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Abstract
Despite significant progress in general AI plan-
ning, certain domains remain out of reach of cur-
rent AI planning systems. Sokoban is a PSPACE-
complete planning task and represents one of the
hardest domains for current AI planners. Even
domain-specific specialized search methods fail
quickly due to the exponential search complexity
on hard instances. Our approach based on deep re-
inforcement learning augmented with a curriculum-
driven method is the first one to solve hard in-
stances within one day of training while other mod-
ern solvers cannot solve these instances within
any reasonable time limit. In contrast to prior
efforts, which use carefully handcrafted pruning
techniques, our approach automatically uncovers
domain structure. Our results reveal that deep RL
provides a promising framework for solving previ-
ously unsolved AI planning problems, provided a
proper training curriculum can be devised.

1 Introduction
Deterministic, fully observable planning is a key domain for
artificial intelligence. In its full generality, AI planning en-
compasses general theorem proving, where proofs can be
viewed as plans leading from a set of basic axioms to the
theorems to be proved. Planning is well known to be a
very challenging computational problem: finding proofs in
a strong first-order mathematical theory which encodes basic
arithmetic is undecidable [Gödel, 1931] and plan-existence
is PSPACE-complete for propositional STRIPS planning
[Bylander, 1994]. Domain-independent planners, such as
BLACKBOX [Kautz and Selman, 1998], IPP [Koehler et al.,
1997], and FF [Hoffmann, 2001] among many others, were
built for solving general planning tasks given by an initial
state, goal state, and a set of plan operators [Vallati et al.,
2015]. Though these planners have greatly enlarged the set
of feasible planning tasks, one major shortcoming of these
planning systems is that they may do well on one problem
domain but poorly on another, which has prevented a wider
use of AI planning systems. This situation is in contrast to
the development of SAT/SMT solvers, which also tackle a
combinatorial search task, but have found wide applicability

in, for example, hardware and software verification [Järvisalo
et al., 2012]. An alternative approach to general AI plan-
ning is to develop domain-specialized solvers, e.g., Soko-
lution for solving Sokoban planning problems, as discussed
below. The specialized solvers utilize handcrafted domain-
specific knowledge to prune the search space. Clearly, an
effective domain-independent approach is preferable. Our
learning framework presented here provides a path towards
such domain independence. In particular, we will use a ma-
chine learning framework to automatically uncover domain-
specific problem structure during the solution process.

Recent advances in the deep learning community inspired
methods of augmenting search with deep neural networks us-
ing deep reinforcement learning (RL). In the game domain,
AlphaGo [Silver et al., 2016] as the first Go program to beat
professional players in 2016 and its more general and newest
version AlphaZero [Silver et al., 2017] achieved a higher
Elo rating and dominated the state-of-the-art Chess program
Stockfish. One key question about the success of deep RL
in these combinatorial (logical) domains is whether the game
setting is a required component for success. RL requires a re-
ward signal. In a game setting, this signal comes from the ul-
timate win/loss result from playout. For a game, we can train
the deep nets in a self-play approach. In such an approach,
the initial deep net starts off playing at a very low level (es-
sentially random play). But in self-play against an equally
weak player (using a copy of the trained network), the system
will see a mixture of wins and losses and thus gets a useful
reward signal about the utility of states. The system can then
slowly improve its level of play through repeated rounds of
self-play.

The core challenge in a single-agent setting, such as AI
planning, where we want to solve unsolved problem instances
is: how do we get any positive reward signal during training?
This is because a positive feedback signal would require a
valid plan to the goal but that is exactly what we are look-
ing for. In fact, the problem instances we will solve here re-
quire very subtle chains of several dozens to even hundreds
of steps. A random exploration will never “accidentally” en-
counter a successful chain. Our solution is to devise a series
of training instances (a “curriculum”) that slowly builds up to
the full, previously unsolved problem instance. We will see
below how such an approach is general and surprisingly ef-
fective. Curriculum based training has earlier been proposed
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in [Bengio et al., 2009] as a strategy for partitioning training
data for incremental training of hard concepts. A novel aspect
of our setting is that at each level of our curriculum training,
we use what was learned at the previous level to obtain new
training data to reach the next level.

Given the PSPACE-completeness of many interesting plan-
ning tasks, it is widely assumed (unless P = PSPACE) that de-
veloping a solver capable of solving effectively any arbitrary
instance is infeasible. Moreover, due to the significant over-
head of training deep neural networks, we do not aim to com-
pete on running time with finely tuned specialized solvers on
small problem instances. In this work, we therefore focus on
planning instances that are right beyond the reach of current
state-of-the-art specialized solvers. We will show for the first
time how such instances can be tackled successfully within a
deep RL framework. Specifically, we will show AI planning
instances on which our deep learning strategy outperforms
the best previous combinatorial search methods. We will also
provide insights about what problem structure deep nets cap-
ture during the learning process.

We selected Sokoban planning as our AI planning task be-
cause of its extreme difficulty for AI planners [Fern et al.,
2011] [Lipovetzky, 2013]. Moreover, Sokoban instances have
a regular 2-D input shape that is well-suited for convolutional
neural networks. Such 2-D structure can also be found in
many other AI planning that involve scheduling and trans-
portation style problems. However, Sokoban is much more
challenging in computational terms. Sokoban is a single-
player game, created in 1981, in which, given a set of boxes
and equal number of goal locations, a player needs to push all
boxes to goal squares without crossing walls and boxes. Fig-
ure 1 shows a typical instance. The player can only move
horizontally or vertically onto empty squares. Despite its
apparent conceptual simplicity, it quickly became clear that
one could create very hard instances with highly intricate and
long solutions (if solvable at all). Analyzing the computa-
tional complexity of Sokoban is non-trivial but the question
was finally resolved by Culberson in 1997, who proved the
problem to be PSPACE-complete [Culberson, 1997] [Hearn
and Demaine, 2005]. We will show below that the harder
Sokoban instances lie far beyond general AI planners but also
quickly are beyond the reach of specialized Sokoban solvers.
All modern state-of-the-art solvers are based on a combinato-
rial search framework augmented with intricate handcrafted
pruning rules and dead-end detection techniques.

Our framework learns and solves a single hard Sokoban
instance at a time. This is an important choice in our set-
ting. We want the deep net to uncover the underlying struc-
ture of the combinatorial space that is directly relevant to
the hard — previously unsolved — instance under consid-
eration. This approach mimics conflict-driven clause learn-
ing (CDCL) [Marques-Silva and Sakallah, 1999] for solv-
ing Boolean satisfiability problem (SAT). In SAT solving, the
clauses are learned during the processing of a single instance.
In this setting, the learned clauses are optimally relevant to
the problem instance at hand. Another potential advantage of
our framework is that all the parameters of the deep neural
network are focused on the layout of the given input instance
and its corresponding search space. Though some general

knowledge about Sokoban, e.g., that pushing a box to a cor-
ner leads to a dead-end state, can be learned from one instance
and generalized to others, we show that our training setup can
also discover this kind of knowledge efficiently and general-
ize well across its search space. In addition, the deep learning
framework can now uncover very specialized problem struc-
ture that helps tailor the search for the solution to the specific
problem instance at hand. Examples of such structure can
be a certain placement of a subset of boxes from which the
goal state cannot be reached. The search mechanism can now
eliminate any exploration action sequences that lead to such
a placement. This is analogous to the pruning provided by
learned clauses in SAT solvers. The learned clauses are spe-
cific to the SAT instance under consideration.

As we discussed above, we need to devise a way to obtain
a proper training signal for solving AI planning problems.
Since the input instance might be extremely hard and there-
fore cannot directly provide any positive reward signal, we in-
corporate the idea of curriculum learning and construct sim-
pler subcases derived from the original challenge problem. In
our Sokoban domain, a natural choice is to randomly select
smaller subsets of initial boxes and goal squares while leav-
ing all walls unchanged. In particular, our learning procedure
starts from exploring 2-box subcases and gradually increases
the number of boxes after the success rate of finding a solu-
tion increases to a certain threshold. We show that knowl-
edge learned from subcases with smaller numbers of boxes
can generalize successfully to subcases with larger numbers
of boxes.

Solving the Sokoban planning task is a combinatorial
search problem and we will utilize AlphaZero-style Monte
Carlo tree search in reinforcement learning for exploring the
search space more efficiently. The only domain knowledge
we use during learning is computing valid pushes from a state
and building the state transition table, and the input of the
neural network is the current raw 2-D board state. Intricate
handcrafted techniques in modern solvers like dead-end de-
tection are not used.

Our experiments reveal that our curriculum-driven deep re-
inforcement learning framework can surpass traditional spe-
cialized solvers for a large set of instances from benchmark
datasets such as XSokoban and Sasquatch. The deep network
helps the Monte Carlo tree search explore the search space
more effectively and offers significant generalization to un-
seen states. In addition, the growth of running time when
the complexity of the instances in the curriculum increases is
near polynomial instead of exponential.

We will also provide a number of other insights into the
learning process. Of particular interest is the observation that
when training the deep net on harder tasks in the curriculum,
its performance on easier instances degrades. This form of
”catastrophic forgetting” makes the stronger networks less ro-
bust, even when better at solving harder instances. It would be
an interesting research direction to devise a curriculum-driven
approach that does not show degradation on easier tasks while
still reaching maximal effectiveness on the original problem.
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2 Related Work
Search in combinatorial domains has been studied exten-
sively in AI, in areas such as planning, decision making, and
reasoning. For NP-complete tasks, successful SAT solvers
WalkSAT [Selman et al., 1992] and the CDCL framework
[Marques-Silva and Sakallah, 1999] have been built to effi-
ciently uncover structure of the input problem and demon-
strate near polynomial scaling on many industrial SAT do-
mains. The key insight of their success is the ability of the
algorithm to learn problem invariants and reshape the search
space by avoiding entering subtrees which do not contain a
solution. Most planning tasks are harder than SAT and usu-
ally are at least PSPACE-complete. Graphplan [Blum and
Furst, 1997] and FF are general planners accepting formal
languages such as PDDL [Fox and Long, 2003]. However, as
reported in [Welle, 2003], a major shortcoming of these gen-
eral planners is that they may do well on one problem domain
but poorly on another.

The enhancement of planning with learning [Fern et al.,
2011] has been investigated extensively in the past. Directed
by the current goal, [Abel et al., 2015] prune away irrelevant
actions. In each state, [Rosman and Ramamoorthy, 2012] ex-
ploit the usefulness of each action by learning action priors.
For Sokoban-specialized solving, modern solvers utilize in-
tricate domain-dependent techniques such as subtle dead-end
detection, duplicate positions pruning, lower bound calcula-
tion, and no influence move detection [Junghanns and Scha-
effer, 2001]. While all of these techniques offer efficiency im-
provements over general planning for Sokoban, good repre-
sentations of states, tight heuristic functions as well as dead-
end detection methods are handcrafted, which requires a care-
ful inspection of domain structure and heavy utilization of
domain knowledge.

In recent years, deep neural networks have achieved
promising results in many domains. The most exciting re-
sult in the combinatorial domain is AlphaZero which utilizes
deep reinforcement learning to automatically discover do-
main structure of two-player games like Chess and Go. Key
to its success is the self-play learning strategy, which starts
with two weak players and gradually collects useful learn-
ing signals by self-play and gradually improves the ability
of the players. Previously, it was not clear how to develop
such “curriculum-driven” strategy in the planning domain.
Because unlike in the game domain, where learning signals
(wins/losses) are available for any pair of players of roughly
equal strengths, including very weak and random players, in
the planning domain, the agent will initially fail to reach the
goal state at every attempt and therefore cannot bootstrap its
learning process.

Deep neural networks have also been used to help tackle
Sokoban problems. [Weber et al., 2017] augment deep re-
inforcement learning with an imagination component, and
[Groshev et al., 2018] use imitation learning to learn from
successful Sokoban plays and generalize reactive policies to
unseen instances. However, their performance is nowhere
close to state-of-the-art specialized Sokoban solvers.

Our approach offers two major advantages over prior ap-
proaches: (1) our approach solves hard benchmark instances

Figure 1: The instance XSokoban 29 (left panel) and one of its 3-
box subcase (right panel). The blue circle is the location of the
player (or “pusher”), red circles are boxes, and cells with dark back-
ground are goal squares. Light colored squares form walls. The
player has to push the boxes onto goal squares.

that are out of reach of specialized Sokoban solvers; (2) no
domain-specific knowledge is needed during learning and no
extra data, e.g., manually provided solutions, are required.
Our idea of training on similar, but easier subcases out from
the original instance can be adapted to other planning do-
mains.

3 Formal Framework
3.1 Model
Given a Sokoban instance I, the preprocessing phase com-
putes the set of all possible pushesA. A deep neural network
(p, v) = fθ(s) with parameters θ takes the board state s as
input and outputs a vector of action probability pwith compo-
nents pa = Pr(a|s) for each push action a ∈ A, and a scalar
value v indicating the estimated number of remaining steps to
the goal from state s. The left figure of Figure 1 shows the
original instance XSokoban 29 from the benchmark dataset
XSokoban. The input to the network is a 6 × H × W im-
age stack consisting of 6 features planes while H and W are
the height and width of the corresponding Sokoban instance.
Feature planes represent walls, empty goal squares, boxes on
empty squares, boxes on goal squares, player-reachable cells,
and player-reachable cells on goal squares respectively.

The effort of solving a Sokoban instance can be divided
into two parts:

1. The player moves to the correct position adjacent to a
box for pushing.

2. The player pushes the box.
In our experiment, we use the set of valid pushes instead of
valid moves as the action set since the number of pushes in a
solution is significantly smaller than the number of moves.
(One move is moving one square over for the player (the
pusher).) In other words, the plan length is generally far
shorter in terms of number of pushes vs. number of moves.
To model the set of valid pushes at each state requires keep-
ing track of the reachable cells that are next to blocks for the
player. Illegal pushes are masked out by setting their prob-
abilities to zero, and re-normalising the probabilities for re-
maining moves.

For each instance I, we set a maximum allowable pushes
or “steps” Imax during the learning phase. Imax indicates
the maximum number of steps of a single plan that the algo-
rithm is allowed to explore during learning. The model will
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be forced to stop after Imax pushes. Setting such a thresh-
old can help avoid infinite meaningless loops when explor-
ing. The remaining-step estimator v is also normalized to the
interval [0, 1] to fit better into the neural network framework.
Notice that if Imax is set smaller than the length of the short-
est solution plan then the model will never find any solution.
In our experiments, we start with Imax = 500 and double it
whenever learning fails after a long run.

The learning framework consists of multiple iterations, and
each iteration contains three parts:

1. Initial board generation phase: we randomly generate
500 initial boards according to our curriculum-driven
strategy described in subsection 3.2.

2. Exploration phase: the model searches for solutions
(plans) for these boards with Monte Carlo tree search
(MCTS) driven by the policy/value network trained so
far. For more details see subsection 3.3.

3. Training phase: we train the neural work with learning
signals collected from the exploration phase. This part
will be further illustrated in subsection 3.4.

3.2 Curriculum-driven Strategy
For hard Sokoban instances the deep RL setup may fail to
find any solution and thus gets no useful training signal. Our
curriculum strategy is based on two insights: (1) construct
simpler subcases that are more likely to be solved by the cur-
rent trained model; (2) the constructed subcases should share
similar structure information with the original instance to en-
hance knowledge generalization from a series of subcases to
the original problem instance.

Learning starts by choosing a small subset of initial boxes
and goal squares to form a subcase for exploration and train-
ing while leaving wall locations unchanged. Figure 1 (right)
shows one such example. Three boxes and goal squares are
randomly selected from the initial ones. The resulting sub-
case requires a much simpler plan. Specifically, assume the
input Sokoban instance has n boxes and goal squares, in each
iteration we randomly select m ≤ n boxes and goal squares
and gradually increase m after a certain level of performance
has been reached at each level. Compared with the origi-
nal problem, solutions of the subcases will be shorter and,
most importantly, easier to find with MCTS and the deep net
trained so far. By solving a collection of m box subcases
for each value of m, we effectively train a distance function
and action model that can handle m box subproblems for a
range of initial and goal placements. This level of generality
is important because we do not know in advance on which
goal square, any particular box from the initial state will end
up. Moreover, because we start with a 2 box subcase, MCTS
with a randomly initialized deep net can still find a solution
path, and thus a positive reward signal. By slowly increas-
ing the subcase size (and difficulty), deep RL can continue
to obtain a positive reward signal and incrementally improve
the trained net to handle increasingly complex scenarios, ulti-
mately leading to a solution to to the original instance, when
m = n.

In the experiment section we will show that it is necessary
for the model to learn to a certain accuracy rate on m-box

Figure 2: One example showing that subcases are not necessarily
solvable even though the original instance has a solution.

subcases before jumping to (m + 1)-box subcases. Specifi-
cally, if the model jumps to (m + 1)-box scenarios before it
reaches a high success rate on m-box scenarios, one poten-
tial danger is that the performance of learning will abruptly
degrade and the model might be no longer able to find any
solution for (m+ 1)-box subcases.

To decide on when to increase m, one possible measure to
use would be the solution rate reached at that level. However,
somewhat counterintuitively, even if the original problem in-
stance is solvable, certain subcases may not have solutions.
This is due to a hidden complexity of the Sokoban domain:
we know that the boxes need to reach the goal squares but
we don’t know exactly which box should go to which goal
square. So, even though our subproblems use a strict subset
of the boxes and goal squares, we may accidentally generate
an unsolvable subproblem. Figure 2 gives an example. In this
case, the probability of generating a solvable 2-box subcase is
only 1

2 , since we need to guarantee that the number of boxes
and goal squares be the same in each room. In general, it is
difficulty to compute the probability that a random subcase is
solvable. Therefore, using the success rate at a certain level
is not a robust criterion. We use an alternative way to decide
when to increment m. Specifically, we increment m when
the success rate of finding a solution has not improved over a
certain number of iterations. We use 5 iterations in our exper-
iments. Our experiments show that this strategy works well
in practice.

3.3 Monte Carlo Tree Search
We search for solutions (plans) of the Sokoban m-box subin-
stances (m ≤ n) using an AlphaZero-style Monte Carlo tree
search (MTCS) guided by the deep net trained so far. As we
will see, MTCS works well but other search techniques may
also be worth exploring in future work. In MTCS, at each
state s, we compute (p, v) = fθ(s) and create a root node R
which contains the state s. Multiple Monte Carlo rounds will
be performed from R to calculate the best move in s. Each
round consists of three components:

• Selection: start from the root nodeR, which contains the
state s, and select successive child nodes which maxi-
mize a utility function until a leaf node L, the goal, or
a dead-end is reached. A leaf node is any node that has
never been evaluated by the neural network before. If
the goal or a dead-end is reached then we jump to the
backpropagation phase otherwise the expansion phase.

• Expansion: compute the set of all valid pushes A from
the state sL of the node L. Unlike traditional MCTS
followed by a roll-out which simulates multiple random
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plays, we evaluate (p, v) = fθ(sL) with the neural net-
work and use v as the estimated evaluation for the back-
propagation phase.

• Backpropagation: use v of sL to update information of
the nodes on the path from R to L. Set v to 0 if sL is
the goal state or 1 if sL is a dead-end. Assume the state-
observation-action trajectory from R to L is s = s0

a1−→
s1

a2−→ · · · al−→ sl = sL where l is the length of the
trajectory, we update Qnew(si, ai+1) to

Q(si, ai+1) ·N(si, ai+1) + min(v + l−i
Imax

, 1)

N(si, ai+1) + 1
,

where Q(s, a) is the mean action value averaged from
previous rounds and N(s, a) is the visit count.

To select child nodes, we choose at = argmaxaQ(st−1, a)+
U(st−1, a) using a variant of the PUCT algorithm where

U(s, a) = cput ·
√
1 +

∑
bN(s, b)

1 +N(s, a)
· pa,

and cput is a constant balancing exploration and exploitation.
After 1600 rounds have been performed, we choose a move

either greedily or proportionally with respect to the visit count
at the root state s. This procedure proceeds until a dead-
end or the goal is reached, or the maximum allowable pushes
Imax have been performed. Notice we don’t utilize any ad-
vanced dead-end detection algorithm used in previous mod-
ern solvers. Instead, we only detect dead-ends when no valid
pushes from the state are available, e.g., all boxes are pushed
into corners and are no longer movable.

To construct learning signals for the training phase, we
collect all states on paths explored by the Monte Carlo tree
search, and use the probability proportional to the visit count
as the improved probability distribution π for training. For
value prediction, if the leaf node is the goal state then we use
the distance to the leaf node as the new label u. Otherwise,
either a loop or a dead-end is reached and we set u to 1 for all
nodes on the path.

3.4 Training
We use 5 GPUs to train the network and each iteration con-
tains 1000 epochs with mini-batch 160 in total. Unlike [Mnih
et al., 2013] and [Silver et al., 2017] who maintain an ex-
tra memory pool to save training episodes, we directly train
on data collected from the current iteration. Specifically, the
network parameters θ are adjusted by gradient descent on the
loss function that sums over a mean-squared loss and a cross-
entropy loss

l = (u− v)2 − π log(p) + c · ‖θ‖2,

where c is the constant to control the impact of weight decay.
After the training phase, new parameters of the network are
used to guide the Monte Carlo tree search in the next iteration.

For this paper, we did not perform a detailed hyper param-
eter study to select the best network structure for our prob-
lem setting. We used vanilla ResNet [He et al., 2016] with
8 residual blocks as the network setting for all experiments.

Sokoban instance Our method Sokolution FF

XSokoban 29 9.1h Failed Failed
Sasquatch 29 Failed Failed Failed
Sasquatch 30 Failed Failed Failed
Sasquatch3 18 14.9h Failed Failed
Sasquatch7 48 23.4h 1.0h Failed
Grigr2001 2 22.1h Failed Failed

Table 1: Performance comparison. Sokoban instances are selected
from standard datasets and are marked as ”Solved by none”. Time
limit for all solvers are extended to 24 hours if the option is available.
All solvers are running on the same CPU cores while our method uti-
lizes additional 5 GPUs. The conversion from Sokoban into STRIPS
format is shown in [Welle, 2003].

It is an indication of the promise of our general framework
that we already obtained good results with standard ResNet.
The overall performance can likely be further improved with
careful hyper parameter tuning.

4 Experiments
Here we report our experiments on XSokoban, the de facto
standard test suite in the academic literature on Sokoban
solver programming, as well as other large test suites1. We
pick instances that are marked as ”Solved by none of the four
modern solvers”. The time limit for the statistics of previous
benchmark is usually 10 minutes. We extend the time limit
to 24 hours if the option is available and retest all solvers on
these hard instances. We do the test on our method, state-of-
the-art Sokoban-specialized solver Sokolution, and domain-
independent general planner FF. Table 1 shows the perfor-
mance of each solver on the selected instances.

4.1 Scaling Comparison
Since our framework utilizes extra GPU resources, to gain
more insights about the difference between the ways that
our framework and traditional search-based algorithms han-
dle hard instances, we evaluate the scaling performance of
each solver on subcases with gradually increasing difficulty.
We use XSokoban 29, which contains 16 boxes, for illustra-
tion purposes, as shown in Figure 3. The running time for
FF and Sokolution clearly show exponential growth and FF
can no longer solve any m-box subcase for m ≥ 8. Sokolu-
tion significantly outperforms our method for small-box sub-
cases. We believe this is mainly due to the heavy overhead of
the training of neural networks. As the size of subcases in-
creases, our method shines both in running time and scaling
performance. Note that our method spends almost no extra
time jumping from 15-box subcases to the original 16-box in-
stance. That’s because the prediction of the network learned
from 15-box subcases is highly accurate on the 16-box in-
stance and the model is already capable of solving the original
problem.

1Sokoban datasets available at http://sokobano.de/wiki/index.
php?title=Solver Statistics
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Figure 3: Scaling performance comparison between FF, Sokolution
and our method on instance XSokoban 29. For m-box subcases,
we randomly generated 19 subcases for FF and Sokolution, and plot
their boxplot according to running time. The running time in the
top three figures is in logarithmic scale while the bottom three are in
linear scale. For our method, we plot the total time needed for the
algorithm to achieve 95% success rate for each m.

4.2 Exploration Efficiency
We now show that the network can efficiently extract knowl-
edge when exploring and generalize to unseen states. For the
same XSokoban 29 instance, we plot the state efficiency by
comparing the number of seen states during the exploration
phase and the total number of possible states in Figure 4. In
the left figure, for each m, the total number of initial states
is
(
16
m

)2
. The number of explored states almost remains at

the same magnitude asm increases. This implies the capabil-
ity of the neural network to efficiently extract structure infor-
mation of the combinatorial search space and generalize its
knowledge to unseen search spaces. The right figure shows
the comparison between total possible board states and those
explored by the Monte Carlo tree search.

Also notice that for subcases with m ≤ 3, the model needs
to see almost all possible board states before jumping to next
stages. This implies generalization does not start for small-
box subcases and the model needs to explore every possi-
ble combination of board states to understand the underlying
structure. Asm increases and the combinatorial space grows,
generalization starts to shine and help the Monte Carlo tree
search stay around the most promising search space.

4.3 Forgetting during Curriculum Learning
One surprising phenomenon in curriculum-driven learning is
that the networks may start to forget previously learned struc-
ture as the learning proceeds. As seen in Figure 5, as the
number of boxes increases, the success rate of small-box sub-
cases gradually decreases. Specifically, we see that the curves
trained on higher numbers of boxes drop off to the left, i.e.,
the performance on cases with fewer boxes becomes worse.
On the other hand, the ability to solve increasingly hard cases
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Figure 4: The state statistics during learning. The left figure shows
the total number of initial states and the number of explored initial
states by the Monte Carlo tree search. The right figure shows the
total number of all possible states, all states, and unique states ex-
plored by the Monte Carlo tree search. The y-axis of both figures is
plotted in logarithmic scale.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of boxes

0%

20%

40%

60%

80%

100%

Su
cc

es
s r

at
e

Figure 5: Success rate of different models on different subcases. For
each n ∈ [2, 16], we extracted the model Nn when the algorithm
reached 95% success rate for the first time on n-box subcases. Each
curve represents a model N , and for each curve there is a corre-
sponding circle on it whose x-coordinate n indicates the model Nn.
The x-axis represents each m-box subcase, and for each model Nn

we randomly generated 500 m-box subcases and tested its success
rate on these subcases.

(more boxes) through the curriculum-driven training shows
that knowledge learned from m-box subcases can be useful
in finding solutions to m′-box subcases where m′ > m. The
curve shows that the model learned from 13-box subcases
is already capable of solving the original instance with 16
boxes. This implies that an ensemble of knowledge from
small-box subcases can work together to provide enough
guidance for finding a solution of the original, unsolved prob-
lem instance.

Note that catastrophic forgetting has been previously ob-
served in the context of training deep neural networks.
Specifically, deep nets can gradually or abruptly forget pre-
viously learned knowledge upon learning new information.
This is an important issue to consider because humans typi-
cally do not show such catastrophic forgetting when increas-
ing their proficiency on a task. For example, a chess player
reaching grand master level will not suddenly start lose to a
beginner player. An interesting research challenge is to de-
velop training curricula that prevent catastrophic forgetting
for deep RL.

4.4 Knowledge Extraction from the Network
We now show how accurate both value prediction and prob-
ability prediction are compared with ground truth provided
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Figure 6: The accuracy of network prediction compared with ground
truth. The left figure shows the difference between value predic-
tion which indicates the remaining steps to the goal and the ground
truth. The right figures shows the confidence of the network about
the ground truth action. We test both on N8 and N16 that are trained
after 8-box subcases and the original problem.

by optimal Sokoban solvers. We also want to test whether
the network can generalize to absolutely unseen board states
or just learns well on states that are frequently visited by the
Monte Carlo tree search. For this experiment, we test on m-
box subcases of XSokoban 29 where m = 8. We randomly
select 500 initial 8-box subcases and do some random pushes
on them to generate the set of starting states which are sup-
posed to be frequently seen by the Monte Carlo tree search.
And we also generate 500 board states whose boxes are ran-
domly selected from all possible locations of the board. These
states are supposed to be hardly explored. All test states are
guaranteed to be solvable and dead-end free.

As shown in figure 6, we see that the utility function cap-
tures the distance to the goal for 8-box subcases surprisingly
well for states where the 8 boxes are close to the initial 16-box
setup. When we consider subcases with the 8 boxes initially
placed randomly, we see the utility function degrade. So the
learning does focus on states close to the states that may oc-
cur as legal intermediate states which are heavily explored
and exploited by reinforcement learning.

When we consider the 16-box learned network, we see an
analogous phenomenon but overall less accurate in terms of
both utility and policy compared with 8-box scenarios. In
fact, the policy for 8-box subcases for randomly placed boxes
becomes worst, though still way better than random policy.
This means that the Monte Carlo tree search is no longer fo-
cused enough to find the goal state in 8-box scenarios. This
explains the forgetting curve as discussed earlier.

5 Conclusion
We presented a framework based on deep RL for solving hard
combinatorial planning problems in the domain of Sokoban.
A key challenge in the application of deep RL in a sin-
gle agent setting is the lack of a positive reinforcement sig-
nal since our goal is to solve previously unsolved instances
that are beyond existing combinatorial search methods. We
showed how a curriculum-driven deep RL approach can suc-
cessfully address this challenge. By devising a sequence of
increasingly complex sub problems, each derived from the
original instance, we can incrementally learn an approximate
distance to goal function that can guide MCTS to solving the
original problem instance.

We showed the effectiveness of our learning based plan-
ning strategy by solving hard Sokoban instances that are out
of reach of previous search-based solution techniques, in-
cluding methods specialized for Sokoban. We could uncover
plans with over two hundred actions, where almost any devia-
tion from the plan would lead to an unrecoverable state. Since
Sokoban is one of the hardest challenge domains for current
AI planners, this work shows the potential of curriculum-
based deep RL for solving hard AI planning tasks. In future
work, we hope to extend these techniques to boost theorem
proving methods to find intricate mathematical proofs con-
sisting of long sequences of inference steps to assist in math-
ematical discovery.
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