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Abstract
Most of existing clustering algorithms are pro-
posed without considering the selection bias in
data. In many real applications, however, one can-
not guarantee the data is unbiased. Selection bias
might bring the unexpected correlation between
features and ignoring those unexpected correlations
will hurt the performance of clustering algorithms.
Therefore, how to remove those unexpected corre-
lations induced by selection bias is extremely im-
portant yet largely unexplored for clustering. In
this paper, we propose a novel Decorrelation regu-
larized K-Means algorithm (DCKM) for clustering
with data selection bias. Specifically, the decorre-
lation regularizer aims to learn the global sample
weights which are capable of balancing the sam-
ple distribution, so as to remove unexpected cor-
relations among features. Meanwhile, the learned
weights are combined with k-means, which makes
the reweighted k-means cluster on the inherent data
distribution without unexpected correlation influ-
ence. Moreover, we derive the updating rules to
effectively infer the parameters in DCKM. Exten-
sive experiments results on real world datasets well
demonstrate that our DCKM algorithm achieves
significant performance gains, indicating the neces-
sity of removing unexpected feature correlations in-
duced by selection bias when clustering.

1 Introduction
One common hypothesis in traditional machine learning is
that the data is drawn from an unbiased distribution, in
which there are weak correlations between features [Heck-
man, 1979; Huang et al., 2007]. However, in many real
world applications, we cannot fully control the data gather-
ing process and always suffer from the data selection bias
issue, which will inevitably cause the correlations between
features. Unexpected high feature correlation is undesirable,
as it not only brings redundancy in features, but also causes
the algorithm to unsatisfied results [Zhang et al., 2018]. Some
literatures have studied the problem of removing the feature

∗Corresponding Author.

Figure 1: An example of clustering on data with high correlated
features.

correlation effect in machine learning model [Bengio and
Bergstra, 2009; Cogswell et al., 2016; Rodrı́guez et al., 2017;
Zhang et al., 2018]. They mainly focus on removing the fea-
ture correlation effect in neural networks by designing decor-
relation components, which bring great benefits for represen-
tation learning.

Despite the enormous success of decorrelation in neural
networks, the effect of data selection bias is severely underes-
timated in unsupervised learning scenario. Typically, cluster-
ing also suffers from the data selection bias issue [Kriegel et
al., 2009]. Data selection bias may cause spurious correlation
between features. Assuming one meaningless feature is mis-
takenly identified to correlate with one important feature, be-
cause of the presence of spurious correlation, the effect of this
meaningless feature will be unconsciously strengthened, ren-
dering the inherent data distribution unrevealed. Thus cluster-
ing on these data will inevitably result in poor performance.
As depicted in Figure 1, given an image dataset with many
dogs on the grass and some cats in various backgrounds, it
is easy to draw a conclusion that grass features are highly
correlated with dog features and cat features have low corre-
lation with background. Therefore, when performing cluster-
ing algorithm on such biased dataset, any object on the grass,
even a cat, will be clustered to the dog cluster with large
probability. This implies that clustering is very easily mis-
led by the presence of spurious correlations between features.
However, most of existing clustering algorithm [Hartigan and
Wong, 1979; Bachem et al., 2018; Schmidt et al., 2018;
Von Luxburg, 2007] do not take the data selection bias into
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consideration, and the feature correlation effect in clustering
is largely ignored.

Although it is promising to marry feature decorrelation
with clustering, there are two unsolved challenges. (1)
How to remove the correlations between features in high-
dimensional scenarios? In real applications, the correlations
between features might be very complex, especially in high-
dimensional settings. Moreover, we have little prior knowl-
edge about which correlations are unexpected and would hurt
clustering performance. In practical, one possible way is to
remove correlations between each targeted feature with the
remaining features one by one, but obviously this method
suffers from huge model complexity. Therefore, we need
to design efficient feature decorrelation method. (2) How to
make the feature decorrelation benefit for clustering? Feature
decorrelation and clustering are traditionally two independent
tasks. Because they have different objectives, feature decorre-
lation does not necessarily lead to good clustering. Therefore,
we need to discriminatively remove correlations for cluster-
ing. To achieve this goal, a task-oriented feature decorre-
lation framework is highly desirable. However, it is highly
non-trivial to design a scalable feature decorrelation method
for clustering problem, because feature decorrelation usually
cannot be directly incorporated with clustering objective.

In this paper, we propose a novel Decorrelation regular-
ized K-Means (DCKM) model for clustering on data with
selection bias. Specifically, to decorrelate one targeted fea-
ture with the remaining features, a decorrelation regularizer
is introduced to balance the remaining feature distributions
through learning a global sample weight matrix. Meanwhile,
the weight matrix is employed to reweight the k-mean loss. In
this way, the weighted k-means and decorrelation regularizer
are in a unified framework, causing that clustering results are
not affected by unexpected correlated features. Moreover, we
derive an effectively iterative updating rules to optimize the
parameters of our model. Our contributions are summarized
in the following three folds:

• We investigate an important but seldom studied problem,
i.e., clustering on data with selection bias. The correla-
tion caused by the data selection bias is ubiquitous in
real applications, while the effect of the correlation in
clustering is largely unexplored.

• We propose a novel Decorrelation regularized K-Means
(DCKM) model which removes the unexpected corre-
lations among features for clustering by a decorrelation
regularizer. Moreover, we derive an effectively updating
algorithm to optimize the parameters of DCKM.

• We conduct comprehensive experiments, where the sig-
nificant performance gains demonstrate the superiority
of our method in clustering on the biased data.

2 Preliminaries
Notations. In our paper, n refers to the sample size, and d
is the dimensions of features. For a vector v ∈ R

d×1, vi

represents the i-th element of v and ||v||22 =
∑d

i=1 v
2
i . For

any matrix X ∈ R
n×d, we denote Xi. and X.j represent

the i-th row and the j-th column in X, respectively. And

||X||2F =
∑n

i=1

∑d
j=1 X

2
ij .

Problem Definition. Clustering on Data with Selection
Bias . Given n samples with d-dimensional features, rep-
resented by X ∈ R

n×d, the task is to learn a robust clus-
tering model, which will not be affected by the unexpected
correlations between features, to partition the n samples into
predefined K disjoint clusters {C1, · · · , CK}.

Definition 1. Remaining Features. If we treat the j-th fea-
ture of X (i.e., X.j) as targeted feature, X.−j = X \X.j are
regarded as remaining features, which is from X by replacing
its j-th column as 0.

Definition 2. Treated Group and Control Group. Given
the targeted feature X.j , if the j-th feature of sample i: Xij =
11, then the sample Xi. is a treated sample, and the treated
group is a sample set TGj = {Xi.|Xij = 1}; otherwise, the
sample set CGj = {Xi.|Xij = 0} is a control group.

It is well recognized that k-means is one of the most rep-
resentative clustering algorithms. Thus, to validate the neces-
sity of decorrelation when clustering, we focus on k-means
algorithm and propose a novel decorrelation regularized k-
means method. Here, we first introduce some preliminaries
in k-means clustering.

K-means and matrix factorization. The classical k-
means clustering is a centroid-based clustering method,
which partitions the data space into a structure known as
Voronoi diagram. Besides, the G-orthogonal non-negative
matrix factorization (NMF) is equivalent to relaxed k-means
clustering [Ding et al., 2005], which can be reformulated as:

min
F,G

n∑

i=1

||Xi. −Gi. · FT ||22,

s.t. Gik ∈ {0, 1},
K∑

k=1

Gik = 1, ∀i = 1, 2, · · · , n,
(1)

where F ∈ R
d×K is the cluster centroid matrix, G ∈ R

n×K

is the cluster assignment matrix, each row of which satisfies
the 1-of-K coding scheme, i.e., if data point Xi. is assigned
to k-th cluster, then Gik = 1; otherwise, Gik = 0.

3 Decorrelation Regularized K-means
3.1 Decorrelation Regularizer
Recalling the example in Figure 1, we assume the j-th fea-
ture represents whether the image has dog feature and the t-th
feature indicates whether the image has grass feature. If the
majority of dogs are on the grass, then the j-th and the t-th
feature will be highly correlated. As a result, when perform
clustering on such data, the t-th feature, i.e., the grass feature,
will probably mislead the algorithm to cluster other kinds of
images with grass and dogs into the same cluster. One al-
ternative solution to alleviate the data selection bias is to add

1Please note that, without losing any generality, here we assume
all the features are binary for the ease of discussion and understand-
ing (categorical and continuous features can be converted to binary
ones through binning and one-hot encoding).
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extra dog images with other backgrounds, so that the j-th fea-
ture will not correlate with the t-th feature, but it is difficult
to obtain extra data in many real applications.

Instead, we adjust data distribution by learning a sample
weight for each sample so that all the features trend to be
independent [Shen et al., 2018; Kuang et al., 2018; Kuang et
al., 2020; Shen et al., 2020]. Specifically, we first focus on
how to remove correlation between the j-th targeted feature
X.j and the correspondingly remaining features X.−j .

Single feature decorrelation regularizer. If the targeted
feature X.j correlates with the remaining features X.−j , the
treated and control groups, TGj and CGj , will have differ-
ent distributions on X.−j . Once we balance the distributions
between TGj and CGj , we are able to reduce the correlation
between the targeted feature and the correspondingly remain-
ing features. As moments can uniquely determine a distri-
bution [Shen et al., 2018], we use the first-order moment to
measure the distributions. Specifically, for the remaining fea-
tures in treated group TGj , the first-order moment is:

X̄.−j =
XT

.−j ·X.j

1T
n ·X.j

, (2)

where 1n = [1, 1, · · · , 1] ∈ R
n×1. Similarly, the first-order

moment of the remaining feature in control group CGj is:

X̂.−j =
XT

.−j · (1n −X.j)

1T
n · (1n −X.j)

. (3)

To balance the moments X̄.−j and X̂.−j , we introduce the

sample weights wj ∈ R
n×1 to adjust the value of moments,

which can be learned by:

wj =argmin
wj

||X
T
.−j · (wj �X.j)

wjT ·X.j

− XT
.−j · (wj � (1n −X.j))

wjT · (1n −X.j)
||22,

(4)

where ‘�’ refers to the Hadamard product. The first term
XT

.−j ·(wj�X.j)

wjT ·X.j
is the weighted moment of TGj and the sec-

ond term
XT

.−j ·(wj�(1n−X.j))

wjT ·(1n−X.j)
is the weighted moment of

CGj . By optimizing Eq. (4), the two terms will be balanced.
After remaining features balancing, the targeted feature selec-
tion bias will be corrected and the correlation between the tar-
geted feature and remaining features will tend to be removed.

Global feature decorrelation regularizer. Note that the
above method is to remove the correlation between a single
targeted feature X.j with the remaining features X.−j . How-
ever, we need to remove the correlations of all features with
the correspondingly remaining features. This implies that we
need to learn n × d sample weights, which is apparently in-
feasible in high-dimensional scenarios. However, because d
sets of sample weights {wj}dj=1 are used to adjust the same
set of n samples, the sample weights for different targeted
feature can be shared. Thus we introduce a global balanc-
ing method as the decorrelation regularizer. Specially, we

add all the single feature remaining feature balancing term to-
gether, in which each balancing term is formulated by setting
each feature as targeted feature, and for all the remaining fea-
ture balancing term, they use the same set of sample weights
w ∈ R

n×1:

d∑

j=1

||X
T
.−j · (w �X.j)

wT ·X.j
− XT

.−j · (w � (1n −X.j))

wT · (1n −X.j)
||22.

(5)

As we can see from Eq. (5), the global sample weights
w simultaneously balance all the remaining feature terms,
which yields the correlations between all features tend to be
removed.

3.2 Decorrelation Regularized K-means
In the traditional k-means model Eq. (1), the cluster centroid
F and the cluster assignment G are learned on the original
feature X. But the unexpected highly correlated features may
confuse the data distribution, which yields to unsatisfied clus-
tering results. Because the sample weights w learned from
the decorrelation regularizer are capable of globally decorre-
lating the features, we propose to use the weights to reweight
the k-means loss and jointly optimize the weighted k-means
loss and decorrelation regularizer:

min
w,F,G

n∑

i=1

wi · ||Xi. −Gi. · FT ||22,

s.t.

d∑

j=1

||X
T
.−j · (w �X.j)

wT ·X.j

− XT
.−j · (w � (1n −X.j))

wT · (1n −X.j)
||22 ≤ γ1,

Gik ∈ {0, 1},
K∑

k=1

Gik = 1,

w � 0, ||w||22 ≤ γ2, (

n∑

i=1

wi − 1)2 ≤ γ3.

(6)

The term w � 0 constrains each of sample weights to be
non-negative. With norm ||w||22 ≤ γ2, we can reduce vari-
ance of the sample weights to achieve stability. The formula
(
∑n

i=1 wi − 1)2 ≤ γ3 avoids all the sample weights to be 0.

Although DCKM still performs on data X, the weight of
each Xi. is no longer same. This weight adjusts the con-
tribution of each data in the entire loss, so that the cluster
centroid and the cluster assignment are learned on the decor-
related features which can better reveal real data distribution.

3.3 Optimization
The constrained matrix factorization objective Eq. (6) is not
convex, and we separate the optimization of Eq. (6) into three
subproblems and iteratively optimize them. Next we describe
the optimization process in detail.
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The function Eq. (6) is equal to minimize J (w,F,G):

J (w,F,G) = ||(X−G · FT )� (w · 1T
d )

1/2||2F

+ λ1

d∑

j=1

||X
T
.−j · (w �X.j)

wT ·X.j

− XT
.−j · (w � (1n −X.j))

wT · (1n −X.j)
||22

+ λ2||w||22 + λ3(

n∑

i=1

wi − 1)2,

s.t. w � 0,Gik ∈ {0, 1},
K∑

k=1

Gik = 1.

(7)

To optimize Eq. (7), we iteratively update three parameters
(i.e. F, G, w), which are described below:

F-subproblem : When updating F with w and G in Eq. (7)
being fixed, we need to optimize the following objective func-
tion:

J (F) = ||(X−G · FT )� (w · 1T
d )

1/2||2F , (8)

which is a form of weighted k-means. Taking derivative of
J (F) with respect to F, we get

∂J (F)

∂F
=− 2(XT � (1d ·wT )) ·G

− 2F · (GT � (1K · wT )) ·G.

(9)

Setting Eq. (9) to 0, we can update F as:

F = (XT � (1d ·wT )) ·G · ((GT � (1K ·wT )) ·G)−1.
(10)

G-subproblem : When updating G with F and w in
Eq. (7) being fixed, we need to optimize the following ob-
jective function:

J (G) =
n∑

i=1

wi · ||Xi. −Gi. · FT ||22,

s.t. Gik ∈ {0, 1},
K∑

k=1

Gik = 1.

(11)

We can solve Eq. (11) by decoupling the data and assigning
the cluster indicator for them one by one independently. In
particular, we optimize Gi. for each sample i respectively:

min
Gi.

wi · ||Xi. −Gi. · FT ||22,

s.t. Gik ∈ {0, 1},
K∑

k=1

Gik = 1.
(12)

We can see that wi will not influence the optimal Gi.. Given
the fact that Gi. satisfies 1-of-K coding scheme, there are K
candidates to be the solution of Eq. (12), each of which is the
k-th column of matrix IK = [e1, e2, · · · , eK ]. To be specific,

we can perform an exhaustive search to find out the solution
of Eq. (12) as,

G∗
i. = ek, (13)

where k is decided as follows,

k = argmin
j

||Xi. − ej · FT ||. (14)

w-subproblem : When updating w with F and G in
Eq. (7) being fixed, we need to optimize the following ob-
jective function:

J (w) = ||(X−G · FT )� (w · 1T
d )

1/2||2F

+ λ1

d∑

j=1

||X
T
.−j · (w �X.j)

wT ·X.j

− XT
.−j · (w � (1n −X.j))

wT · (1n −X.j)
||22

+ λ2||w||22 + λ3(

n∑

i=1

wi − 1)2,

s.t. w � 0.

(15)

We let w = ω � ω to ensure non-negativity of w, where
ω ∈ R

n×1. Then Eq. (15) can be reformulated as:

J (ω) = ||(X−G · FT )� ((ω � ω) · 1T
d )

1/2||2F

+ λ1

d∑

j=1

||X
T
.−j · (ω � ω �X.j)

ω � ωT ·X.j

− XT
.−j · (ω � ω � (1n −X.j))

(ω � ω)T · (1n −X.j)
||22

+ λ2||ω � ω||22 + λ3(

n∑

i=1

ωi � ωi − 1)2.

(16)

The partial gradient of term J (ω) with respect to ω is:

∂J (ω)

∂ω
= (1T

n · ((XT − F ·GT )� (XT − F ·GT )))T � ω

+ λ1

d∑

j=1

4 · (∂Jb

∂ω
� (1d · ωT ))T · Jb

+ 4 · λ2 · ω � ω � ω + 4 · λ3(

n∑

i=1

ωi � ωi − 1) · ω,
(17)

where

Jb =
XT

.−j · (ω � ω �X.j)

(ω � ω)T ·X.j
− XT

.−j · (ω � ω � (1n −X.j))

(ω � ω)T · (1n −X.j)
,

(18)
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Jb

∂ω
=

XT
.−j � (X.j · 1T

d ) · ((ω � ω)T ·X.j)

((ω � ω)T ·X.j)2

− XT
.−j · (ω � ω �X.j)

T ·X.j
T

((ω � ω)T ·X.j)2

− XT
.−j � ((1n −X.j) · 1T

d ) · ((ω � ω)T · (1n −X.j))

((ω � ω)T · (1n −X.j))2

+
XT

.−j · (ω � ω � (1n −X.j)) · (1n −X.j)
T

((ω � ω)T · (1n −X.j))2
.

(19)
Then we update ω using gradient descent, and finally up-

date w(t) at the t-th iteration with:

w(t) = ω(t) � ω(t). (20)

We update F, G and w iteratively until the objective func-
tion Eq. (7) converges. As we can see from Eq. (17), the
partial gradient of term J (ω) with respect to ω is not only re-
lated to decorrelation term but also influenced by the weight
k-means loss, so the learned sample weight w will decorre-
late the features as well as benefit for clustering.

Complexity Analysis The overall complexity of each itera-
tion of DCKM is O(Knd+nd2), which is linear with respect
to n.

4 Experiments
Dataset
• Office-Caltech dataset [Gong et al., 2012]. The office-

caltech dataset is a collection of images from four do-
mains (DSLR, Amazon, Webcam, Caltech), which on
average have almost a thousand labeled images with
10 categories. It has been widely used in the area of
transfer learning [Long et al., 2014], due to the biases
created from different data collecting process. We use
SURF [Bay et al., 2006] and Bag-of-Words as image
features, where the dimension is 500.

• Office-Home dataset [Venkateswara et al., 2017]. It is
an object recognition dataset which contains hundreds
of object categories found typically in Office and Home
settings. To extensively evaluate our method, we ran-
domly sample 3 subsets from the dataset where each
subset contains 10 classes (marked as OH1, OH2, OH3)
and each class has hundreds of images. We also use
SURF and Bag-of-Words as image features, where the
dimension is 500.

Baselines Because our proposed model is based on k-
means, k-means is the most direct baseline. Moreover, unsu-
pervised feature selection algorithms can delete useless fea-
tures by an unsupervised way, so we also compare with sev-
eral unsupervised feature selection algorithms: RUFS [Qian
and Zhai, 2013], FSASL [Du and Shen, 2015], and REFS [Li
et al., 2017]. All the unsupervised feature selection meth-
ods first select the useful features and then feed the selected
features into the k-means algorithm. Furthermore, we imple-
ment three straight-forward two-step decorrelated methods to
validate the necessary of jointly training.

• PCA+KM [Ding and He, 2004]: We first perform PCA
to reduce the feature dimension while removing the fea-
ture correlations, and then perform k-means.

• Drop+KM: We first compute each feature’s correlation
with other features and then drop the highly correlated
features. K-means performs on the remaining features.

• Dec+KM: We first perform decorrelation regularizer
Eq. (5) only to learn the sample weights and then apply
the weighted k-means.

Note that, because our model is based on k-means method,
we mainly select k-means based methods as baselines to val-
idate the effectiveness of the proposed decorrelation regu-
larization. The decorrelation regularizer can also be eas-
ily extended to other clustering paradigms, such as the
autoencoder-based clustering, which is the future work.

Parameter Setting and Metrics. For DCKM, we fix λ3 =
1 and select λ1 and λ2 from {10−2, 10−1, 1, 10, 102, 103}.
For Drop+KM, we set the highly correlation features thresh-
old as 0.7. For PCA+KM, following [Ding and He, 2004],
we set the reduced dimension as K-1, where K is the num-
ber of clusters. Because all the unsupervised feature selection
methods are relatively sensitive to the number of selected fea-
tures, we “grid-search” the number of selected features from
{50, 100, · · · , 450}. And for all the methods, the number of
clusters, i.e., K, is decided by the classes of each subdatasets.
Since all the clustering algorithms depend on the initializa-
tions, we repeat all the methods 20 times using random ini-
tialization and report the average performance. We employ
two widely used clustering metrics: NMI and ARI [Fan et
al., 2020].

Clustering Result Analysis Table 1 shows the cluster-
ing results, and we have following observations. (1) Our
DCKM model achieves the best performance on almost all
the datasets (from 8.2% to 48.5% improvements compared
to the best baseline). Particularly, compared with k-means,
DCKM significantly outperforms it with the 25.1% average
improvement ratio on NMI. This well demonstrates the ef-
fectiveness of integrating the decorrelation regularizer with
k-means. (2) Two-step decorrelated approaches (PCA+KM,
Drop+KM, and Dec+KM) are not always better than k-
means, which indicates that removing correlations between
features do not necessarily benefit for clustering. We should
remove the unexpected correlations which hurt the clustering
performance. (3) DCKM outperforms the two-step decor-
related approaches, especially the Dec+KM method, which
clearly demonstrates the importance of jointly optimizing
decorrelation regularizer and clustering. (4) DCKM also
outperforms various unsupervised feature selection methods.
The reason is that these unsupervised feature selection meth-
ods reduce the correlation by deleting some features and some
meaningful features may be deleted, while our DCKM keeps
all features and removes the correlations among them. More-
over, unsupervised feature selection methods are sensitive to
the number of selected features [Li et al., 2017], but our
method does not have such problem.

Sample Weight Analysis Here we analyze the effect of
sample weights w in our model. We compute the amount of
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Dataset Metric REFS FSASL RUFS PCA+KM Drop+KM Dec+KM k-means DCKM Impro.

Office-Caltech

Amazon
NMI 0.4200∗ 0.3948 0.3843 0.3841 0.3529 0.3308 0.4149 0.4545 8.2%
ARI 0.2248∗ 0.1731 0.1626 0.1647 0.1364 0.2021 0.1883 0.274 21.9%

Webcam
NMI 0.3904∗ 0.3408 0.3229 0.302 0.3333 0.2971 0.3333 0.4355 11.6%
ARI 0.1636∗ 0.1130 0.0945 0.062 0.1007 0.1404 0.1007 0.243 48.5%

Caltech
NMI 0.2152∗ 0.1870 0.1850 0.1774 0.1926 0.1810 0.1778 0.2456 14.1%
ARI 0.0968 0.0707 0.0715 0.0624 0.0741 0.0985∗ 0.0623 0.1345 36.5%

DSLR
NMI 0.4788∗ 0.4774 0.4576 0.466 0.4526 0.3446 0.4523 0.4739 -1.0%
ARI 0.2086∗ 0.1938 0.1646 0.1755 0.1659 0.1736 0.1566 0.2583 23.8%

Office-Home

OH1
NMI 0.3318∗ 0.3071 0.3124 0.3038 0.2986 0.2625 0.3068 0.3594 8.3%
ARI 0.1528∗ 0.1237 0.1264 0.1223 0.1141 0.1371 0.1262 0.1926 26.0%

OH2
NMI 0.3120 0.3126∗ 0.3054 0.3021 0.3042 0.2118 0.2942 0.3383 8.2%
ARI 0.1504∗ 0.1148 0.1075 0.1097 0.1106 0.1098 0.1035 0.1911 27.1%

OH3
NMI 0.2220∗ 0.1927 0.1883 0.1908 0.1971 0.1894 0.1922 0.2603 17.3%
ARI 0.0856 0.0500 0.0517 0.052 0.0529 0.0896∗ 0.0565 0.1330 48.4%

Table 1: Clustering results on two datasets. The ‘*’ indicates the best performance of the baselines. Best results of all methods are indicated
in bold. The last column indicates the percentage of improvements gained by the proposed method compared to the best baseline.

(a) Office-Caltech. (b) Office-Home.

Figure 2: Feature correlation analysis on unweighted and weighted
datasets.

correlations in original unweighted dataset and the weighted
dataset, in which the weights are the last iteration sample
weights of DCKM. Following [Cogswell et al., 2016], the
amount of correlations is measured by the Frobenius norm of
the sample cross-corvairance matrix computed from the fea-
tures of samples. Figure 2 shows the amount of correlations in
unweighted dataset and weighted dataset, and we can observe
that the feature correlations in all the weighted datasets are re-
duced, demonstrating that the weights learned by DCKM can
reduce the correlations between the features. Since the ma-
jor difference between DCKM and a standard k-means is the
decorrelation regularizer, we can safely attribute the signif-
icant improvement to the effective decorrelation regularizer
and its seamless joint with k-means.

Parameters Sensitivity In this subsection, we study the
sensitiveness of parameters. Limited by space, we just report
the results on four subdatasets of Office-Caltech with λ3 = 1
(sensitiveness under other values of λ3 is similar) on Figure 3.
The experimental results show that DCKM is relatively stable
to λ1 and λ2 with wide ranges, indicating the robustness of
DCKM.

5 Conclusion
In this paper, we investigate a seldom studied but important
problem: clustering on data with selection bias. The data se-
lection bias will inevitably introduce correlations between the
features, making the data distribution confuse for clustering.

(a) DSLR. (b) Amazon.

(c) Webcam. (d) Caltech.

Figure 3: NMI of DCKM with different λ1 and λ2 while keeping
λ3 = 1 on Office-Caltech datasets.

We then propose a novel decorrelation regularized k-means
model, which combines the feature balancing technique with
k-means in a unified framework. Extensive experimental re-
sults well demonstrate the effectiveness of DCKM.
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