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Abstract

Classical clustering methods usually face tough chal-
lenges when we have a larger set of features com-
pared to the number of items to be partitioned. We
propose a Sparse MinMax k-Means Clustering ap-
proach by reformulating the objective of the Min-
Max k-Means algorithm (a variation of classical k-
Means that minimizes the maximum intra-cluster
variance instead of the sum of intra-cluster vari-
ances), into a new weighted between-cluster sum
of squares (BCSS) form. We impose sparse regu-
larization on these weights to make it suitable for
high-dimensional clustering. We seek to use the
advantages of the MinMax k-Means algorithm in
the high-dimensional space to generate good quality
clusters. The efficacy of the proposal is showcased
through comparison against a few representative
clustering methods over several real world datasets.

1 Introduction

Traditional clustering algorithms including k-means, k-
medoids, and the hierarchical ones very often lose their ef-
fectiveness when the dataset contains significantly fewer data
items compared to the dimensionality of the associated fea-
ture space [Witten and Tibshirani, 2010; Li et al., 2018;
Chang et al., 2017; Jin and Wang, 2016]. Such curse of
dimensionality for clustering, manifests in the following dif-
ferent forms [Pandove et al., 2018]: difficulty in global opti-
mization of the clustering objective, distance concentration
on Lp norms, the effect of irrelevant or noisy features, and
extremely sparse data volume. In most scenarios, only a small
proportion of the features can be assumed to be relevant for
clustering [Witten and Tibshirani, 2010; Chang et al., 2017;
Jin and Wang, 2016]. The goal of a clustering algorithm is
to identify these features, avoid the negative influences of
the noisy features, and thus, more accurately identify the
underlying cluster structure [Witten and Tibshirani, 2010;
Jin and Wang, 2016]. Conventional ways of handling the chal-
lenge of high-dimensional clustering include subspace cluster-
ing of various forms (CLIQUE, SUBCLUE, DBSCAN, DUSC
etc.) [Kriegel et al., 2009], correlation clustering [Kriegel et
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al., 2008], bi-clustering [Pontes et al., 2015], and several
dimensionality-reduction based approaches including Prin-
cipal Component Analysis (PCA), independent component
analysis, non-linear matrix factorization, isometric feature
mapping, sparse feature weighting, and so on [Kriegel et al.,
2009]. Among the competitive and recent approaches in this
direction, the Influential Features PCA (IF-PCA) [Jin and
Wang, 2016] is a spectral clustering method that selects fea-
tures with a higher degree of relevance to the clustering task by
using the largest Kolmogorov-Smirnov(KS) scores and then
applies classical PCA to the post-selection data matrix. Sarkar
and Ghosh [2019] recently suggested an approach to tackle
high-dimensional clustering with a new data-driven measure
of dissimilarity, referred by the authors as MADD (Mean
of Absolute Differences of pairwise Distances) specifically
tailored for the high-dimensional feature spaces.

The widely popular k-Means [Lloyd, 1982] algorithm suf-
fers from a strong sensitivity to initialization. Its clustering
solution is not at all robust against the initial seed points (can-
didate cluster centers) and thus, it often gets trapped in poor
local minima [Peña et al., 1999; Celebi et al., 2013]. To tackle
this problem, Tzortzis and Likas [2014] suggested the MinMax
k-means clustering algorithm, which begins with a random
set of candidate cluster centers and attempts to minimize the
maximum intra-cluster variance instead of the traditional sum.
Minimizing the sum does not consider the relative differences
among the cluster variances, but by minimizing the maximum
intra-cluster variance, large variance clusters are avoided and
high-quality solutions are produced.

The relaxed maximum variance objective of the MinMax
k-Means clustering algorithm assigns weights to each cluster
but it does not perform any weighting on the features. Sparse
regularization can, therefore, be imposed to extend its cluster-
ing efficacy in the high-dimensional space. We first justify that
MinMax k-Means objective can be reformulated into Witten
and Tibshirani’s [2010] sparse clustering framework. This
framework offers a specific feature-weighting method, which
optimizes the weighted cost objective function using a lasso-
type penalty (`1-norm regularization), hence assigning exact
zero weights to noisy features [Witten and Tibshirani, 2010].
In this work, we thus propose the novel Sparse MinMax k-
Means algorithm. Our main contributions can be summarized
in the following way:

• We justify that MinMax k-Means objective can be re-
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formulated into Witten and Tibshirani’s [2010] sparse
clustering framework, which offers a specific feature-
weighting method and optimizes a weighted cost objec-
tive function by using a lasso type penalty.

• We propose the Sparse MinMax k-Means algorithm
which maximizes a new weighted between-cluster sum
of squares (BCSS) with the `1-norm regularization to
impose exact zero weights on the noisy features. We thus
extend the advantages of the MinMax k-Means algorithm
in the high-dimensional space.

• We compare the performance of our approach with
other well-known high-dimensional clustering algorithms
through extensive experiments on several real word
datasets (especially, the high-dimensional gene microar-
ray datasets).

2 Preliminaries

In this section, we briefly discuss the MinMax k-Means and
Sparse k-Means objectives along with the notations leading to
the formulation of our proposed method.

2.1 Notations

We consider X = (xij) ∈ Rn×p to be our data set in matrix

format where xij represents the jth feature (column) of the

ith observation (row). Here n and p denote the number of
observations and the number of features respectively. We
consider K clusters and the set of cluster centers c = (ckj) ∈
RK×p. ck represents the kth cluster center and Ck denotes
the kth cluster. Vk denotes variance of the cluster k where the
cluster variance is defined as the sum, and not the average,
of the squared distances from the observations belonging to
the cluster to its center. δik is a cluster indicator variable with
δik = 1 if xi belongs to cluster Ck and 0 otherwise. εmax

denotes maximum intra-cluster variance. εw represents the
weighted formulation of sum of the intra-cluster variances and
wk denotes the weight assigned to cluster Ck in the MinMax
k-Means algorithm [Tzortzis and Likas, 2014].

2.2 The MinMax k-Means Objective

The MinMax k-Means algorithm minimizes the maximum
intra-cluster variance εmax (1):

εmax = max
1≤k≤K

Vk = max
1≤k≤K

n
∑

i=1

δik‖xi − ck‖2 . (1)

Minimizing εmax is a non-trivial optimization problem. Thus,
Tzortzis and Likas [2014] came up with a relaxed maximum
variance objective. A weighted formulation εw of the sum of
intra-cluster variances was thus constructed as in (2), where
a higher weight wk was given to clusters with high variance
to follow the behavior induced by the maximum variance
criterion.

εw =
K
∑

k=1

wα
kVk =

K
∑

k=1

wα
k

n
∑

i=1

δik‖xi − ck‖2 ,

wk ≥ 0,
K
∑

k=1

wk = 1, 0 ≤ α < 1.

(2)

The exponent α is a user defined constant.1 To compensate
for the formation of large clusters, a higher weight should be
induced for a higher variance. Maximizing εw with respect to
the weights provide a way to realize this. Thus, the min-max
problem can be written as:

min
{Ck}K

k=1

max
{wk}K

k=1

εw,

s.t. wk ≥0,
K
∑

k=1

wk = 1, 0 ≤ α < 1.
(3)

2.3 The Sparse Clustering Framework

Witten and Tibshirani [2010] reformulated k-Means and hier-
archical clustering as an optimization problem in the following
way:

max
Θ∈τ

p
∑

j=1

fj(Xj ,Θ), (4)

where fj(Xj ,Θ) is a function that involves only the jth fea-
ture of the data, and Θ is a model parameter that belongs to a
set τ . They further defined a sparse clustering framework as a
solution to the above problem which is as follows:

max
ω,Θ∈τ

p
∑

j=1

ωjfj(Xj ,Θ),

s.t. ‖ω‖2 ≤ 1, ‖ω‖1 ≤ s, ωj ≥ 0 ∀j,
(5)

where s is a tuning parameter that determines the number of re-
tained features for clustering and ‖ω‖1,‖ω‖2 are respectively
the `1 and `2-norms of the weight vector ω. ωj determines
the contribution of the jth feature to the objective function
(5). The `1-norm or Lasso penalty results in sparsity in differ-
ent applications [Witten and Tibshirani, 2010; Li et al., 2018;
Chang et al., 2017].

3 The Sparse MinMax k-Means Algorithm

3.1 Deriving the Formulation

We introduce a new variable zik, which is similar to the cluster
indicator variable δik and can be defined as:

zik =

{

wk if xi ∈ Ck,

0 otherwise,

and zαik = wα
k , if xi ∈ Ck.

(6)

Here wk’s are the cluster weights as defined in the MinMax
k-Means algorithm [Tzortzis and Likas, 2014] in Section 2.2.
Thus, the εw defined in (2) can be re-written as follows:

εw =
K
∑

k=1

wα
k

n
∑

i=1

δik‖xi − ck‖2 =

K
∑

k=1

n
∑

i=1

zαik‖xi − ck‖2 .

(7)
We now provide Lemma 1 to prove that the MinMax k-Means
clustering model can also be reformulated in the framework (4).
We use a method similar to the one used by Chang et al. [2017]

in context to sparse fuzzy clustering.

1The role of α is discussed in Section 3.3
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Lemma 1. For the data matrix X,

K
∑

k=1

n
∑

i=1

zαik‖xi − ck‖2 =
K
∑

k=1

1

2n′
k

n
∑

i=1

n
∑

i′=1

zαikz
α
i′k‖xi − xi′‖2 ,

where n′
k =

∑n

i=1 z
α
ik = nkw

α
k , nk is the number of ob-

servations in cluster k, and ck is the kth cluster center such
that:

ck =

∑n

i=1 z
α
ikxi

n′
k

=
wα

k

∑n

i=1 δikxi

wα
knk

=

∑n

i=1 δikxi
∑n

i=1 δik
.

Proof. The right hand side can be written as

K
∑

k=1

1

2n′
k

n
∑

i=1

n
∑

i′=1

zαikz
α
i′k‖xi − xi′‖2

=
K
∑

k=1

1

2n′
k

n
∑

i=1

n
∑

i′=1

zαikz
α
i′k

{

‖xi − ck‖2

+‖xi′ − ck‖2 + 2(xi − ck)
T(xi′ − ck)

}

.

Since n′
k =

∑n

i′=1 z
α
i′k, we have

n
∑

i=1

n
∑

i′=1

zαikz
α
i′k‖xi − ck‖2 = n′

k

n
∑

i=1

zαik‖xi − ck‖2 .

Similarly, we have
n
∑

i=1

n
∑

i′=1

zαikz
α
i′k‖xi′ − ck‖2 = n′

k

n
∑

i′=1

zαi′k‖xi′ − ck‖2 .

Now,

n
∑

i=1

n
∑

i′=1

zαikz
α
i′k(xi − ck)

T(xi′ − ck)

=

[ n
∑

i=1

zαik(xi − ck)

][ n
∑

i′=1

zαi′k(xi′ − ck)

]

= 0.

Thus,

K
∑

k=1

1

2n′
k

n
∑

i=1

n
∑

i′=1

zαikz
α
i′k‖xi − xi′‖2 =

K
∑

k=1

n
∑

i=1

zαik‖xi − ck‖2 .

The left hand side of Lemma 1 is the objective function (2)
that is optimized by the MinMax k-Means Algorithm [Tzortzis
and Likas, 2014], while the right hand side evaluates the dis-
similarity within a cluster, which can be referred to as the
within-cluster sum of squares (WCSS) of MinMax k-Means.
The right hand side of Lemma 1 can be further simplified as:

If xi, xi′ ∈ Ck then zαik = zαi′k = wα
k .

In addition,

K
∑

k=1

1

2n′
k

n
∑

i=1

n
∑

i′=1

zαikz
α
i′k‖xi − xi′‖2

=
K
∑

k=1

1

2nk.wα
k

∑

xi,xi′∈Ck

w2α
k ‖xi − xi′‖2

=
K
∑

k=1

wα
k

2nk

∑

xi,xi′∈Ck

‖xi − xi′‖2 .

(8)

Note that the product zαikz
α
i′k is non-zero only when both

xi and xi′ ∈ Ck and is zero otherwise. The WCSS mea-
sure for our Sparse MinMax k-Means model can be written as:

WCSS =
K
∑

k=1

wα
k

nk

∑

xi,xi′∈Ck

p
∑

j=1

(xij − xi′j)
2. (9)

From the constraints of the objective function (2) of the
MinMax k-Means algorithm [2014], we can deduce that wα

k ≤
1. Hence, we can write:

K
∑

k=1

wα
k

n
∑

i=1

δik‖xi − ck‖2 ≤
K
∑

k=1

n
∑

i=1

δik‖xi − ck‖2 .

This implies that the WCSS of MinMax k-Means will always
be less than or equal to the WCSS defined for classical k-
Means. Therefore, we can model the new between-cluster sum
of squares (BCSS) of MinMax k-Means as:

BCSSj =
1

n

n
∑

i=1

n
∑

i′=1

(xij − xi′j)
2

−
K
∑

k=1

wα
k

nk

∑

xi,xi′∈Ck

(xij − xi′j)
2,

(10)

where BCSS(Θ) = (BCSS1, . . . , BCSSp)
> with Θ =

C = (C1, . . . , CK) and τ is a set of all possible partitions of
the observations into K clusters.

Now we can rewrite the MinMax k-Means problem by using
the Witten and Tibshirani’s [2010] sparse clustering frame-
work as shown below:

max
Θ

min
w

p
∑

j=1

BCSSj ,

s.t. zik =

{

wk, if xi ∈ Ck,

0, otherwise,

with zαik = wα
k if xi ∈ Ck, i = 1, . . . , n,

wk ≥ 0,

K
∑

k=1

wk = 1, 0 ≤ α < 1.

(11)

Note that in MinMax k-Means, we maximize εw with respect
to the cluster weights (wk’s), and hence we must minimize
∑p

j=1 BCSSj with respect to cluster weights.

BCSSj , j = 1, . . . , p is a function that only involves the
jth feature. Thus, we may conclude that MinMax k-Means
fits into the framework (4). According to Witten and Tibshi-
rani’s [2010] sparse clustering framework (5), the MinMax
k-Means can be generalized to the following model:

max
Θ,ω

min
w

ω
>BCSS(Θ),

s.t. ‖ω‖2 ≤ 1, ‖ω‖1 ≤ s, ωj ≥ 0, ∀j

zik =

{

wk, if xi ∈ Ck,

0, otherwise,

with zαik = wα
k if xi ∈ Ck, i = 1, . . . , n,

wk ≥ 0,
K
∑

k=1

wk = 1, 0 ≤ α < 1.

(12)
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We will call (12) as the Sparse MinMax k-Means model.
Denoting aj = BCSSj , a = (a1, . . . , ap)

>, the objec-
tive function of (12) can be rewritten as

∑p

j=1 ωjaj . We use

the technique similar to the one used in [Witten and Tibshirani,
2010] to build an algorithm to solve the problem (12). We al-
ternatively fix two of w, c, and ω and maximize the objective
with respect to the other. The optimization problem that arises
in the final step while maximizing the objective with respect
to ω can be written as:

maximize
ω

ω
>a,

s.t. ‖ω‖2 ≤ 1, ‖ω‖1 ≤s, ωj ≥ 0, ∀j.
(13)

Following the Proposition stated in page 715 of [Witten and
Tibshirani, 2010]), the convex problem bears a solution of
the form (13) is ω = S(a+,4)/

∥

∥S(a+,4)
∥

∥

2
, where x+

indicates the positive part of x and 4 = 0, if that results in
‖ω‖1 < s; else, 4 > 0 is taken to get‖ω‖1 = s. S is the soft-
thresholding operator, defined as S(x, c) = sign(x)(|x|−c)+.
The assumptions are the same as in [Witten and Tibshirani,
2010], i.e., there exists a unique maximal element of a, and
1 ≤ s ≤ √

p.

3.2 The Algorithm

From our definitions of WCSS and BCSS in Section 3.1, we
see that maximizing the BCSS is equivalent to minimizing
the WCSS and vice-versa. This property can be used to
simplify our algorithm (1). Steps 3 and 4 can be optimized
together by performing MinMax k-means clustering on the
data after scaling each feature j by

√
ωj , which is same as

updating the data matrix with each (i, j) element =
√
ωjxij .

In Step 3, the new cluster centres can be calculated in the
following way.

ck =

∑n

i=1 δikx̂i
∑n

i=1 δik
, where x̂i = (

√
ωjxi1, . . . ,

√
ωjxip),

δik =

{

1, k = argmin1≤k′≤K wα
k′

∑n

i=1 δik‖x̂i − ck′‖2 ,
0, otherwise.

(14)
In Step 4, the cluster weight constraints in (12) and the new
cluster centres obtained in Step 3 are incorporated in the objec-
tive via a Lagrange multiplier and the derivatives with respect
to wk are set to zero. Thus, the cluster weights are updated as:

wk = V
1/1 − α
k /

K∑

k′=1

V
1/1 − α

k′
where Vk =

n
∑

i=1

δik‖x̂i − ck‖2 .

(15)
Tzortzis and Likas [2014] observed that addition of a memory
effect to the weights could be beneficial in terms of increasing
the stability. Thus, for each iteration t,

w
(t)
k = βw

(t−1)
k +(1−β)

(

V
1/1 − α
k /

K∑

k′=1

V
1/1 − α

k′

)

, 0 ≤ β ≤ 1.

(16)
The algorithm iterates through steps 3-5 until the stopping
criterion

∑p

j=1

∣

∣

∣
ωnew
j − ωold

j

∣

∣

∣

∑p

j=1

∣

∣

∣
ωold
j

∣

∣

∣

< ε (17)

Algorithm 1 Sparse MinMax k-Means Algorithm

Input: Data matrix X and number of clusters k
Parameter: Tuning parameter s
Output: Clusters C1, C2, . . . , Ck

1: Initialize ω as ω1 = . . . = ωp = 1√
p

.

2: while stopping criteria (17) is not satisfied do
3: Optimize (12) with respect to C1, C2, . . . , CK , keeping

w and ω fixed. That is,

minimize
C1,C2,...,CK

{ K
∑

k=1

wα
k

nk

∑

xi,xi′∈Ck

p
∑

j=1

(xij − xi′j)
2

}

.

Maximizing (10) is same as minimizing (9).
4: Optimize (12) with respect to w, keeping

C1, C2, . . . , CK abd ω fixed. That is,

maximize
w1,w2,...,wK

{ K
∑

k=1

wα
k

nk

∑

xi,xi′∈Ck

p
∑

j=1

(xij − xi′j)
2

}

.

Minimizing (10) is same as maximizing (9).
5: Optimize (12) with respect to ω, keeping

C1, C2, . . . , CK and w1, w2, . . . , wK fixed, which
results in the optimization problem stated in (13) and
can be solved using the Proposition stated in page 715
of [Witten and Tibshirani, 2010] to get ωnew.

6: end while
7: return the clusters given by C1, C2, . . . , CK , the clus-

ter weights by w1, w2, . . . , wk and the feature weights
corresponding to this clustering given by ω1, ω2, . . . , ωp.

is satisfied, where the precision level ε was chosen as 10−4 as
suggested in [Witten and Tibshirani, 2010].

3.3 Selection of the Tuning Parameters

With the increase (decrease) of the exponent α, the similarity
among the weight values also reduces (enhances) pertaining
to the enhancement (suppression) of the relative difference
of the variances among the clusters. α is chosen by using a
data driven approach to automatically adapt to the data set
as in [Tzortzis and Likas, 2014]. It initiates with a small α
(αinit), which is increased by αstep after each iteration, till
the attainment of a maximum value α (αmax). Following a
procedure similar to [Witten and Tibshirani, 2010], we em-
ploy a permutation technique and determine the gap statistic
[Tibshirani et al., 2001] to select the value of s.

3.4 On Convergence of the Proposed Algorithm

An exact theoretical proof of the local convergence of the
minmax objective function in our proposed algorithm is quite
difficult and outside the scope of this paper. Nevertheless, we
provide some empirical demonstrations of the convergence
behavior by recording the variation of the weighted BCSS
objective with iterations of the alternating optimization proce-
dure. In all our experiments, the value of the weighted BCSS
objective (12) is seen to converge within 10 iterations. Figure
1 empirically demonstrates the gradual convergence of the
proposed algorithm (1) to a local stationary point on 5 selected
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Dataset Name
MADD
k-Means

IF-HCT-
PCA

Sparse
k-Means

Sparse
MinMax
k-Means

Brain
0.358± 0.029(4)
{2.13e− 03}

0.355± 0.065(3)
{1.47e− 03}

0.214± 0.000(1) 0.278± 0.078(2)
{7.58e− 02}

Breast Cancer
0.337± 0.0012(1) 0.406± 0.002(2)

{3.29e− 06}
0.449± 0.000(4)
{2.63e− 07}

0.419± 0.004(3)
{4.39e− 05}

Colon Cancer
0.354± 0.003(3)
{5.08e− 04}

0.403± 0.000(4)
{3.21e− 05}

0.306± 0.000(2)
{7.93e− 03}

0.206± 0.078(1)

Leukemia
0.042± 0.000(2)
{1.64e− 03}

0.069± 0.000(3)
{6.38e− 05}

0.069± 0.000(3)
{6.29e− 05}

0.038± 0.013(1)

Lung Cancer(1)
0.127± 0.000(3)
{9.03e− 06}

0.033± 0.000(1) 0.122± 0.000(2)
{4.26e− 06}

0.171± 0.056(4)
{3.72e− 07}

Lung Cancer(2)
0.217± 0.000(1) 0.217± 0.000(1) 0.315± 0.000(2)

{5.38e− 05}
0.217± 0.000(1)

Lymphoma
0.079± 0.067(2)
{4.72e− 05}

0.115± 0.074(3)
{8.14e− 08}

0.032± 0.000(1) 0.032± 0.000(1)

Prostate Cancer
0.387± 0.005(3)
{4.46e− 02}

0.382± 0.000(2)
{7.32e− 02}

0.392± 0.000(4)
{8.61e− 04}

0.381± 0.011(1)

SRBCT
0.515± 0.059(4)
{3.89e− 04}

0.416± 0.058(3)
{4.76e− 03}

0.349± 0.000(2)
{4.02e− 02}

0.335± 0.005(1)

SuCancer
0.477± 0.000(3)
{5.37e− 06}

0.333± 0.000(2)
{3.17e− 03}

0.328± 0.000(1) 0.328± 0.000(1)

Avg. Rank 2.6 2.4 2.2 1.6

Table 4: Comparison of mean CERs along with their standard devi-
ations obtained by MADD k-Means (kM0), IF-HCT-PCA, Sparse
k-Means, and Sparse MinMax k-Means methods for the gene microar-
ray datasets. The p-values corresponding to Wilcoxon’s rank sum
test (at 5% significance level) for the pairwise comparison against
the best method in each row is indicated within the pair of second
brackets.

row can be treated as statistically significant. Using the mean
CERs we obtain a similar performance as the one obtained in
Table 2.

To further analyze the performance of our algorithm,
we use two more criteria (Retained Features (RF) and
Dunn Index (DI)). DI [Dunn, 1974] denotes the ratio
of the minimum distance between observations from
two different clusters to the maximum intra-cluster dis-
similarity. It can be mathematically defined as DI ,

min1≤k≤l≤K δ(Gk, Gl)/max1≤m≤K 4m, where δ(Gk, Gl)
is the inter-cluster distance between clusters Gk and Gl,
and 4m calculates the maximum distance between all
items within cluster Gm. RF is the number of retained
features in each of the algorithms or basically the number of
non-zero feature weights (for sparse algorithms). We show
the comparative results against IF-HCT-PCA and Sparse
k-Means in Table 5. Here we do not compare with MADD
as it is not one of the feature selection oriented clustering
methods. Higher DI values would indicate better clustering
and our method obtains the highest DI values among the three
methods in 8 out of the 10 cases. The lowest RF values were,
however, obtained in only 4 cases by our method although
it has the best CER values in most of the cases (indicating a
better recovery of the ground truth cluster structure).

In addition, we provide the average run-time (in seconds)
over 20 independent runs for 4 main algorithms used in this
study on the gene microarray datasets in Table 6. The IF-
HCT-PCA method is seen to have the highest run-time, while
Sparse k-Means and our algorithm have a run-time of similar
order (though, experimentally, the later takes a slightly higher
execution time due to the extra cluster-weight update step).
The MADD k-Means approach has the least run-time.

Dataset Name
IF-HCT-

PCA
Sparse

k-Means

Sparse
MinMax
k-Means

RF DI RF DI RF DI

Brain 453 0.634 123 0.589 1810 0.647

Breast Cancer 728 0.182 22215 0.189 79 0.197

Colon Cancer 25 0.427 1237 0.377 76 0.435

Leukemia 213 0.556 3571 0.620 148 0.621

Lung Cancer(1) 251 0.128 260 0.245 16 0.245

Lung Cancer(2) 418 0.548 12600 0.244 5 0.548

Lymphoma 44 0.509 4026 0.651 717 0.616

Prostate Cancer 1551 0.509 6033 0.399 5650 0.393

SRBCT 52 0.433 742 0.443 1019 0.544

SuCancer 805 0.486 7909 0.505 1370 0.505

Table 5: RF (Retained Features) and DI (Dunn Index) obtained by
the Sparse k-Means, IF-HCT-PCA, and Sparse MinMax k-Means
methods for the gene microarray datasets.

Dataset Name
MADD
k-Means

IF-HCT-
PCA

Sparse
k-Means

Sparse
MinMax
k-Means

Brain 0.063 4.338 0.936 1.386

Breast Cancer 8.953 48.294 8.501 7.712

Colon Cancer 0.127 1.413 0.289 0.341

Leukemia 0.126 2.636 0.317 0.784

Lung Cancer(1) 1.881 17.158 2.841 5.305

Lung Cancer(2) 2.635 18.87 3.614 5.137

Lymphoma 0.098 7.814 0.552 1.857

Prostate Cancer 0.269 5.16 1.453 4.293

SRBCT 0.079 1.619 0.398 1.126

SuCancer 1.137 8.469 1.703 2.918

Table 6: Average run-time in seconds obtained by MADD k-Means
(kM0), IF-HCT-PCA, Sparse k-Means, and Sparse MinMax k-Means
methods for the gene microarray datasets.

5 Conclusion

We proposed a Sparse MinMax k-Means approach to detect
meaningful clusters in higher dimensional feature spaces. Our
approach attempts to extend the reach of traditional k-Means
clustering to the high-dimension and low sample-size (i.e. p �
n) situations. The experimental results obtained in Section
4 supports the improved performance of our approach over
other approaches in general. Our algorithm obtained the best
average rank in all the experiments among the other algorithms.
In the cases where any other algorithm has produced a better
CER, our scheme remains only marginally behind.

The proposed clustering scheme can be readily extended
to sparse multi-view settings by using multiple kernels for
handling more complicated vision data. It may also be useful
to employ other alternative dissimilarity measures, especially
the divergence-based ones (see for example [Chakraborty and
Das, 2017]) in the proposed clustering framework.

Acknowledgements

This work was supported by the Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (2016-0-00564,
Development of Intelligent Interaction Technology Based on
Context Awareness and Human Intention Understanding).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2109



References
[Arthur and Vassilvitskii, 2007] David Arthur and Sergei Vas-

silvitskii. K-means++: The advantages of careful seed-
ing. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’07, page
1027–1035, USA, 2007. Society for Industrial and Applied
Mathematics.

[Bache and Lichman, 2013] K. Bache and M. Lichman. Uci
machine learning repository, 2013.

[Belhumeur et al., 1997] Peter N. Belhumeur, João P. Hes-
panha, and David J. Kriegman. Eigenfaces vs. fisherfaces:
recognition using class specific linear projection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):711–720, 1997.

[Cai et al., 2007] Deng Cai, Xiaofei He, Yuxiao Hu, Jiawei
Han, and Thomas Huang. Learning a spatially smooth
subspace for face recognition. In Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition Machine Learning
(CVPR’07), 2007.

[Celebi et al., 2013] M. Emre Celebi, Hassan A. Kingravi,
and Patricio A. Vela. A comparative study of efficient
initialization methods for the k-means clustering algorithm.
Expert Systems with Applications, 40(1):200–210, 2013.

[Chakraborty and Das, 2017] Saptarshi Chakraborty and
Swagatam Das. k-means clustering with a new divergence-
based distance metric: Convergence and performance
analysis. Pattern Recognition Letters, 100:67–73, 2017.

[Chang et al., 2017] Xiangyu Chang, Qingnan Wang,
Yuewen Liu, and Yu Wang. Sparse regularization in fuzzy
c -means for high-dimensional data clustering. IEEE
Transactions on Cybernetics, 47(9):2616–2627, 2017.

[Dunn, 1974] J. C. Dunn. Well-separated clusters and opti-
mal fuzzy partitions. Journal of Cybernetics, 4(1):95–104,
1974.

[Jin and Wang, 2014] Jiashun Jin and Wanjie Wang. Gene
microarray data sets, 2014.

[Jin and Wang, 2016] Jiashun Jin and Wanjie Wang. Influ-
ential features pca for high dimensional clustering. The
Annals of Statistics, 44(6):2323–2359, 2016.

[Kriegel et al., 2008] Hans-Peter Kriegel, Peer Kröger, and
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