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Abstract
Measurement is at the core of scientific discovery.
However, some quantities, such as economic be-
havior or intelligence, do not allow for direct mea-
surement. They represent latent constructs that re-
quire surrogate measurements. In other scenarios,
non-observed quantities can influence the variables
of interest. In either case, models with latent vari-
ables are needed. Here, we investigate fused latent
and graphical models that exhibit continuous latent
variables and discrete observed variables. These
models are characterized by a decomposition of the
pairwise interaction parameter matrix into a group-
sparse component of direct interactions and a low-
rank component of indirect interactions due to the
latent variables. We first investigate when such a
decomposition is identifiable. Then, we show that
fused latent and graphical models can be recovered
consistently from data in the high-dimensional set-
ting. We support our theoretical findings with ex-
periments on synthetic and real-world data from
polytomous item response theory studies.

1 Introduction
In this work, we study probabilistic models that are moti-
vated by item response theory (IRT), see [Hambleton et al.,
1991], and its applications in the social sciences. The goal
of IRT is to indirectly measure latent personality traits such
as economic behavior, intelligence, or well-being by using
questionnaires. While classical IRT only considers the di-
chotomized outcomes right and wrong for each question,
polytomous IRT, see [Ostini and Nering, 2006], allows more
general discrete outcomes. Apart from right and wrong there
can, for instance, be an additional no-choice option. Alter-
natively, all available options from multiple-choice questions
can be taken into account. Hence, in general, IRT consid-
ers models with observed variables x from a discrete sample
space X =

∏d
i=1 Xi, where the Xi = {0, . . . ,mi} are fi-

nite sets of choice options, and it additionally considers latent
variables z from a continuous sample space Z = Rr. Here,
the number r of latent variables is small in comparison to the
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number d of observed variables. Moreover, all variables are
assumed to be random.

Since the assumption behind IRT is that the observed out-
comes can be explained by the latent traits, any probabilis-
tic IRT model must describe the interaction between the ob-
served and the latent variables. The simplest (unnormalized)
model that respects this requirement is given by

p(x, z) ∝ exp

{
z>Rx− 1

2
z>z

}
,

where the pairwise interaction between the observed and la-
tent variables is modeled by the r × m matrix R. Here,
m =

∑d
i=1mi and we do not use the observed variables di-

rectly but encode them as concatenated indicator variables

x =
(
{1[x1 = k]}k∈[m1], . . . , {1[xd = k]}k∈[md]

)
∈ {0, 1}m,

where [n] = {1, . . . , n} for n ∈ N. In general, IRT stud-
ies strive for independent measurements of the latent traits,
that is, the observed variables should be conditionally inde-
pendent given the latent variables. However, as [Chen et
al., 2018] have shown for classical dichotomous IRT, this
assumption is often violated, resulting in potentially unjus-
tified biases. It is safe to assume that the same also holds true
for polytomous IRT. Hence, a more reasonable probabilistic
model for IRT is a pairwise conditional Gaussian (CG) dis-
tribution, see [Lauritzen, 1996]. It is given by

p(x, z) ∝ exp

{
1

2
x>S x+ z>Rx− 1

2
z>z

}
,

where S ∈ Sym(m) are the symmetric direct interactions of
the observed variables. From this joint model we can derive
the marginal model for the observed discrete variables by in-
tegrating out the latent variables z as

p(x) ∝ exp

{
1

2
x>(S +R>R)x

}
=: exp

{
1

2
x>(S + L)x

}
, (1)

where L = R>R has rank at most r. This shows that a small
number of latent variables induces a pairwise low-rank inter-
action between the observed variables. We still assume that
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Figure 1: Learned group-sparse + low-rank decompositions for the VIQT (left) and the CFMT datasets (right) that are introduced in Section 5.
The group-sparse components correspond to direct local dependencies of the observed discrete variables, and the low-rank components repre-
sent indirect effects due to the latent continuous variables. Here, red indicates positive and blue indicates negative (conditional) correlations.

the conditional independence assumption of IRT is not vio-
lated much, that is, the observed variables are mostly inde-
pendent conditioned on the latent variables. Here, any condi-
tional dependence between two observed discrete variables is
determined by a group of parameters within the matrix S of
direct interactions. These groups are given as

S =


S11 S12 · · · S1d

...
...

. . .
...

Sd1 Sd2 · · · Sdd

 ∈ Sym(m), (2)

where the group Sij ∈ Rmi×mj contains the interaction
parameters for the i-th and j-th observed variable. Hence,
the absence of a direct pairwise interaction between two ob-
served variables means that all parameters in the correspond-
ing group are zero. Consequently, the assumption that most
of the observed variables are conditionally independent im-
plies group sparsity of S. Overall, the interaction between the
observed variables in our marginal probabilistic IRT model is
the sum of a group-sparse and a low-rank matrix, see Figure 1
for two examples.

For the proper analysis of IRT models, it is important to
disentangle the group-sparse and low-rank interactions be-
cause only the low-rank interactions are induced by the latent
variables, which are of primary interest here. Hence, the goal
of this work is the design and analysis of a method for con-
sistent estimation of the group-sparse and the low-rank part
of the interaction matrix for the observed variables. Here, we
use the classical maximum likelihood approach for estimating
the interaction parameter matrix Θ = S + L of the discrete
variables. To simplify our exposition, we minimize the con-
vex negative log-likelihood function that can be derived from
our model and reads as

`(Θ) = a(Θ)− tr(ΘΣn),

where a(Θ) is the log-partition (normalization) function of
the model and Σn = 1/n

∑n
k=1 x

(k) ⊗ x(k) is the em-
pirical second-moment matrix that is computed as the aver-
age over outer products of n indicator-encoded observations
x(k) ∈ {0, 1}m. Since by our assumptions the interaction
matrix Θ is the sum of a group-sparse and a low-rank ma-
trix, we promote this structure in the estimation process by

adding group-sparsity and low-rank inducing regularization
terms to the objective. First, it is well known that low rank
can be induced on positive semidefinite L by trace-norm reg-
ularization tr(L). Second, group-sparse structure can be in-
duced on S by `1,2-norm regularization. Here, the `1,2-norm
is given by ‖S‖1,2 =

∑d
i,j=1 ‖Sij‖2, where, depending on

the dimensions of Sij , the norm ‖Sij‖2 denotes the abso-
lute value, the Euclidean vector norm, or the Frobenius norm.
Hence, we study the following convex optimization problem

min
S,L�0

`(S + L) + λ (γ‖S‖1,2 + tr(L)) (3)

that uses regularization parameters λ, γ > 0. In Section 4, we
will show that under some mild technical conditions, the so-
lution to Problem (3) with appropriate regularization parame-
ters can indeed consistently disentangle the group-sparse and
the low-rank components of the interaction matrix.

2 Contributions and Related Work
A necessary condition for successful disentanglement of the
group-sparse and low-rank components of the interaction ma-
trix is that our model is identifiable. A parameterized class
of probability distributions is identifiable if no distribution
from the class has two different parameterizations. In our
case this means that there should be no two group-sparse ma-
trices S and S′ and two low-rank matrices L and L′ with
(S,L) 6= (S′, L′) such that S + L = Θ = S′ + L′. In
Sections 3 and 4, we work out conditions that ensure identifi-
ability of our model.

The issue of identifiability received considerable attention
in the context of mixture models, where the sample space Z
of the latent variables is, in contrast to our model, a finite
set. In this setting, the marginal distribution on the sample
spaceX of the observed variables is a mixture of distributions
p(x) =

∑
z∈Z p(x, z) =

∑
z∈Z p(z)p(x|z), where p(x|z)

are the mixture components with corresponding weights p(z).
A mixture model can be interpreted as a clustering of the ob-
served samples into |Z| clusters, where the posterior p(z|x)
is the probability that x belongs to cluster z ∈ Z . One must
however be cautious with such an interpretation if there exists
a different global model that yields the same marginal model.
In this case, there is an identifiability problem since the joint
models cannot be told apart from what can be observed, al-
though they describe different clusterings. [Carreira-Perpinán
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and Renals, 2000], [Allman et al., 2009], and [Montúfar and
Morton, 2017] provide conditions that ensure the identifiabil-
ity of various mixture models.

Closer to our setting, [Candès et al., 2011] and [Chan-
drasekaran et al., 2011] provide conditions for the identifi-
ability of matrix decompositions into sparse and low-rank
components. [Tang and Nehorai, 2011] extend these condi-
tions to column-sparse + low-rank matrix decompositions. In
this work, we generalize the previous identifiability results to
the group-sparse case that we motivated before.

Next, recall that a learning method is called consistent if
it can recover the parameters of a probabilistic model in the
limit of a growing number of data points that have been sam-
pled from the model. Note that there cannot be a consistent
learning method for non-identifiable models and thus the ex-
istence of a consistent learning method is a stronger prop-
erty. [Ravikumar et al., 2011] and [Jalali et al., 2011], re-
spectively, show that the parameters of Gaussian and discrete
graphical models can be recovered consistently via convex
optimization. In pioneering work, [Chandrasekaran et al.,
2012] extend this approach to latent variable Gaussian graph-
ical models, that is, to multivariate Gaussians with observed
and latent variables. In previous work it was shown that con-
sistent recovery is also possible for sparse + low-rank models
with observed binary variables [Nussbaum and Giesen, 2019]
and with mixed binary and conditional Gaussian observed
variables [Nussbaum and Giesen, 2020]. Here, we extend
their approach to group-sparse + low-rank interaction matri-
ces. In Section 5, we corroborate our theoretical findings in
experiments on synthetic data. Furthermore, we demonstrate
the expediency of our model and model-selection approach
on two polytomous IRT datasets from the social sciences.

3 Identifiability of the Model
In this section, we discuss the identifiability of the decom-
position of the pairwise interaction parameter matrix from
Model (1). For that, we consider group-sparse matrices that
are contained in the group-sparse matrix variety of symmetric
matrices with at most s non-zero groups given by

S(s) = {S ∈ Sym(m) : | gsupp(S)| ≤ s},
where gsupp(S) = {(i, j) ∈ [d]× [d] : Sij 6≡ 0} defines the
group support of S. Here, the groups Sij ∈ Rmi×mj are as in
Equation (2). Moreover, we consider low-rank matrices from
the low-rank matrix variety of symmetric matrices with rank
at most r that is given by

L(r) = {L ∈ Sym(m) : rank(L) ≤ r}.
Next, we provide a condition that ensures local identifiability
of the product variety S(s)× L(r) for fixed s and r. We call
(S,L) ∈ S(s)×L(r) locally identifiable if (S+∆, L−∆) /∈
S(s)× L(r) for all ∆ 6= 0 from some small ball. Hence, we
need to characterize nearby points in the varieties. First, if
S ∈ S(s) with | gsupp(S)| = s, then S + ∆ ∈ S(s) for
small ∆ if and only if ∆ is contained in the tangent space
Q(S) = {M ∈ Sym(m) : gsupp(M) ⊆ gsupp(S)}

at S to S(s). Second, a rank-r matrix L has the tangent space

T (L) =
{
UX> +XU> : X ∈ Rm×r

}
⊂ Sym(m)

to L(r), where L = UDU> is the (restricted) eigenvalue de-
composition of L with U ∈ Rm×r and D ∈ Rr×r. This time,
because the low-rank matrix variety is locally curved, having
L−∆ ∈ L(r) for small ∆ only implies that ∆ is a direction
from some tangent space T (L′) toL(r) at a matrixL′ ∈ L(r)
that is close to L. The following lemma shows that it is still
sufficient to only consider T (L) for local identifiability.
Lemma 1. Let Q(S) ∩ T (L) = {0}, that is, we assume
that the tangent spacesQ(S) and T (L) are transverse. Then,
(S,L) is locally identifiable in S(s) × L(r), where s =
| gsupp(S)| and r = rank(L).

To establish this result, one can prove that transversality of
the tangent spaces extends to nearby tangent spaces. Now,
restricting S(s)×L(r) to points (S,L) withQ(S)∩T (L) =
{0} leads to a class of locally identifiable models, though not
globally identifiable. For example, using the first and m-th
standard basis vectors of Rm, the pair consisting of S = e1e

>
1

and L = eme
>
m is locally identifiable in S(1)×L(1) since for

d ≥ 2 it holdsQ(S)∩T (L) = {0}. However, exchanging the
roles of S and L yields a different parametrization (L, S) ∈
S(1)× L(1) of the same model.

The problem in the example is that both components are
group sparse and low rank and thus can be confused. To avoid
this, first the matrix S should have a small maximum degree
gdegmax(S), that is, a small maximum number of non-zero
groups per row/column. If this is the case, S cannot be mis-
taken as low rank. Second, the low-rank matrixL should have
a row/column space U(L) ⊆ Rm that is not well-aligned
with the standard-basis vectors ei of Rm. Formally, the in-
coherence coh(L) = maxi ‖PU(L)ei‖2 of L should be small
because then L is spread-out and cannot be confused with
a group-sparse matrix. The next lemma shows that bound-
ing the product gdegmax(S) coh(L) implies tangent space
transversality and thus identifiability by Lemma 1.
Lemma 2. Let (S,L) ∈ S(| gsupp(S)|) × L(rank(L))
and η = maxi∈[d]mi. Then, provided that it holds that
gdegmax(S) coh(L) < 1/2η−3/2, the tangent spaces Q(S)
and T (L) are transverse, that is, Q(S) ∩ T (L) = {0}.

Observe that for (S,L) as in the previously discussed ex-
ample it holds gdegmax(S) coh(L) = 1 such that the con-
dition of Lemma 2 is not satisfied. In the next section, we
will see that a slightly stronger upper bound on the product
gdegmax(S) coh(L) even allows the consistent recovery of
(S,L) by solving instances of Problem (3).

4 Consistency Analysis
For our consistency analysis we assume that n data points
have been drawn from Model (1) with true interaction pa-
rameter matrix S? + L?, where S? is group sparse and L?
is low rank. We show that the solution (Sn, Ln) to Prob-
lem (3) can recover the true parameters (S?, L?) consistently,
that is, asymptotically and with high probability. Specifically,
we show two types of consistency. The first type is algebraic
consistency. It holds if Sn has the same group support as S?
and if Ln has the same rank as L?. The second type is para-
metric consistency, which holds if the errors Sn − S? and
Ln −L? are small. Following [Chandrasekaran et al., 2012],
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a good measure for the size of the errors is the dual norm
of the regularizing norm γ‖S‖1,2 + ‖L‖∗ from the objective
function. We call this dual norm the γ-norm. It is given by

‖(M,N)‖γ = max
{
γ−1‖M‖∞,2, ‖N‖

}
for (M,N) ∈ Sym(m) × Sym(m), where ‖M‖∞,2 =
maxi,j ‖Mij‖2, and ‖N‖ is the spectral norm of N .

Consistent recovery is not always possible. A first chal-
lenge is controlling the sampling error, which is given by
∇`(S? + L?) = ∇a(S? + L?) − Σn = E[Σ] − Σn, where
the expectation is w.r.t. the true model. If the sampling error
is small, then the likelihood term in Problem (3) ensures that
the compound matrix Sn + Ln is close to the true compound
matrix S?+L?. However, reliable recovery of the compound
matrix is only possible if λ is not too large. Indeed, the regu-
larization terms should only encourage small adjustments to
the algebraic structure of the components. Hence, later we
assume an upper bound on λ.

A second challenge is telling the group-sparse and low-
rank components apart. This can be addressed by restrict-
ing the analysis to identifiable models as outlined in Sec-
tion 3. For a better understanding, let us consider the intuitive
variety-constrained version

min `(S + L) s.t. S ∈ S(s), L ∈ L(r)

of Problem (3). This non-convex problem is of a hypotheti-
cal nature because the true group-sparse and low-rank matrix
varieties with s = | gsupp(S?)| and r = rank(L?) are un-
known when solving the problem. Nevertheless, Problem (3)
can be seen as a convex relaxation of the variety-constrained
problem. Therefore intuitively, the solution of the variety-
constrained problem should be (locally) unique in order to
successfully recover the true parameters. The main reason
for local non-uniqueness can be a decomposition S + L that
is not locally identifiable. This can be excluded by Lemma 1
provided that Q(S) ∩ T (L) = {0}. However, we must also
ensure that no nearby solutions with different compound ma-
trices exists. To fully characterize local uniqueness, we use
the optimality conditions of the variety-constrained problem,
see Figure 2. They state that (S,L) can only be a (local) so-
lution if the gradient of the negative log-likelihood at S + L
is normal to the respective varieties, that is, if it holds that

∇`(S + L) ⊥ Q(S) and ∇`(S + L) ⊥ T (L).

Here, the gradient is the same with respect to S and L. To
guarantee local uniqueness, the optimality condition should
be violated at any slightly perturbed solution, that is, the gra-
dient at such a perturbed solution should be non-normal to at
least one of the varieties.

S(s)

Q(S)

∇`(S + L)

S
•

L(r)

T (L)
∇`(S + L)

L •

Figure 2: Optimality conditions for a solution (S,L) to the variety-
constrained problem: The gradient must be normal to the group-
sparse matrix variety S(s) and the low-rank matrix variety L(r).

In what follows, we focus on perturbations in tangential di-
rections since the normal spaces to the varieties hardly change
for such perturbations. Hence, for a tangentially perturbed
solution, the optimality conditions are surely violated if the
gradient at the perturbed solution has components in the tan-
gent spaces that are large compared to the components in the
normal spaces. Therefore, we need to control the change of
the gradient under small (tangential) perturbations ∆. It is
sufficient to do this only for perturbations from the true so-
lution (S?, L?) since our assumptions will carry over to any
nearby local solution (S,L). Now, given a small sampling
error∇`(S? +L?), the change of the gradient is locally gov-
erned by the Hessian H? = ∇2`(S? + L?). This follows
from the first-order approximation

∇`(S? + L? + ∆) ≈ ∇`(S? + L?) +∇2`(S? + L?)∆

≈ ∇2`(S? + L?)∆ = H?∆.

Consequently, the tangential components of the gradient at
the perturbed solution are large if the minimum gains of the
Hessian H? in tangential directions are large. At the same
time, the normal components of the gradient are not too large
if the orthogonal effects of the Hessian H? in normal direc-
tions are not too large compared to the tangential effects. We
formalize this in our main assumption.
Assumption 1. We assume that there exist α > 0, ν ∈
(0, 1/2], and an interval [γmin, γmax] such that the follow-
ing holds for any γ ∈ [γmin, γmax], any (low-rank) tan-
gent space T (L′) that is sufficiently close to T (L?), and any
(M,N) ∈ J = Q(S?)×T (L′): First, the minimum gain on
J of H? is bounded from below in the sense that

‖PJDH?(M +N)‖γ ≥ α/2 ‖(M,N)‖γ ,

where D : Sym(m)→ Sym(m)× Sym(m),M 7→ (M,M)
is the duplication operator. Second, the orthogonal effect on
J⊥ of H? is bounded from above in the sense that

‖PJ⊥DH?(M +N)‖γ ≤ (1− ν) ‖PJDH?(M +N)‖γ .

A few comments are in order to understand this assump-
tion. First, note that Assumption 1 is a generalization of the
irrepresentability assumption as for example used by [Zhao
and Yu, 2006, Wainwright, 2009, Ravikumar et al., 2011].
Second, Assumption 1 concerns tangent spaces that are close
to T (L?) to account for the local curvature of the low-rank
matrix variety. Third, the assumption on the minimum gain
implies transversality, that is, Q(S?) ∩ T (L′) = {0}. In
conjunction with Lemma 1, this entails local identifiabil-
ity. Fourth and finally, it can be shown that the existence
of the interval [γmin, γmax] is implied by the upper bound
gdegmax(S?) coh(L?) ≤ c/12 η−3/2(αν)2(2 − ν)−2 that
uses the constants α and ν from the assumption as well as an-
other constant c that is independent of n and d. Recall that in
Section 3 we have seen that small gdegmax(S?) and coh(L?)
help to avoid confusion of S? and L?. Hence, assuming an
upper bound on gdegmax(S?) coh(L?) is reasonable.

Next, we formulate our consistency result, assuming a
small sampling error first. We control the sampling error by a
probabilistic analysis afterwards. Moreover, for better read-
ability, we leave out constants that are independent of n, d,
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the group sparsity of S?, and the coherence of L?. We denote
inequalities that hold up to such constants by . and &.
Theorem 1. Let S?, L? ∈ Sym(m) with L? � 0 such
that Assumption 1 is satisfied. Suppose that we observed
samples x(1), . . . , x(n) ∈ X drawn from Model (1) with in-
teraction matrix S? + L?. Assume that λ. coh(L?), that
γ ∈ [γmin, γmax], and that the sampling error is bounded as

‖D∇`(S? + L?)‖γ = ‖D(E[Σ]− Σn)‖γ .λ.

Also assume that the minimum magnitude of the non-
zero groups of S? is bounded from below as smin =
min(i,j)∈ gsupp(S?) ‖Sij‖2 &λ| gsupp(S?)|−1d and that the
minimum non-zero singular value of L? is bounded from be-
low as σmin &λ coh(L?)−1. Then, it follows that the solu-
tion (Sn, Ln) to Problem (3) with regularization parameters
λ and γ is unique and

(a) parametrically consistent in the sense that it satisfies
‖(Sn − S?, Ln − L?)‖γ .λ and

(b) algebraically consistent, that is, Sn and S? have the
same group support, and Ln and L? have the same rank.

We make a few additional comments concerning the as-
sumptions of Theorem 1. First, recall that an upper bound
on λ is needed for reliable recovery of the compound matrix
S? + L?. We also assume lower bounds on smin and σmin

in terms of λ to avoid that the shrinkage effects due to the
regularization cause algebraic features of the decomposition
to disappear. Next, it is natural to require the sampling er-
ror to be bounded by λ since intuitively, for large λ and thus
strong regularization, we can allow for a larger sampling er-
ror. However, while the probability that the sampling-error
bound holds for an actual sample will also be larger for large
λ, the error bound in Theorem 1(a) gets weaker.

Similarly as in [Chandrasekaran et al., 2012] and [Nuss-
baum and Giesen, 2020], Theorem 1 can be proven using the
primal-dual witness technique: It proceeds by first restrict-
ing Problem (3) to a (non-convex) correct model setM that
is chosen in a way such that any solution (SM, LM) to the
restricted problem is algebraically and parametrically consis-
tent. The non-convexity is due to a rank constraint, which
is subsequently replaced by a linear tangent-space constraint
to the low-rank matrix variety at a fixed solution (SM, LM).
Then, it is shown that the solution to the linearized problem
is unique and coincides with (SM, LM). Finally, it is shown
that the original Problem (3) is also solved by the same con-
sistent solution (SM, LM).

Next, we show that the bound on the sampling error that
is required by Theorem 1 holds with high probability for a
specific choice of λ.
Corollary 1. Under the assumptions of Theorem 1 let

λ = λn,d �
η

coh(L?)

√
κd logm

n

for some κ ≥ 1 and let n&κη2 coh(L?)−4d logm. Then,
it follows that ‖D(E[Σ]− Σn)‖γ .λn,d with probability at
least 1−m−κ. Hence, the conclusions of Theorem 1 applied
with λ = λn,d hold with the same probability.

Figure 3: Conditional graph structures: chain (left) and grid (right).
Note that each edge corresponds to a group of several parameters.

Corollary 1 can be proven using concentration results for
bounded random vectors [Vershynin, 2010]. The dependence
on coh(L?) can be improved in both Theorem 1 and Corol-
lary 1 in a rather technical and non-intuitive way. However,
here we choose to remain clear and self-contained. We in-
vestigate the influence of coh(L?) and gdegmax(S?) in our
experiments in the next section.

The specific choice λ = λn,d in Corollary 1 allows the
discussion of some high-dimensional limits. For that we con-
sider problems that vary in the number of data points n, in the
number of observed variables d, and in the group sparsity and
the incoherence of the components. Apart from that, we only
consider problems that satisfy the assumptions from Theo-
rem 1 for the same constants, particularly the same α and ν.
In this setting, first observe that for fixed d the error bound
‖(Sn − S?, Ln − L?)‖γ .λn,d from Corollary 1 asymptoti-
cally approaches zero as n→∞. Second, for larger d, more
samples are required to obtain the same error bound. Further-
more, we expect that larger gdegmax(S?) and larger coh(L?)
make consistent recovery more difficult since then it is more
likely that the upper bound on gdegmax(S?) coh(L?) is not
satisfied. We also investigate this in our experiments.

5 Experiments
We solve Problem (3) using the Alternating Direction Method
of Multipliers (ADMM) with a proximal gradient step that
we adapted to our needs from [Ma et al., 2013]. For compu-
tational efficiency, we replace the likelihood by the pseudo-
likelihood in our experiments. It is known to behave simi-
larly [Mozeika et al., 2014].

5.1 Synthetic Data
Here, to verify experimentally that consistent recovery is pos-
sible, we generate synthetic data from discrete fused latent
and graphical models using Gibbs sampling, see [Casella and
George, 1992]. For the experiments, we use discrete variables
that take three values, that is, Xi = {0, 1, 2} for all variables.
We consider four models with d = 36 variables, where the
direct interactions S? adhere to either chain or grid graphi-
cal model structures (compare Figure 3), and the number of
latent variables is either one or two.

Our goal is to test the influence of the maximum group de-
gree gdegmax(S?) of S? and the incoherence coh(L?) of L?
on recovery rates. Here, the maximum group degree is two
for the chain and four for the grid model. Moreover, we set
the probability of an interaction between any latent and any
observed variable to be non-zero to 95%. This ensures that
the low-rank effect of the latent variables is spread-out and
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Figure 4: Recall, precision, and absolute rank difference averaged over 20 trials for each model and ratio. In the plots for each model, the
maximum group degree of S? and the coherence of the randomly sampled L? are noted.

thus that L? is incoherent. However, L? will be less incoher-
ent for a growing number of latent variables.

For each model, we sample all of its parameters randomly.
More specifically, we sample the latent-observed interaction
parameters uniformly from [−0.5,−0.2] ∪ [0.2, 0.5] and the
parameters for the non-zero groups of S? from [−1.5,−0.5]∪
[0.5, 1.5]. Then, for each model we test the asymptotic behav-
ior by generating 20 datasets with kd logm samples (rounded
to the nearest integer) for selected ratios k ∈ [1, 50]. Our
choice of regularization parameters is guided by Corollary 1
and fixed for all models (λ = 1/50

√
d logm/n, γ = 10).

Finally, for each model and ratio k, we record the average
percentage of correctly identified non-zero groups, that is,
edges in the conditional independence graph. For that, we
employ the criteria of recall and precision, where recall =
TP /(TP + FN) and precision = TP /(TP + FP). Here,
TP is the number of correctly identified edges (true posi-
tives), FN is the number of undetected edges (false nega-
tives), and FP is the number of edges that were mistakenly
detected as edges (false positives). Likewise, we record the
absolute rank difference | rank(Ln) − rank(L?)|, averaged
over the 20 trials.

The results are shown in Figure 4. Recovery of edges
and rank requires relatively few samples for the one-latent-
variable chain and grid models. Slightly more samples are re-
quired to recover the rank of the grid model. This is due to the
larger maximum group degree of the grid models compared
to the chain models. Next, for the two-latent-variable chain
model considerably more samples are necessary for success-
ful recovery—because the underlying low-rank matrix is less
incoherent. Our observations back the intuition that for more
incoherent L? and smaller maximum group degree of S?, the
group-sparse and low-rank components can be confused less
easily. This is supported even more by the recovery results for
the two-latent-variable grid model, where the fact that both
the maximum group degree and the coherence are larger is re-
flected in significantly worse recovery results. Nevertheless,
overall the results show that consistent recovery is possible.

5.2 Real-World Data
We also demonstrate the effectiveness of our fused latent and
graphical models on two real-world datasets. The first dataset

is from a non-forced choice vocabulary IQ test (VIQT), where
participants can indicate if they do not know an answer, other-
wise answers are either correct or wrong. The dataset was ob-
tained from the [Open-Source Psychometrics Project, 2019]
and contains d = 45 variables and n = 12 173 samples. The
second dataset contains the answers of n = 165 test takers
to the d = 72 questions of the Cambridge face memory test
(CFMT) [Duchaine and Nakayama, 2006,Itz et al., 2017]. In
this dataset, answers with response times below the human re-
action time or above some threshold (based on the interquar-
tile range) were assigned to a third category of outliers, oth-
erwise answers are either correct or wrong, again. Hence, for
both datasets, the observed variables are discrete with three
possible outcomes.

Figure 1 shows estimated fused latent and graphical mod-
els for both datasets. The learned models exhibit direct in-
teractions, that is, the answers are not independent given the
estimated latent variables. This is in contrast to the common
conditional independence assumption in item response the-
ory. Nevertheless, for both models, most observed interac-
tions are explained by a latent variable. Notably, the low-rank
matrix learned for the CFMT data has a block of positively
correlated items in the top left corner. These items correspond
to the first CFMT block, which consists of 18 simple ques-
tions that most participants get right, hence the correlation.

6 Conclusion
In this paper, we studied discrete fused latent and graphical
models. We investigated when the group-sparse + low-rank
decomposition of the interaction parameter matrix is iden-
tifiable. We showed that using convex optimization such
decompositions can be estimated consistently in the high-
dimensional setting. We verified experimentally that con-
sistent recovery becomes easier if there are not too many
non-zero groups per row/column of the matrix of direct in-
teractions and if the low-rank matrix is spread-out. The
fused latent and graphical models that we estimated from
real-world data demonstrate that observed data from polyto-
mous IRT studies can be conditionally dependent given the
latent variables—in contrast to the common assumption. This
shows that modeling direct interactions in polytomous IRT is
warranted and reasonable.
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