleNet 2× (v2) [Ma et al., 2018] 25.1 - ∼ 5 591 - manual
AmoebaNet-C [Real et al., 2019] 24.3 7.6 6.4 570 3150 evaluation
NASNet-A [Zoph et al., 2018] 26.0 8.4 5.3 564 1800 RL
PNAS[Liu et al., 2018] 25.8 8.1 5.1 588 225 SMBO
MdeNAS [Zheng et al., 2019] 25.5 7.9 6.1 - 0.16 MDL
DARTS (2nd order) [Liu et al., 2019a] 26.7 8.7 4.7 574 1 gradient-based
SNAS (mild) [Xie et al., 2019] 27.3 9.2 4.3 522 1.5 gradient-based
PC-DARTS(CIFAR-10) [Xu et al., 2019] 25.1 7.8 5.3 586 0.1 gradient-based
PC-DARTS† [Xu et al., 2019] 24.2 7.3 5.3 597 3.8 gradient-based
P-DARTS [Chen et al., 2019] 24.4 7.4 4.9 557 0.3 gradient-based
BayesNAS [Zhou et al., 2019] 26.5 8.9 3.9 - 0.2 gradient-based
DARTS-EGS (M = 4) [Chang et al., 2019] 25.7 8.5 4.3 - 1.5 gradient-based
DARTS-EGS (M = 7) [Chang et al., 2019] 24.9 8.1 4.7 - 1.5 gradient-based
DARTS+† [Liang et al., 2019] 23.9 7.4 5.1 582 6.8 gradient-based
FairDARTS-A [Chu et al., 2019] 26.3 8.2 3.6 417 0.4 gradient-based
FairDARTS-B [Chu et al., 2019] 24.9 7.5 4.8 541 0.4 gradient-based
Amended-DARTS, S2 [Bi et al., 2019] 24.3 7.4 5.5 590 1.1 gradient-based
SI-VDNAS(base) 25.3 8.0 5.0 577 0.3 gradient-based
SI-VDNAS(convergence) 25.6 8.1 4.1 462 0.8 gradient-based

Table 2: Comparison with state-of-the-art NAS methods for image classification on ImageNet. For each method, top-1 and top-5 test errors
(%), number of parameters (M), FLOPS (M) and search cost (GPU-days) are evaluated. Here, lower error rate stands for better performance
and † indicates that the structure is directly searched on ImageNet.

CIFAR-10 can achieve 25.6% top-1 error rate and 8.2% top-
5 error rate with only 4.1 MB parameters and 462M flops,
which outperforms DARTS (26.7% top-1 error rate and 8.7%
top-5 error rate). SI-VDNAS also reduces 1%-2% top-1 and
top-5 error rate in comparison to SNAS. Note that Amended-
DARTS and P-DARTS adopt deeper search space (more than
8 layers stacked as the super-net) than DARTS. Furthermore,
PC-DARTS and DARTS+ directly performs NAS on Ima-
geNet. Structures achieved by these approaches are usually
deeper and naturally perform better on large dataset consist-
ing of high-resolution images. However, these approaches
actually change the search space and are time consuming.

4.4 Ablation Study
To verify the design of SI-VDNAS, we further evaluate the
strategies excluding the semi-implicit distribution from SI-
VDNAS. Two search strategies, namely H-VDNAS and V-
VDNAS, are adopted, where V-VDNAS utilizes only vanilla
variational dropout and H-VDNAS considers hierarchical
structure over V-VDNAS. Table 3 shows the top-1 error rates
on CIFAR-10/100 obtained by SI-VDNAS, V-VDNAS, H-
VDNAS and DARTS, respectively. These results imply that
both variational dropout and hierarchical structure contribute
to the performance gain by SI-VDNAS. We also depict the
searched normal cells by V-VDNAS and H-VDNAS in Fig-
ure 2. Moreover, H-VDNAS and V-VDNAS are also affected
by the over-selection of skip-connect operations with a large
number of epochs, as semi-implicit variational dropout is not
adopted to preserve variable operations. Note that it is not
desirable to directly separate the hierarchical structure from

Architecture SI HS Top-1 (Test) Error (%) Params
CIFAR-10 CIFAR-100 (M)

SI-VDNAS X X 2.50±0.06 15.98 3.6
H-VDNAS × X 2.54±0.04 16.68 3.7
V-VDNAS × × 2.62±0.08 16.74 3.3
DARTS(2nd) - - 2.76±0.09 17.54 3.3

Table 3: Comparison with DARTS, V-VDNAS and H-VDNAS for
image classification on CIFAR-10/100 with 50 search epochs. For
each method, top-1 test error (%) and number of parameters (M) are
evaluated. SI and HS indicate the semi-implicit variation dropout
and hierarchical structure proposed by SI-VDNAS. Here, lower er-
ror rate stands for better performance.

SI-VDNAS, as multiple operations are preserved in one edge.

5 Related Work
In this section, we briefly introduce previous works pay-
ing attention to NAS. Evolutionary algorithms were adopted
in [Elsken et al., 2019; Miikkulainen et al., 2019; Real et
al., 2017; Real et al., 2019] to evolve one single network
or a family of networks towards better performance. Rein-
forcement learning (RL) based methods [Zoph and Le, 2017;
Zoph et al., 2018; Bender et al., 2018; Pham et al., 2018]
utilized a meta-controller to guide the search process in the
huge space of architecture by optimizing the reward function
for the inference accuracy of the selected network. To narrow
the search space, ENAS [Pham et al., 2018] stacked repeated
cells to form the final structure, which was also adopted in
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Figure 2: Base normal cells searched on CIFAR-10 by V-VDNAS
and H-VDNAS, respectively.

gradient-based methods such as DARTS.
Despite the good performance, a large amount of search

time and consumption of computing resources limit the devel-
opment of evolution based methods and reinforcement based
methods. Recently, Gradient based methods, especially one-
shot models, have gradually become the mainstream method
of NAS. Among them, DARTS [Liu et al., 2019a] proposed
a differentiable framework by introducing architectural pa-
rameters to measure the importance of candidate operations.
Many works are then based on DARTS. SNAS [Xie et al.,
2019] introduced the concrete distribution to NAS and re-
placed softmax function in DARTS with Gumbel-softmax
function. PC-DARTS proposed partial channel connection
to reduce the memory cost in NAS and accelerate the search
process. P-DARTS gradually improved the width and depth
of search space to bridge the gap between search and eval-
uation. Recently, DARTS is discovered to degenerate when
searched until convergence. DARTS+ [Liang et al., 2019] in-
troduced early stopping into NAS, Fair-DARTS [Chu et al.,
2019] replaced the softmax function with sigmoid function,
Amended-DARTS added the hyperparameter to th gradient
of DARTS. Too many artifacts and lack of interpretability are
common to these methods, our proposed SI-VDNAS lever-
ages variational dropout based on an annealed semi-implicit
ARD prior, solving the degeneration and also improving the
evaluation performance by enlarging the evaluation space.

6 Conclusion
In this paper, we proposed a probabilistic NAS approach,
named Semi-Implicit Variational Dropout Neural Architec-
ture Search (SI-VDNAS). The core idea of SI-VDNAS is to
use the semi-implicit variational dropout and annealed semi-
implicit ARD prior replace the vanilla variational dropout and
ARD prior, hierarchical structure is also used to separate the
edge selection and operation selection. SI-VDNAS can solve

the degeneration occurred in previous one-shot NAS sharing
the search space of DARTS. SI-VDNAS can also improve the
evaluation performance by preserving variable operations and
variable edge. In terms of performance, SI-VDNAS can ap-
proach the state-of-art result in CIFAR-10/100 and outper-
forms the benchmark when transformed to ImageNet.
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