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Abstract
Knowledge graphs store facts using relations be-
tween two entities. In this work, we address the
question of link prediction in knowledge hyper-
graphs where relations are defined on any number
of entities. While techniques exist (such as reifica-
tion) that convert non-binary relations into binary
ones, we show that current embedding-based meth-
ods for knowledge graph completion do not work
well out of the box for knowledge graphs obtained
through these techniques. To overcome this, we in-
troduce HSimplE and HypE, two embedding-based
methods that work directly with knowledge hyper-
graphs. In both models, the prediction is a func-
tion of the relation embedding, the entity embed-
dings and their corresponding positions in the rela-
tion. We also develop public datasets, benchmarks
and baselines for hypergraph prediction and show
experimentally that the proposed models are more
effective than the baselines.

1 Introduction
Knowledge hypergraphs are graph structured knowledge
bases that store facts about the world in the form of rela-
tions among any number of entities. They can be seen as
one generalization of knowledge graphs in which relations
are defined on at most two entities. Since accessing and stor-
ing all the facts in the world is difficult, knowledge bases
are incomplete; the goal of link prediction in knowledge (hy-
per)graphs (or knowledge (hyper)graph completion) is to pre-
dict unknown links or relationships between entities based on
existing ones. In this work, we are interested in the problem
of link prediction in knowledge hypergraphs. Our motiva-
tion for studying link prediction in these more sophisticated
knowledge structures is based on the fact that most knowl-
edge in the world has inherently complex compositions.

Link prediction in knowledge graphs is a problem that
is studied extensively, and has applications in several tasks
such as automatic question answering [Ferrucci et al., 2010].
∗This paper with the supplementary material can be found at

https://arxiv.org/abs/1906.00137.
†Contact Author

In these studies, knowledge graphs are defined as directed
graphs having nodes as entities and labeled edges as relations;
edges are directed from the head entity to the tail entity. The
common data structure for representing knowledge graphs is
a set of triples relation(head, tail) that represents informa-
tion as a collection of binary relations. There exist a large
number of knowledge graphs that are publicly available, such
as FREEBASE [Bollacker et al., 2008]. Wen et al. (2016)
observe that in the original FREEBASE more than 1/3rd of
the entities participate in non-binary relations (i.e., defined
on more than two entities). We observe, in addition, that 61%
of the relations in the original Freebase are non-binary.

Embedding-based models [Nguyen, 2017; Kazemi et al.,
2020] have proved to be effective for knowledge graph com-
pletion. These approaches learn embeddings for entities and
relations. To find out if a triple relation(head, tail) is
true, such models define a function that uses embeddings
of relation, head, and tail and output the probability of
the triple. While successful, such embedding-based methods
make the strong assumption that all relations are binary.

Knowledge hypergraph completion is a relatively under-
explored area. We motivate our work by outlining that con-
verting non-binary relations into binary ones using methods
such as reification or star-to-clique [Wen et al., 2016], and
then applying known link prediction methods does not yield
satisfactory results. Reification is one common approach of
converting higher-arity relations into binary ones. In order to
reify a tuple having a relation defined on k entities e1, . . . , ek,
we form k new binary relations, one for each position in this
relation, and a new entity e for this tuple and connect e to
each of the k entities that are part of the given tuple using the
k binary relations. Another conversion approach is Star-to-
clique, which converts a tuple defined on k entities into

(
k
2

)
tuples with distinct relations between all pairwise entities in
the tuple.

Both conversion approaches have their caveats when cur-
rent link prediction models are applied to the resulting graphs.
The example in Figure 1a shows three facts that pertain to the
relation flies between. When we reify the hypergraph in this
example (Figure 1b), we add three reified entities. In terms
of representation, the binary relations created are equivalent
to the original representation and reification does not lose
information during conversion. A problem with reification,
however, arises at test time: because we introduce new enti-
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ties that the model never encounters during training, we do
not have a learned embedding for these entities; and current
embedding-based methods require an embedding for each en-
tity in order to be able to make a prediction.

Applying the star-to-clique method to a hypergraph does
not yield better results, as star-to-clique conversion loses in-
formation. Figure 1c shows the result of applying star-to-
clique to the original hypergraph (Figure 1a), in which the tu-
ple flies between(Air Canada, New York, Los Angeles) might
be interpreted as being true (since the corresponding entities
are connected by edges), whereas looking at the original hy-
pergraph, it is clear that Air Canada does not fly from New
York to Los Angeles.

In this work, we introduce two embedding-based models
that perform link prediction directly on knowledge hyper-
graphs without converting them to graphs. Both proposed
models are based on the idea that predicting the existence of
a relation between a set of entities depends on the position
of the entities in the relation; otherwise, the relation is sym-
metric. On the other hand, learning entity embeddings for
each position independently does not work well either, as this
does not let the information flow between the embeddings for
the different positions of the same entity. The first model we
propose is HSimplE. For a given entity, HSimplE shifts the
entity embedding by a value that depends on the position of
the entity in the given relation. Our second model is HypE,
which in addition to learning entity embeddings, learns posi-
tional (convolutional) embeddings; these positional embed-
dings are disentangled from entity representations and are
used to transform the representation of an entity based on
its position in a relation. This makes HypE more robust to
changes in the position of an entity within a tuple. We show
that both HSimplE and HypE are fully expressive. To evalu-
ate our models, we introduce two new datasets from subsets
of FREEBASE, and develop baselines by extending existing
models on knowledge graphs to work with hypergraphs.

The contributions of this paper are: (1) showing that cur-
rent techniques to convert a knowledge hypergraph to knowl-
edge graph do not yield satisfactory results for the link pre-
diction task, (2) introducing HypE and HSimplE, two mod-
els for knowledge hypergraph completion, (3) a set of base-
lines for knowledge hypergraph completion, and (4) two new
datasets containing multi-arity relations obtained from sub-
sets of FREEBASE, which can serve as new evaluation bench-
marks for knowledge hypergraph completion methods. We
also show that our proposed methods outperform baselines.

2 Related Work
Existing methods that relate to our work in this paper can be
grouped into the following three main categories.

Knowledge graph completion. Embedding-based models
for knowledge graph completion such as translational [Bor-
des et al., 2013; Wang et al., 2014], bilinear [Yang et al.,
2015; Kazemi and Poole, 2018], and deep models [Socher et
al., 2013] have proved to be effective for knowledge graphs
where all relations are binary. In Section 6 we extend some
of the models in this category to knowledge hypergraphs, and
compare their performance with the proposed methods.
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Figure 1: (a) Relation flies between with arity 3 defined on three
tuples. (b) Reifying non-binary relations by creating three addi-
tional entities e1, e2, and e3. (c) Converting non-binary relations
into cliques using star-to-clique.

Knowledge hypergraph completion. Soft-rule mod-
els [De Raedt et al., 2007; Kazemi et al., 2014] can easily
handle variable arity relations and have the advantage of
being interpretable. However, they can only learn a subset
of patterns [Nickel et al., 2016]. Guan et al. (2019) propose
an embedding-based method based on the star-to-clique
approach. The caveats of this approach are discussed earlier.
m-TransH [Wen et al., 2016] extends TransH [Wang et
al., 2014] to knowledge hypergraph completion. Kazemi
and Poole (2018) prove that TransH, and consequently
m-TransH, are not fully expressive and have restrictions in
modeling relations. In contrast, we prove that our proposed
models are fully expressive.
Learning on hypergraphs. Hypergraph learning has been
employed to model high-order correlations among data in
many tasks, such as in video object segmentation [Huang et
al., 2009] and in modeling image relationships and image
ranking [Huang et al., 2010]. There is also a line of work
extending graph neural networks to hypergraph neural net-
works [Feng et al., 2019] and hypergraph convolution net-
works [Yadati et al., 2018]. These models are designed for
undirected hypergraphs, with edges that are not labeled (no
relations), while knowledge hypergraphs are directed and la-
beled graphs. As there is no clear or easy way of extending
these models to our knowledge hypergraph setting, we do not
consider them as baselines for our experiments.

3 Definition and Notation
A world consists of a finite set of entities E , a finite set of
relations R, and a set of tuples τ where each tuple in τ is
of the form r(e1, e2, . . . , ek) where r ∈ R is a relation and
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each ei ∈ E is an entity, for all i = 1, 2, . . . , k. The arity
|r| of a relation r is the number of arguments that the relation
takes and is fixed for each relation. A world specifies what is
true: all the tuples in τ are true, and the tuples that are not in
τ are false. A knowledge hypergraph consists of a subset of
the tuples τ ′ ⊆ τ . Link prediction in knowledge hypergraphs
is the problem of predicting the missing tuples in τ ′, that is,
finding the tuples τ \ τ ′.

An embedding is a function that converts an entity or a re-
lation into a vector (or sometimes a higher order tensor) over
a field (typically the real numbers). We use bold lower-case
for vectors, that is, e ∈ Rk is an embedding of entity e, and
r ∈ Rl is an embedding of a relation r.

Let v1,v2, . . . ,vk be a set of vectors. The variadic func-
tion concat(v1, . . . ,vk) outputs the concatenation of its in-
put vectors. We define the variadic function �() to be the
sum of the element-wise product of its input vectors, namely
�(v1,v2, . . . ,vk) =

∑`
i=1 v1

(i)v2
(i) . . .vk

(i) where each
vector vi has the same length, and vj

(i) is the i-th element of
vector vj. The 1D convolution operator ∗ takes as input a vec-
tor v, a convolution weight filter ω, and a stride s and outputs
the standard 1D convolution as defined in torch.nn.Conv1D
function in PyTorch [Paszke et al., 2019].

For the task of knowledge graph completion, an
embedding-based model defines a function φ that takes a tu-
ple x as input, and generates a prediction, e.g., a probability
(or score) of the tuple being true. A model is fully expressive
if given any complete world (full assignment of truth values
to all tuples), there exists an assignment of values to the em-
beddings of the entities and relations that accurately separates
the tuples that are true in the world from those that are false.

4 Knowledge Hypergraph Completion:
Proposed Methods

The idea at the core of our methods is that the way an entity
representation is used to make predictions is affected by the
role (or position) that the entity plays in a given relation. In
the example in Figure 1a, Montreal is the departure city; but
it may appear in a different position (e.g., arrival city) in an-
other tuple. This means that the way we use Montreal’s em-
bedding for computing predictions may need to vary based
on the position it appears in within the tuple. In general,
when the embedding of an entity does not depend on its po-
sition in the tuple during prediction, then the relation has to
be symmetric (which is not the case for most relations). On
the other hand, when entity embeddings are based on position
but are learned independently, information about one position
will not interact with that of others. It should be noted that
in several embedding-based methods for knowledge graph
completion, such as canonical polyadic [Hitchcock, 1927;
Lacroix et al., 2018], ComplEx [Trouillon et al., 2016], and
SimplE [Kazemi and Poole, 2018], the prediction depends on
the position of each entity in the tuple.

In what follows, we propose two embedding-based meth-
ods for link prediction in knowledge hypergraphs. The first
model is inspired by SimplE and has its roots in knowledge
graph completion; the second model takes a fresh look at

knowledge completion as a multi-arity problem, without first
setting it up within the frame of binary relation prediction.
HSimplE. HSimplE is an embedding-based method for
link prediction in knowledge hypergraphs that is inspired by
SimplE [Kazemi and Poole, 2018]. SimplE learns two em-
bedding vectors e(1) and e(2) for an entity e (one for each
possible position of the entity), and two embedding vectors
r(1) and r(2) for a relation r (with one relation embedding as
the inverse of the other). It then computes the score of a triple
as φ(r(e1, e2)) = �(r(1), e(1)1 , e

(2)
2 ) +�(r(2), e(1)2 , e

(2)
1 ).

In HSimplE, we adopt the idea of having different repre-
sentations for an entity based on its position in a relation and
updating all these representations from a single training tuple.
We do this by representing each entity e as a single vector e
(instead of multiple vectors as in SimplE), and each relation
r as a single vector r. Conceptually, each e can be seen as
the concatenation of the different representations of e based
on every possible position. For example, in a knowledge hy-
pergraph where the relation with maximum arity is α, an en-
tity can appear in α different positions; hence e will be the
concatenation of α vectors, one for each possible position.
HSimplE scores a tuple using the following function.

φ(r(ei, ej , . . . , ek)) = �(r, ei, shift(ej, len(ej)/α), . . . ,
shift(ek, len(ek) · (α− 1)/α))) (1)

Here, shift(v, x) shifts vector v to the left by x steps, len(e)
returns length of vector e, and α = maxr∈R(|r|). We ob-
serve that for knowledge graphs (α = 2), SimplE is a spe-
cial instance of HSimplE, with e = concat(e(1), e(2)) and
r = concat(r(1), r(2)). The architecture of HSimplE is sum-
marized in Figure 2a.
HypE. HypE learns a single representation for each entity,
a single representation for each relation, and positional con-
volutional weight filters for each possible position. When an
entity appears in a specific position, the appropriate positional
filters are first used to transform the embedding of each en-
tity in the given fact; these transformed entity embeddings are
then combined with the embedding of the relation to produce
a score, i.e., the probability of the input tuple to be true. The
architecture of HypE is summarized in Figures 2b and 2c.

Let n denote the number of filters per position, l the filter-
length, d the embedding dimension, and s the stride of a con-
volution. Let ωi ∈ Rn×l be the convolutional filters asso-
ciated with position i, and let ωij ∈ Rl be the jth row of
ωi. We denote by P ∈ Rnq×d the projection matrix, where
q = b(d − l)/sc + 1 is the feature map size. For a given
tuple, define f(e, i) = concat(e ∗ ωi1, . . . , e ∗ ωin)P to be
a function that returns a vector of size d based on the entity
embedding e and its position i in the tuple. Thus, each en-
tity embedding e appearing at position i in a given tuple is
convolved with the set of position-specific filters ωi to give n
feature maps of size q. All n feature maps corresponding to
an entity are concatenated into a vector of size nq and pro-
jected to the embedding space through multiplication by P .
The projected vectors of entities and the embedding of the
relation are combined by inner-product to define φ:
φ(r(e1, . . . , e|r|)) = �(r, f(e1, 1), . . . , f(e|r|, |r|)). (2)
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(a) (b) (c)

Figure 2: Visualization of HSimplE and HypE architectures. (a) φ for HSimplE transforms entity embeddings by shifting them based on their
position and combining them with the relation embedding. (b) f(e, i) for HypE takes an entity embedding and the position the entity appears
in the given tuple, and returns a vector. (c) φ takes as input a tuple and outputs the score of HypE for the tuple.

The advantage of learning positional filters disentangled
from entity embeddings is two-folds: On one hand, learning
a single vector per entity keeps entity representations simple
and disentangled from its position in a given fact. On the
other hand, unlike HSimplE, HypE learns positional filters
from all entities that appear in the given position; overall, this
separation of representations for entities, relations, and posi-
tions facilitates the representation of knowledge bases having
facts of arbitrary number of entities. It also gives HypE an ad-
ditional robustness, such as in the case when we test a trained
HypE model on a tuple that contains an entity in a position
never seen before at train time. We discuss this in Section 6.1.

Both HSimplE and HypE are fully expressive — an im-
portant property that has been the focus of several stud-
ies [Fatemi et al., 2019]. A model that is not fully expressive
can embed assumptions that may not be reflected in reality.
Theorem 1 (Expressivity). For any ground truth over en-
tities E and relations R containing |τ | true tuples and
α = maxr∈R(|r|) , there exists a HypE and a HSimplE model
with embedding vectors of size max(α|τ |, α) that represents
that ground truth.

Proof Sketch. To prove the theorem, we show an assignment
of embedding values for each of the entities and relations in τ
such that the scoring function of HypE and HSimplE gives 1
for t ∈ τ and 0 otherwise.

4.1 Objective Function and Training
Both HSimplE and HypE are trained using stochastic gradient
descent with mini-batches. In each learning iteration, we take
a batch of positive tuples from the knowledge hypergraph.
As we only have positive instances available, we need to also
train our model on negative instances; thus, for each positive
instance, we produce a set of negative instances. For nega-
tive sample generation, we follow the contrastive approach of
[Bordes et al., 2013] for knowledge graphs and extend it to
knowledge hypergraphs: for each tuple, we produce a set of
negative samples of size N |r| by replacing each of the enti-
ties with N random entities in the tuple, one at a time. Here,
N is the ratio of negative samples in our training set and is a
hyperparameter.

Given a knowledge hypergraph defined on τ ′, we let τ ′train,
τ ′test, and τ ′valid denote the train, test, and validation sets, re-

spectively, so that τ ′ = τ ′train ∪ τ ′test ∪ τ ′valid. For any tuple
x in τ ′, we let Tneg(x) be a function that generates a set of
negative samples through the process described above. Let r
and e represent relation and entity embeddings respectively.
We define the following cross entropy loss:

L(r, e) =
∑

x′∈τ ′
train

−log
(

eφ(x
′)

eφ(x′) +
∑

x∈Tneg(x′)

eφ(x)

)

5 Experimental Setup
5.1 Datasets
The experiments on knowledge hypergraph completion are
conducted on three datasets. The first is JF17K proposed
by Wen et al. (2016); as no validation set is proposed for
JF17K, we randomly select 20% of the train set as validation.
We also create two datasets FB-AUTO and M-FB15K from
FREEBASE. For the experiments on datasets with binary rela-
tions, we use two standard benchmarks for knowledge graph
completion: WN18 [Bordes et al., 2014] and FB15k [Bordes
et al., 2013]. See Table 2 for statistics of the datasets.

5.2 Baselines
To compare our results to that of existing work, we first de-
sign simple baselines that extend current models to work with
knowledge hypergraphs. We only consider models that admit
a simple extension to higher-binary relations for the link pre-
diction task. The baselines for this task are grouped into the
following categories: (1) methods that work with binary re-
lations and that are easily extendable to higher-arity, namely
r-SimplE, m-DistMult, and m-CP; (2) existing methods that
can handle higher-arity relations, namely m-TransH. Below
we give some details about methods in category (1).

r-SimplE. To test the performance of a model trained on
reified data, we convert higher-arity relations in the train set
to binary relations through reification. We then use SimplE
(that we call r-SimplE) on this reified data. In this setting, at
test time higher-arity relations are first reified to a set of bi-
nary relations; this process creates new auxiliary entities for
which the model has no learned embeddings. To embed the
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JF17K FB-AUTO M-FB15K

Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
r-SimplE 0.102 0.069 0.112 0.168 0.106 0.082 0.115 0.147 0.051 0.042 0.054 0.070
m-DistMult 0.463 0.372 0.510 0.634 0.784 0.745 0.815 0.845 0.705 0.633 0.740 0.844
m-CP 0.391 0.298 0.443 0.563 0.752 0.704 0.785 0.837 0.680 0.605 0.715 0.828
m-TransH [Wen et al., 2016] 0.444 0.370 0.475 0.581 0.728 0.727 0.728 0.728 0.623 0.531 0.669 0.809
HSimplE (Ours) 0.472 0.378 0.520 0.645 0.798 0.766 0.821 0.855 0.730 0.664 0.763 0.859
HypE (Ours) 0.494 0.408 0.538 0.656 0.804 0.774 0.823 0.856 0.777 0.725 0.800 0.881

Table 1: Knowledge hypergraph completion results on JF17K, FB-AUTO and M-FB15K for baselines and the proposed method. The prefixes
‘r’ and ‘m’ in the model names stand for reification and multi-arity respectively. Both our methods outperform the baselines on all datasets.

Dataset |E| |R| #train #valid #test
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071
JF17K 29,177 327 77,733 – 24,915
FB-AUTO 3,410 8 6,778 2,255 2,180
M-FB15K 10,314 71 415,375 39,348 38,797

Table 2: Dataset Statistics.

auxiliary entities for the prediction step, we use the observa-
tion we have about them at test time. For example, a higher-
arity relation r(e1, e2, e3) is reified at test time by adding a
new entity e′ and converting the higher-arity tuple to three
binary facts: r1(e′, e1), r2(e′, e2), and r3(e′, e3). When pre-
dicting the tail entity of r1(e′, ?), we use the other two reified
facts to learn an embedding for entity e′. Because e′ is added
only to help represent the higher-arity relations as a set of bi-
nary relations, we only need to do tail prediction for reified
relations. Note that we do not reify binary relations.

m-DistMult. DistMult [Yang et al., 2015] defines a
score function φ(r(ei, ej)) = �(r, ei, ej). To accom-
modate non-binary relations, we redefine this function as
φ(r(ei, . . . , ej)) = �(r, ei, . . . , ej).
m-CP. Canonical Polyadic decomposition [Hitchcock,
1927] is a tensor decomposition approach. We refer to the
version that only handles binary relations as CP. CP em-
beds each entity e as two vectors e(1) and e(2), and each
relation r as a single vector r; it defines the score func-
tion φ(r(ei, ej)) = �(r, e(1)i , e

(2)
j ). We extend CP to m-

CP, which accommodates relations of any arity. m-CP em-
beds each entity e as α different vectors e(1), .., e(α), where
α = maxr∈R(|r|); it computes the score of a tuple as
φ(r(ei, . . . , ej)) = �(r, e(1)i , ..., e

(|r|)
j ).

5.3 Evaluation Metrics
Given a knowledge hypergraph on τ ′, we evaluate various
completion methods using a train and test set τ ′train and τ ′test.
We use two evaluation metrics: Hit@t and Mean Recipro-
cal Rank (MRR). Both these measures rely on the ranking
of a tuple x ∈ τ ′test within a set of corrupted tuples. For
each tuple r(e1, . . . , ek) in τ ′test and each entity position i
in the tuple, we generate |E| − 1 corrupted tuples by re-
placing the entity ei with each of the entities in E \ {ei}.
For example, by corrupting entity ei, we would obtain a
new tuple r(e1, . . . , eci , . . . , ek) where eci ∈ E \ {ei}. Let

(a)

(b)

Figure 3: These experiments show that HypE outperforms HSimplE
when trained with fewer parameters, and when tested on samples
that contain at least one entity in a position never encountered dur-
ing training. (a) MRR of HypE and HSimplE for different embed-
ding dimensions. (b) Results of m-CP, HSimplE, and HypE on the
missing positions test set (containing 1,806 test samples).

the set of corrupted tuples, plus r(e1, . . . , ek), be denoted
by θi(r(e1, . . . , ek)). Let ranki(r(e1, . . . , ek)) be the rank-
ing of r(e1, . . . , ek) within θi(r(e1, . . . , ek)) based on the
score φ(x) for each x ∈ θi(r(e1, . . . , ek)). We compute
the MRR as 1

K

∑
r(e1,...,ek)∈τ ′

test

∑k
i=1

1
rankir(e1,...,ek)

where
K =

∑
r(e1,...ek)∈τ ′

test
|r| is the number of prediction tasks.

Hit@t measures the proportion of tuples in τ ′test that rank
among the top t in their corresponding corrupted sets. We
follow [Bordes et al., 2013] and remove all corrupted tuples
that are in τ ′ from our computation of MRR and Hit@t.

6 Experiments
This section summarizes our experiments 1.

1Code and data available at https://github.com/ElementAI/HypE.
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WN18 FB15k

Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
CP [Hitchcock, 1927] 0.074 0.049 0.080 0.125 0.326 0.219 0.376 0.532
TransH [Wang et al., 2014] - - - 0.867 - - - 0.585
m-TransH [Wen et al., 2016] 0.671 0.495 0.839 0.923 0.351 0.228 0.427 0.559
DistMult [Yang et al., 2015] 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824
HSimplE (Ours) and SimplE [Kazemi and Poole, 2018] 0.942 0.939 0.944 0.947 0.727 0.660 0.773 0.838
HypE (Ours) 0.934 0.927 0.940 0.944 0.725 0.648 0.777 0.856

Table 3: Knowledge graph completion results on WN18 and FB15K for baselines and HypE. Note that in knowledge graphs (binary relations),
HSimplE and SimplE are equivalent, both theoretically and experimentally. The results show that our methods outperform the baselines.

Arity

Model 2 3 4-5-6 All
r-SimplE 0.478 0.025 0.017 0.168
m-DistMult 0.495 0.648 0.809 0.634
m-CP 0.409 0.563 0.765 0.560
m-TransH [Wen et al., 2016] 0.411 0.617 0.826 0.596
HSimplE (Ours) 0.497 0.699 0.745 0.645
HypE (Ours) 0.466 0.693 0.858 0.656
# train tuples 36,293 18,846 6,772 61,911
# test tuples 10,758 10,736 3,421 24,915

Table 4: Breakdown performance of Hit@10 across relations with
different arities on JF17K dataset along with their statistics.

6.1 Knowledge Hypergraph Completion Results
The results of our experiments, summarized in Table 1,
show that both HSimplE and HypE outperform the proposed
baselines across the three datasets JF17K, FB-AUTO, and
M-FB15K. They further demonstrate that reification for
the r-SimplE model does not work well; this is because the
reification process introduces auxiliary entities for which the
model does not learn appropriate embeddings because these
auxiliary entities appear in very few facts. Comparing the
results of r-SimplE against HSimplE, we can also see that ex-
tending a model to work with hypergraphs works better than
reification when high-arity relations are present.

The ability of knowledge sharing through the learned
position-dependent convolution filters suggests that HypE
would need a lower number of parameters than HSimplE to
obtain good results. To test this, we train both models with
different embedding dimensions. Figure 3a shows the MRR
on the test set for each model with different embedding sizes.
Based on the MRR result, we can see that HypE outperforms
HSimplE by 24% for embedding dimension 50, implying that
HypE works better under a constrained budget.

Disentangling the representations of entity embeddings
and positional filters enables HypE to better learn the role of
position within a relation because the learning process con-
siders the behavior of all entities that appear in a given po-
sition at the time of training. This becomes especially im-
portant in the case when some entities never appear in certain
positions in the train set, but you still want to be able to reason
about them no matter what position they appear in at test time.
In order to test the effectiveness of our models in this more
challenging scenario, we created a missing positions test set
by selecting the tuples from our original test set that contain

at least one entity in a position it never appears in within the
training dataset. The results on these experiments (Figure 3b)
show that (1) both HSimplE and HypE outperform m-CP
(which learns different embeddings for each entity-position
pair), and more importantly, (2) HypE significantly outper-
forms HSimplE for this challenging test set, leading us to
believe that disentangling entity and position representations
may be a better strategy for this scenario.

6.2 Knowledge Graph Completion Results
To show that HSimplE and HypE work well also on the more
common knowledge graphs, we evaluate them on WN18 and
FB15K. Table 3 shows link prediction results on WN18 and
FB15K. Baseline results are taken from the original papers
except that of m-TransH, which we implement ourselves. In-
stead of tuning the parameters of HypE to get potentially bet-
ter results, we follow the Kazemi and Poole (2018) setup with
the same grid search approach by setting n = 2, l = 2, and
s = 2. This results in all models in Table 3 having the same
number of parameters, and thus makes them directly compa-
rable to each other. Note that for knowledge graph comple-
tion (all binary relations) HSimplE is equivalent to SimplE,
both theoretically and experimentally (as shown in Section 4).
The results show that on WN18 and FB15K, HSimplE and
HypE outperform all baselines.

6.3 Ablation Study on Different Arities
We break down the performance of models across different
arities. As the number of test tuples in higher arities (4-5-6)
is much less than in smaller arities (2-3), we used equiva-
lent size bins to show the decomposed results for a reason-
able number of test tuples. Table 4 shows the Hit@10 results
of the models for bins of arity 2, 3, and 4-5-6 in JF17K. The
proposed models outperform the state-of-the-art and the base-
lines in all arities. We highlight that r-SimplE and HSimplE
are quite different models for relations having arity > 2.

7 Conclusions
Knowledge hypergraph completion is an important problem
that has received little attention. Having introduced two
new knowledge hypergraph datasets, baselines, and two new
methods for link prediction in knowledge hypergraphs, we
hope to kindle interest in the problem. Unlike graphs, hyper-
graphs have a more complex structure that opens the door to
more challenging questions such as: how do we effectively
predict the missing entities in a given (partial) tuple?
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