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Abstract
Trained with the standard cross entropy loss, deep
neural networks can achieve great performance on
correctly labeled data. However, if the training data
is corrupted with label noise, deep models tend to
overfit the noisy labels, thereby achieving poor gen-
eration performance. To remedy this issue, several
loss functions have been proposed and demonstrat-
ed to be robust to label noise. Although most of the
robust loss functions stem from Categorical Cross
Entropy (CCE) loss, they fail to embody the intrin-
sic relationships between CCE and other loss func-
tions. In this paper, we propose a general frame-
work dubbed Taylor cross entropy loss to train deep
models in the presence of label noise. Specifically,
our framework enables to weight the extent of fit-
ting the training labels by controlling the order of
Taylor Series for CCE, hence it can be robust to
label noise. In addition, our framework clearly re-
veals the intrinsic relationships between CCE and
other loss functions, such as Mean Absolute Error
(MAE) and Mean Squared Error (MSE). Moreover,
we present a detailed theoretical analysis to certi-
fy the robustness of this framework. Extensive ex-
perimental results on benchmark datasets demon-
strate that our proposed approach significantly out-
performs the state-of-the-art counterparts.

1 Introduction
Deep Neural Networks (DNNs) have achieved great advances
over the past years. With proper training, DNNs can easily
achieve great classification performance. However, the suc-
cess of DNNs relies on a large number of high-quality sam-
ples during the training process. Unfortunately, incorrect la-
bels in large-scale datasets are often inevitable. In most sce-
narios, it can be more beneficial to have datasets with more
but noisier labels than less but more accurate labels [Khetan
et al., 2017]. Therefore, training a robust classifier in the p-
resence of label noise is an increasingly valued task.

In general, (softmax) Categorical Cross Entropy (CCE)
loss is the standard loss function used to train deep mod-
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els. However, past studies [Ghosh et al., 2017; Patrini et
al., 2017] show that using the standard CCE to train deep
models leads to serious over-fitting (on noisy labels) and
results in poor generalization ability. To mitigate this is-
sue, increasing interests have been drawn in exploiting ro-
bust loss functions for training deep models against label
noise. For example, the works of [Ghosh et al., 2015;
Ghosh et al., 2017] reveal that symmetric loss functions, in
which the sum of the risks over all categories is equivalen-
t to a constant for each arbitrary example, can be robust to
label noise. Representative symmetric loss functions include
Ramp Loss [Ghosh et al., 2015] and (softmax) Mean Abso-
lute Error (MAE) [Ghosh et al., 2017]. By both theoretical
and empirical analysis, symmetric loss functions are demon-
strated to be robust to label noise. Recently, several other loss
functions that do not satisfy the symmetry condition strictly,
including Generalized Cross Entropy (GCE) loss [Zhang and
Sabuncu, 2018], Partial Huberised Cross Entropy (PHuber-
CE) loss [Menon et al., 2020] and Symmetric Cross Entropy
(SCE) loss [Wang et al., 2019], have also been proposed to be
robust against label noise when training deep neural network-
s. Although these loss functions achieve robustness to label
noise in different ways, one thing in common is that these
loss functions are derived from the standard CCE. In spite of
their effectiveness, they all fail to embody the intrinsic rela-
tionships between CCE and other loss functions.

Motivated by the above observations, we wonder whether
CCE can be further exploited to design a general framework
that embody the intrinsic relationships between CCE and oth-
er loss functions, for robust learning with label noise. To an-
swer this question, this paper proposes a general robust learn-
ing framework to train deep models in the presence of label
noise. Specifically, we apply Taylor Series to derive an al-
ternative representation of CCE. Moreover, we can flexibly
adjust the order of Taylor Series to approximate CCE, and we
call the approximated CCE Taylor Cross Entropy (TCE). In
this framework, the order of Taylor Series reflects the extent
of how TCE approximates to CCE. Furthermore, by varying
the order of Taylor Series, we are able to reveal the intrinsic
relationships between CCE and other loss functions. For ex-
ample, MAE can be considered as the first-order Taylor Series
approximation of CCE. The second-order Taylor Series ap-
proximation of CCE is an average combination of MAE and
a lower bound of Mean Squared Error (MSE). The sufficient-
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ly large-order Taylor Series approximation of CCE recovers
CCE. In addition, we show that our proposed TCE is upper-
bounded with finite order (which means the risk would never
be infinite), and TCE is always an upper bound of MAE. In
other words, minimizing TCE naturally enables to minimize
MAE to some degree.

To sum up, our main contributions are three-fold:

• We propose a general robust learning framework dubbed
Taylor Cross Entropy (TCE) loss. Taylor Series is ap-
plied to obtain a representation of CCE for training deep
models in the presence of label noise.

• We present a detailed theoretical analysis to certify the
robustness of TCE against label noise.

• We conduct extensive experiments for learning from
symmetric and asymmetric label noise, and compare
with a number of loss functions. Extensive experimen-
tal results on benchmark datasets demonstrate that our
proposed approach significantly outperforms the state-
of-the-art counterparts.

2 Related Work
In this section, we briefly review existing works on learning
in the presence of label noise.

Noise rate estimation. Some of the early works [Natara-
jan et al., 2013; Sukhbaatar and Fergus, 2014; Menon et al.,
2015; Patrini et al., 2017] aim to estimate the label transi-
tion matrix (sometimes called confusion matrix), and use it
to train the target model. For this type of approach, the clas-
sification performance hinges on the quality of noise rate esti-
mation [Goldberger and Ben-Reuven, 2017; Hendrycks et al.,
2018; Han et al., 2018b; Xia et al., 2019]. However, noise
rate estimation is challenging, especially on datasets with a
huge number of classes.

Robust loss functions. Designing loss functions that are
robust to label noise has been received increasing attention
from researchers. The first work is from [Ghosh et al., 2015],
which demonstrates that binary loss functions that satisfy
the symmetric condition `(z) + `(−z) = c (e.g., ramp loss
and sigmoid loss) where c is a constant, are robust to label
noise for binary classification. Then, for multi-class classi-
fication, loss functions that satisfy the symmetric condition∑k
j=1 L(f(x), j) = C (e.g., MAE) where C is a constant,

are demonstrated to be robust to label noise for the multi-
class classification [Ghosh et al., 2017]. However, a recent s-
tudy [Zhang and Sabuncu, 2018] shows that MAE is not able
to achieve good performance on complicated datasets, due to
its optimization issue. To alleviate this problem, Generalized
Cross Entropy (GCE) [Zhang and Sabuncu, 2018] adopts the
negative Box-Cox transformation strategy, and uses a hyper-
parameter q to balance between MAE and CCE. Partial Hu-
berised Cross Entropy (PHuber-CE) [Menon et al., 2020] cor-
rects CCE on hard examples by gradient clipping. Symmetric
Cross Entropy (SCE) [Wang et al., 2019] combines CCE and
Reverse Cross Entropy (RCE, which is equivalent to MAE)
by tuning the regularization parameters. Although the above
loss functions stem from CCE and some of them may be able

to recover MAE or CCE by tuning the parameters, they all
fail to embody the intrinsic relationships between CCE and
other loss functions.
Other deep learning methods. There are some other ap-
proaches that adopt other solutions [Wei et al., 2020; Tanaka
et al., 2018; Han et al., 2018a; Yu et al., 2019; Berthon et al.,
2020; Yang et al., 2019] to deal with noisy labels. For ex-
ample, MentorNet [Jiang et al., 2017] is trained to supervise
the training of a StudentNet with a sample weighting scheme.
Co-teaching [Han et al., 2018c] trains two networks simulta-
neously and enables the two networks to learn from each oth-
er. PENCIL [Yi and Wu, 2019] trains neural networks using
label probability distributions and updates these distributions
in each epoch.

3 Taylor Cross Entropy Loss for Robust
Learning with Label Noise

In this section, we first briefly review CCE and MAE. Then,
we introduce our proposed Taylor cross entropy loss. Finally,
we theoretically analyze the robustness of Taylor cross en-
tropy loss.

3.1 Preliminaries
We consider the problem of k-class classification. Suppose
the clean data set is represented as D = {(xi, yi) | 1 ≤ i ≤
m}, where xi ∈ X (X ∈ Rd) is a d-dimensional feature
vector and yi ∈ {1, . . . , k} is the label associated with xi. A
classifier is a function that maps the feature space to the label
space f : X → Rk. In this paper, we consider the common
case where the function f is a DNN with the softmax output
layer. In this way, the commonly used loss functions CCE
and MAE can be represented as:

LCCE(f(x), y) = −ey log f(x) = − log fy(x),

LMAE(f(x), y) = ‖ey − f(x)‖1 = 2− 2fy(x),

where the fy(x) denotes the y-th element of f(x) and ey is
a one-hot vector with eyj = 1 if j = y, otherwise 0. Besides,
the gradients of CCE and MAE can be shown as:

∂LCCE(f(x), y)

∂θ
= − 1

fy(x)
∇θfy(x),

∂LMAE(f(x), y)

∂θ
= −2∇θfy(x),

where θ is the set of parameters of f . As shown in the above
equations, when training with CCE, examples with smaller
prediction confidences are weighted more than examples with
larger prediction confidences for gradient update. In other
words, CCE pays more attention to hard examples. On the
contrary, MAE treats all the examples equally. Hence CCE
is more preferred than MAE when training with clean data.
However, in the presence of label noise, the performance of
CCE dramatically drops, since the given labels of hard ex-
amples may be incorrect. In the extreme case, the weight
becomes infinite if fy(x) → 0, which leads to serious over-
fitting on noisy labels. In contrast, MAE does not suffer from
this problem, since each example is treated equally. There-
fore, there arises a question: can cross entropy loss be robust
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Figure 1: Lt-CE with different parameters t.

to label noise? To answer this question, we propose a gen-
eral framework of CCE that endows the robustness to CCE
against label noise.

3.2 Taylor Cross Entropy Loss
Given a function g(x), if g(x) is differentiable to order n at
x = x0, then g(x) can be written as a Taylor Series:

g(x) =
∑∞

i=0

g(i)(x0)

i!
(x− x0)

i, (1)

where gi(x0) denotes the i-th order derivative of g(x) at
x0. Recall that LCCE(f(x), y) = − log fy(x), we can de-
fine g(fy(x)) = − log fy(x). Then we have

g(fy(x)) =
∑∞

i=0

g(i)(fy(x0))

i!
(fy(x)− fy(x0))

i.

If we set fy(x0) = 1, then ∀i ≥ 1 we have

g(i)(fy(x0) = 1) = (−1)i(i− 1)!, (2)

Thus we can express LCCE as

LCCE(f(x), y) = g(fy(x)) =
∑∞

i=1

(1− fy(x))i

i
. (3)

Obviously, it is unrealistic to take into account all the
terms, since n → ∞. Hence we propose to reserve finite
terms in Eq. (3) and obtain an approximation of CCE, which
is called Taylor Cross Entropy (TCE) loss:

Lt-CE(f(x), y) =
∑t

i=1

(1− fy(x))i

i
, (4)

where t ∈ N+ is a hyper-parameter that denotes the order of
the Taylor Series, in other words, the proximity to the CCE.
Figure 1 illustrates Lt-CE with t varying in {1, . . . , 10}. Ac-
cording to the definition of Lt-CE and Figure 1, we can obtain
some interesting deductions.

Theorem 1. Our proposed Taylor cross entropy loss has the
following properties: 1) When t = 1, Lt-CE = 1

2LMAE; 2)
When t = 2, Lt-CE is an average combination of LMAE and a
lower bound of LMSE; 3) When t→∞, Lt-CE is equivalent to
LCCE; 4) LMAE ≤ 2Lt-CE, ∀t ∈ N+.

Proof. 1) When t = 1, Lt-CE is represented as

Lt-CE(f(x), y) = 1− fy(x).

It is clear that in this case, Lt-CE = 1
2LMAE, which means,

minimizing Lt-CE is equivalent to minimizing LMAE.
2) When t = 2, Lt-CE is represented as

Lt-CE(f(x), y) = (1− fy(x)) +
(1− fy(x))2

2
.

For the first term, we have already shown (1 − fy(x)) =
1
2LMAE. For the second term, we have

(1− fy(x))2

2
=

1

2
(1− 2fy(x) + (fy(x))

2)

≤ 1

2
(1− 2fy(x) + ‖f(x)‖22)

=
1

2
‖f(x)− ey‖22 =

1

2
LMSE.

Hence the second term is a lower bound of MSE.
3) According to the definition of Lt-CE, it is clear that Lt-CE

will be equivalent to LCCE if t→∞.
4) Based on Property 1), we have

Lt-CE(f(x), y) =
1

2
LMAE +

∑t

i=2

(1− fy(x))i

i
.

Since the second term is always non-negative, LMAE ≤
2Lt-CE(f(x), y), and the equality holds when and only when
t = 1. However, the difference becomes larger as t increas-
es, which also suggests that LCCE is not robust from another
point of view, since LMAE is the standard robust loss with
strong theoretic guarantees [Ghosh et al., 2017].

Properties 1) and 3) show that LMAE and LCE can be con-
sidered as special cases of Lt-CE. Properties 2) and 4) certi-
fy the robustness of Lt-CE to some degree, since LMAE and
LMSE have been shown to be robust in the presence of label
noise [Ghosh et al., 2017].

3.3 Theoretical Analysis
Here, we theoretically analyze the robustness of our proposed
Taylor cross entropy loss.

By the definition of Lt-CE (i.e., Eq. (4)), we can easily de-
rive an upper bound and a lower bound of Lt-CE as follows:

1− fy(x) ≤ Lt-CE(f(x), y) ≤
∑t

i=1

1− fy(x)
i

, (5)

then we have the following lemma.
Lemma 1. For any x and any positive integer t < +∞, the
sum of Lt-CE with respect to all the classes satisfies:

k − 1 ≤
∑k

y=1
Lt-CE(f(x), y) ≤ (k − 1)Ct, (6)

where Ct =
∑t
i=1

1
i is a constant that depends on t.

Proof. Based on Eq. (5), if we consider the sum of Lt-CE with
respect to all the classes, the following equality holds:
k∑
y=1

1− fy(x) ≤
k∑
y=1

Lt-CE(f(x), y) ≤
k∑
y=1

t∑
i=1

1− fy(x)
i

,

Hence

k − 1 ≤
∑k

y=1
Lt-CE(f(x), y) ≤ (k − 1)Ct,

which concludes the proof.
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We can find that Lt-CE is not always a symmetric loss,
which means,

∑k
y=1 Lt-CE(f(x), y) is not always a constan-

t. However, as shown in Lemma 1,
∑k
y=1 Lt-CE(f(x), y) is

upper-bounded, and the bound gets tighter when t decreas-
es. Specially, when t = 1,

∑k
y=1 Lt-CE(f(x), y) = k − 1.

In this case, Lt-CE becomes a symmetric loss, which can be
considered equivalent to MAE.

Based on Lemma 1, we further analyze the robustness of
Lt-CE. We assume that the noisy example (x, ỹ) is drawn
from pη(x, ỹ), and the ordinary example (x, y) is drawn from
p(x, y). Note that this paper follows the most common set-
ting where label noise is instance-independent. Then we have
ỹ = i (y = i) with probability ηi = (1 − η) and ỹ = j
with probability ηij for all j 6= i and

∑
j 6=i ηij = η. If

ηij = η
k−1 for all j 6= i, then the noise is said to be uni-

form or symmetric, otherwise, the noise is said to be class-
conditional or asymmetric. Given any classifier f and loss
function L, we define the risk of f under clean labels as
RL(f) = Ep(x,y)[L(f(x), y)] and the risk under label noise
rate η asRηL(f) = Epη(x,ỹ)[L(f(x), ỹ)]. Let f̃ and f∗ be the
global minimizers ofRηLt-CE

(f) andRLt-CE(f) respectively.

Theorem 2. Under uniform label noise with η ≤ 1− 1
k ,

0 ≤ RLt-CE(f̃)−RLt-CE(f
∗) ≤ η(k − 1)(Ct − 1)

(1− η)k − 1
, (7)

where Ct =
∑t
i=1

1
i is a constant that depends on t.

Proof. Under uniform label noise, we have

RηLt-CE
(f)

=Epη(x,ỹ)[Lt-CE(f(x), ỹ)]

=ExEp(y|x)Ep(ỹ|y)[Lt-CE(f(x), ỹ)]

=Ep(x,y)
[
(1− η)Lt-CE(f(x), y)

+
η

k − 1

∑
j 6=y
Lt-CE(f(x), j)

]
=(1− η)RLt-CE(f) +

η

k − 1

(∑k

j=1
Lt-CE

(
f(x), j)

−RLt-CE(f)
)

=(1− ηk

k − 1
)RLt-CE(f) +

η

k − 1

∑k

j=1
Lt-CE(f(x), j).

From Lemma 1 (by Eq. (6)), for all f , we have:

βRLt-CE(f) + η ≤ RηLt-CE
(f) ≤ βRLt-CE(f) + ηCt

where β = (1− ηk
k−1 ). On the other hand, we have:

1

β
(RηLt-CE

(f)− ηCt) ≤ RLt-CE(f) ≤
1

β
(RηLt-CE

(f)− η)

Thus, for f̃ ,

RLt-CE(f̃)−RLt-CE(f
∗) ≤ 1

β

(
α+RηLt-CE

(f̃)−RηLt-CE
(f∗)

)
,

where α = η(Ct − 1). Since η ≤ 1 − 1
k , f∗ is the glob-

al minimizer of RLt-CE(f) and f̃ is the global minimizer of
RηLt-CE

(f), we have

0 ≤ RLt-CE(f̃)−RLt-CE(f
∗) ≤ η(k − 1)(Ct − 1)

(1− η)k − 1
,

which concludes the proof.

Theorem 3. Under class-conditional label noise with ηij <
1 − ηi, ∀j 6= i, ∀i, j ∈ [k], where ηij = p(ỹ = j|y =
i), ∀j 6= i and (1−ηi) = p(ỹ = i|y = i)), ifRLt-CE(f

∗) = 0,
then

0 ≤ RηLt-CE
(f∗)−RηLt-CE

(f̃) ≤ A, (8)

where A = (k − 1)(Ct − 1)Ep(x,y)(1 − ηi) > 0, Ct =∑t
n=1

1
n and f∗ is the global minimizer of RLt-CE(f) and f̃

is the global minimizer ofRηLt-CE
(f).

Proof. For class-conditional label noise, we have
RηLt-CE

(f) (9)

=Epη(x,ỹ)[Lt-CE(f(x), ỹ)]

=Ep(x,y)[(1− ηi)Lt-CE(f(x), y)]

+ Ep(x,y)
[∑
j 6=y

ηijLt-CE(f(x), j)
]

≤ Ep(x,y)
[
(1− ηi)

(
(k − 1)Ct −

∑
j 6=y

Lt-CE(f(x), j)
)]

+ Ep(x,y)
[∑
j 6=y

ηijLt-CE(f(x), j)
]

=
CtA

Ct − 1
− Ep(x,y)

[∑
j 6=y

λjLt-CE(f(x), j)
]
,

where A = (k − 1)(Ct − 1)Ep(x,y)(1 − ηi) and λj = (1 −
ηi − ηij). On the other, we can obtain

RηLt-CE
(f) ≥ A

Ct − 1
− Ep(x,y)

[∑
j 6=i

λjLt-CE(f(x), j)
]
.

Then we have
RηLt-CE

(f∗)−RηLLt-CE
(f̃) ≤ A

+ Ep(x,y)
[∑
j 6=i

λj(Lt-CE(f̃j(x), j)− (Lt-CE(f
∗(x), j)))

]
,

From our assumption that RLt-CE(f
∗) = 0, we have

Lt-CE(f
∗(x), y) = 0. This is only satisfied iff f∗j (x) = 1

when j = y and f∗j (x) = 0 when j 6= y. According to
the definition of Lt-CE, Lt-CE(f

∗(x), j) = Ct, ∀j 6= y and
Lt-CE(f(x), j) ≤ Ct, ∀j ∈ [k]. Since f∗ is the global min-
imizer of RLt-CE(f) and λ = (1 − ηi − ηij) > 0, we can
obtain

Ep(x,y)
[∑
j 6=y

λj(Lt-CE(f̃(x), j)− Lt-CE(f
∗(x), j))

]
≤ 0.

Therefore, we have
0 ≤ RηLt-CE

(f∗)−RηLt-CE
(f̃) ≤ A,

which concludes the proof.
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Datasets Methods symmetric noise asymmetric noise

0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4

MNIST

CCE 98.38±0.16• 97.38±0.22• 93.07±0.17• 90.48±0.76• 98.35±0.09• 97.23±0.13• 94.32±0.16• 79.67±0.17•
MAE 98.80±0.09• 98.32±0.08• 97.15±0.07• 90.31±0.49• 98.72±0.09• 88.77±0.12• 88.13±0.18• 78.27±0.18•
MSE 98.86±0.06• 98.41±0.19 97.28±0.19 90.14±0.19• 98.44±0.11• 96.51±0.14• 92.62±0.19• 86.22±0.19•
GCE 98.78±0.08• 97.85±0.12• 95.02±0.09• 90.77±0.14• 98.97±0.08 98.61±0.11• 96.95±0.16 89.42±0.20◦
SCE 98.93±0.21 98.44±0.21 96.99±0.21• 90.01±0.21• 98.92±0.09• 98.63±0.15• 97.74±0.21◦ 85.97±0.19•

PHuber-CEτ=10 98.46±0.08• 97.60±0.11• 95.37±0.07• 90.08±0.15• 98.65±0.07• 96.97±0.11• 93.98±0.09• 87.37±0.19•
Taylor-CEt=2 98.99±0.14 98.46±0.12 97.53±0.23 91.14±0.18 99.01±0.06 98.84±0.09 96.69±0.13 87.68±0.23

Kuzushiji

CCE 82.92±0.15• 79.75±0.39• 73.37±0.26• 36.14±0.84• 91.48±0.32• 89.84±0.43• 85.75±1.06• 79.41±0.89•
MAE 92.43±0.22• 90.26±0.39 82.61±0.21◦ 60.46±0.54• 94.11±0.21• 93.18±0.29 89.01±0.25◦ 82.43±0.67•
MSE 90.59±0.18• 86.14±0.24• 75.71±0.23• 69.29±0.38◦ 91.21±0.20• 89.29±0.56• 83.96±0.74• 76.72±1.12•
GCE 92.41±0.19• 91.48±0.17◦ 87.46±0.28◦ 66.70±0.34• 94.18±0.16• 91.58±0.18• 89.44±0.51◦ 79.15±0.44•
SCE 93.03±0.14• 91.22±0.14◦ 76.74±0.14• 66.42±0.22• 94.36±0.21• 92.57±0.22• 88.82±0.28 75.15±0.35•

PHuber-CEτ=10 92.25±0.27• 88.07±0.23• 76.56±0.31• 68.45±0.25• 93.61±0.26• 89.09±0.38• 84.65±0.84• 77.94±1.36•
Taylor-CEt=2 93.34±0.16 89.99±0.41 81.88±0.36 67.24±0.33 94.64±0.19 93.34±0.23 88.53±0.36 82.89±0.36

Fashion

CCE 89.15±0.14• 88.04±0.15• 79.15±0.21• 65.70±0.33• 89.75±0.11• 82.91±0.21• 77.77±0.32• 72.45±0.59•
MAE 89.68±0.12• 88.49±0.23• 85.37±0.37• 70.02±0.42• 90.01±0.09• 89.88±0.14• 89.09±0.23◦ 85.81±0.49•
MSE 89.62±0.21• 88.25±0.36• 86.79±0.35 74.11±0.44• 89.89±0.13• 89.38±0.12• 89.11±0.21◦ 86.53±0.52•
GCE 89.81±0.08• 87.61±0.11• 86.75±0.29• 78.39±0.64• 89.76±0.11• 88.34±0.09• 86.21±0.19• 84.82±0.35•
SCE 89.31±0.12• 87.61±0.28• 86.06±0.32• 76.44±0.37• 90.37±0.06◦ 90.26±0.10 89.69±0.16◦ 85.82±0.34•

PHuber-CEτ=2 89.56±0.21• 87.96±0.20• 85.27±0.26• 77.75±0.28• 90.17±0.12 89.68±0.11• 88.55±0.24◦ 78.97±0.41•
Taylor-CEt=4 89.96±0.11 88.97±0.28 87.07±0.31 78.95±0.47 90.25±0.09 90.31±0.13 88.31±0.15 87.38±0.25

CIFAR-10

CCE 74.89±0.32• 57.27±0.44• 36.65±0.35• 17.21±1.12• 85.57±0.33• 82.35±0.35• 78.14±0.55• 72.02±0.51•
MAE 85.53±1.02• 79.28±0.88• 65.70±0.76• 31.07±4.13• 80.38±0.67• 79.06±0.58• 73.42±0.89• 59.78±0.87•
MSE 75.63±2.36• 55.18±3.52• 35.41±4.12• 16.65±3.22• 86.19±0.22• 81.87±0.34• 76.85±0.32• 72.38±0.39•
GCE 86.04±0.11 75.72±0.09• 48.34±0.12• 18.92±0.21• 87.77±0.07◦ 83.43±0.07• 77.41±0.10• 71.31±0.11•
SCE 84.12±0.08• 66.22±0.09• 43.84±0.08• 16.19±0.09• 87.02±0.01• 83.83±0.03• 77.67±0.04• 72.51±0.14

PHuber-CEτ=2 85.81±0.21 80.25±0.22• 67.71±0.19◦ 32.97±0.32• 87.91±0.13◦ 84.87±0.26 79.01±0.38• 71.87±0.36•
Taylor-CEt=2 85.96±0.09 80.51±0.11 66.36±0.32 33.48±0.44 87.34±0.12 85.02±0.11 79.37±0.12 72.65±0.11

CIFAR-100

CCE 47.00±0.13• 34.34±0.23• 19.37±0.33• 7.34±0.21• 56.71±0.34• 50.02±0.62• 43.29±0.58• 35.01±0.67•
MAE 33.33±0.82• 26.56±0.79• 12.26±0.83• 2.01±0.01• 33.74±0.37• 33.01±0.46• 30.25±0.44• 22.66±0.53•
MSE 47.66±0.63• 32.94±0.58• 18.41±0.73• 7.59±0.79• 56.02±0.47• 48.63±0.45• 40.69±0.52• 34.15±0.51•
GCE 58.99±0.13 50.37±0.14• 39.41±0.19◦ 15.26±0.16• 60.31±0.09• 56.49±0.12◦ 45.78±0.11 34.99±0.14•
SCE 47.32±0.09• 33.87±0.19• 18.79±0.26• 7.28±0.38• 56.84±0.12• 49.82±0.16• 43.54±0.22• 35.98±0.23◦

PHuber-CEτ=10 58.11±0.11• 50.89±0.13 35.85±0.29• 13.83±0.25• 60.07±0.09• 53.30±0.10• 44.39±0.14• 35.36±0.13
Taylor-CEt=6 59.11±0.11 50.99±0.09 38.31±0.12 15.96±0.31 60.96±0.21 55.45±0.12 45.81±0.19 35.45±0.25

Table 1: Average test accuracy (%) and standard deviation (over 5 trials) on benchmark datasets with symmetric label noise and asymmetric
label noise. The best results are highlighted in bold. In addition, •/◦ indicates whether the performance of our approach is statistically
superior/inferior to the comparing approach on each dataset (paired t-test at 0.05 significance level).

Dataset # Train # Test # Feature # Class Model

MNIST 60000 10000 784 10 LeNet-5
Fashion 60000 10000 784 10 LeNet-5

Kuzushiji 60000 10000 784 10 LeNet-5
CIFAR-10 50000 10000 3072 10 ResNet-34

CIFAR-100 50000 10000 3072 100 ResNet-34

Table 2: Summary of benchmark datasets and models.

Theorem 2 and Theorem 3 show that using TCE, the differ-
ence of the risks caused by the derived hypotheses f̃ and f?
under noisy labels and clean labels are always bounded. Be-
sides, the two bounds are related to the parameter t. Smaller
t results in smaller Ct, hence both bounds in Theorem 2 and
Theorem 3 would be tighter if t gets smaller. The above anal-
ysis clearly demonstrates the noise-tolerant ability of TCE.
Specially when t = 1, TCE has the same theoretical guaran-
tees as MAE.

4 Experiments
4.1 Experimental Settings
Baselines. We compare our proposed TCE with CCE and
multiple state-of-the-art robust loss functions. All the used
loss functions in this paper are listed as follows. 1) CCE: The
standard categoriccal cross entropy loss. It is neither sym-
metric nor bounded. 2) MAE: A symmetric loss function that
has been demonstrated [Ghosh et al., 2017] to be robust to

label noise. 3) MSE: The mean squared error. It is not sym-
metric but bounded. 4) GCE [Zhang and Sabuncu, 2018]:
A bounded loss function that uses a hyper-parameter q to bal-
ance between MAE and CCE. The hyper-parameter q is set to
0.7, as this is the recommended setting by the corresponding
paper [Zhang and Sabuncu, 2018]. 5) PHuber-CE: A Partially
Huberised loss of CCE that corrects CCE on hard examples
by gradient clipping. The hyper-parameter τ is selected from
{2, 10}. 6) SCE [Wang et al., 2019]: The approach boosts CE
symmetrically with a noise robust counterpart Reverse Cross
Entropy (RCE). The regularization parameters α and β are
configured with the suggested values on different datasets. 7)
TCE: The loss function proposed in our paper, is based on the
Taylor Series of CCE. The hyper-parameter t is selected from
{2, . . . , 6}. For all the methods, learning rate is selected from
{10−2, 10−3, 10−4, 10−5}.
Datasets. Our experiments are conducted on MNIST [Le-
Cun et al., 1998], Fashion-MNIST (Fashion in short) [X-
iao et al., 2017], Kuzushiji-MNIST (Kuzushiji in short)
[Clanuwat et al., 2018], CIFAR-10 [Krizhevsky et al., 2009]
and CIFAR-100 [Krizhevsky et al., 2009] with two types of
label noise: symmetric noise and asymmetric noise. We use
appropriate networks to train different datasets, and all net-
works are trained using the Adam optimizer [Kingma and
Ba, 2014] with the number of epochs set to 200 and the
batch size set to 256. We test different noise rates, with
η ∈ {20%, 40%, 60%, 80%} for symmetric label noise and
η ∈ {10%, 20%, 30%, 40%} for asymmetric label noise.
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(a) MNIST (b) Kuzushiji (c) Fashion (d) CIFAR-10
Figure 2: Test accuracy against number of epochs for training with 40% symmetric label noise.

(a) MNIST (b) Kuzushiji (c) Fashion (d) CIFAR-10
Figure 3: Test accuracy against number of epochs for training with 20% asymmetric label noise.

Training Details. For MNIST/Fashion/Kuzushiji, LeNet-5
[LeCun et al., 1998] is used. Since they are MNIST-type
datasets, noisy labels are generated in the same way for all
of them. Symmetric label noise is generated by mapping a
true label to a random label by a given probability η

c−1 . For
asymmetric label noise, flipping labels only occur within a
specific set of classes [Patrini et al., 2017]. For MNIST, flip-
ping 2 → 7, 3 → 8, 5 → 6 and 7 → 2. On the three
datasets, networks are trained with weight decay of 10−4.
For CIFAR-10/CIFAR-100, ResNet-34 [He et al., 2016] is
used. We perform 32 × 32 random crops after padding
with 4 pixels on each side on the two datasets. Symmetric
noise is generated in the same way as that for MNIST-type
datasets. Following [Patrini et al., 2017], asymmetric label
noise is generated by mapping TRUCK→AUTOMOBILE,
BIRD→AIRPLANE, DEER→HORSE, and CAT↔ DOG
with probability η for CIFAR-10. For CIFAR-100, the 100
classes are grouped into 20 super-classes with each has 5
sub-classes, and we flip between two randomly selected sub-
classes within each super-class. On the two datasets, net-
works are trained with weight decay of 0.

4.2 Experimental Results
Table 1 reports the detailed experimental results of each loss
function on the benchmark datasets. In Table 1, •/◦ indicates
whether the performance of our proposed approach is statisti-
cally superior/inferior to other comparing approaches on each
dataset (paired t-test at 0.05 significance level). Out of the to-
tal 240 cases (with 6 comparing approaches, 5 datasets, and
8 label noise settings), our proposed approach is statistically
superior to other comparing approaches in 83.33% cases and
inferior to the comparing approaches in only 8.33% cases.
Further more, in all cases, Lt-CE is superior to CE, MAE and
MSE. As we showed above, Lt-CE is derived from CE, with

MAE and MSE as average components. Thus, we may infer
that Lt-CE maintains their advantages and surpasses them.

4.3 Parametric Analysis
We also conduct experiments on MNIST, Fashion, Kuzushi-
j, and CIFAR-10 with 40% symmetric label noise and 20%
asymmetric label noise, for parametric analysis. We also in-
clude CCE for comparison, and vary the hyper-parameter t in
{1, . . . , 6}. As shown in Figure 2 and Figure 3, CCE always
leads to over-fitting and MAE cannot achieve a high classi-
fication accuracy in some cases. In contrast, Lt-CE avoids
over-fitting and achieves good performance by varying t. Ob-
viously, Lt-CE inherits the advantages of CCE while Lt-CE is
more robust to label noise than CCE.

5 Conclusion
In this paper, we propose a general framework dubbed Taylor
cross entropy loss to train deep models in the presence of la-
bel noise. Our framework can not only enable to weight the
extent of fitting the training labels by controlling the order of
Taylor Series for Categorical Cross Entropy (CCE) loss, but
also reveals the intrinsic relationships between CCE and oth-
er loss functions, such as Mean Absolute Error (MAE) and
Mean Squared Error (MSE). Moreover, we present a detailed
theoretical analysis to certify the robustness of this frame-
work. Experiments on benchmark datasets also show that the
proposed framework is superior to the state-of-the-art coun-
terparts. In future work, we will explore if there exist robust
loss functions that do not include any hyper-parameters.
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