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Abstract

The past few years have seen a dramatic rise of aca-
demic and societal interest in fair machine learning.
While plenty of fair algorithms have been proposed
recently to tackle this challenge for discrete vari-
ables, only a few ideas exist for continuous ones.
The objective in this paper is to ensure some in-
dependence level between the outputs of regres-
sion models and any given continuous sensitive
variables. For this purpose, we use the Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation coef-
ficient as a fairness metric. We propose to mini-
mize the HGR coefficient directly with an adver-
sarial neural network architecture. The idea is to
predict the output Y while minimizing the ability
of an adversarial neural network to find the esti-
mated transformations which are required to pre-
dict the HGR coefficient. We empirically assess and
compare our approach and demonstrate significant
improvements on previously presented work in the
field.

1 Introduction
The use of machine learning algorithms in our day-to-day
life has become ubiquitous. However, when trained on bi-
ased data, those algorithms are prone to learn, perpetuate or
even reinforce these biases [Bolukbasi et al., 2016]. Because
many applications have far-reaching consequences (credit rat-
ing, insurance pricing, recidivism score, etc.), there is an in-
creasing concern in society that the use of machine learn-
ing models could reproduce discrimination based on sensi-
tive attributes such as gender, race, age, weight, or other.
In fact, many incidents of this kind have been reported in
recent years. For example, an analysis software producing
criminal risk scores in the United States (COMPAS) system-
atically discriminated against black defendants [Angwin et
al., 2016]. Also, discrimination based on gender can be seen
in targeted and automated online advertising for job oppor-
tunities in the Science, Technology, Engineering and Math
(STEM) fields [Lambrecht and E. Tucker, 2016].
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A widely applied method to achieve fairness is to simply
remove any sensitive attributes from the data set [Pedreschi et
al., 2008]. However, this concept, known as ”fairness through
unawareness”, is highly insufficient because any other non-
sensitive attribute might indirectly contain significant sensi-
tive information. For example, the height of an adult could
provide a strong indication about the gender.

A new research field has emerged to find solutions to this
problem: fair machine learning. Its overall objective is to en-
sure that the prediction model is not dependent on a sensitive
attribute [Zafar et al., 2017]. Most of the previously presented
work focuses on discrete values. This may not hold when,
for instance, the sensitive attribute is age or the output is in-
come. Recently, one paper has discussed fair machine learn-
ing for continuous variables, approximating an upper bound
of the Hirschfeld-Gebelein-Rényi (HGR) correlation coeffi-
cient exploiting the Witsenhausen’s characterization [Mary
et al., 2019]. Inspired by this idea, we enhance and improve
the approach with an adversarial neural network architecture
which minimizes the HGR coefficient directly.

The contributions of this paper are:
• We propose a neural network architecture which mini-

mizes the HGR coefficient with an adversarial approach.
The adversarial directly approximates HGR by finding
non-linear transformations of the data;

• We demonstrate empirically that our neural HGR-based
approach is very competitive for fairness learning with
continuous features on artificial and real-world popular
data sets.

The remainder of this paper is as follows. First, Section 2
reviews papers related with our work. Section 3 introduces
different definitions of fairness and metrics. Section 4 out-
lines the architecture of our fair adversarial HGR algorithm.
Finally, Section 5 discusses the experimental results of our
approach.

2 Related Work
Significant work has been done in the field of fair machine
learning recently, in particular when it comes to quantifying
and mitigating undesired bias. For the mitigation approaches,
three distinct strategy groups exist.

Algorithms of the ”pre-processing” group mitigate bias
which exists in the training data. The ideas range from
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suppressing the sensitive attributes, learning fair representa-
tions, or changing class labels of the data set to reweigh-
ing or resampling the data [Kamiran and Calders, 2012;
Zemel et al., 2013; Bellamy et al., 2018; du Pin Calmon et
al., 2017].

The second group of mitigation strategies comprises the
”in-processing” algorithms. For this type of algorithms, un-
wanted bias gets mitigated during the learning phase. One
approach to achieve this objective is to include a fairness con-
straint directly in the loss function. For example, a decision
boundary covariance constraint could be added to logistic re-
gression or linear SVM algorithms [Zafar et al., 2017]. Yet
another concept is adversarial debiasing, an architecture in-
spired by generative adversarial networks (GANs) [Goodfel-
low et al., 2014]. More precisely, in this approach a traditional
classifier is trained to predict the label Y , while an adversar-
ial neural network is trained at the same time with the ob-
jective to predict a sensitive attribute S [Zhang et al., 2018;
Wadsworth et al., 2018; Louppe et al., 2017].

The final group of mitigation strategies are the ”post-
processing” algorithms. In this approach, only the output la-
bels of a trained classifier are adjusted. For example, by op-
timizing for an equalized odds objective, a Bayes predictor
model can modify output labels [Hardt et al., 2016]. Another
paper proposes a weighted estimator for demographic dis-
parity which makes use of soft classification based on proxy
model outputs [Chen et al., 2019]. On the one hand, post-
processing algorithms have the advantage that fair classifi-
cation is achieved without the need to modify or retrain the
original model. On the other hand, this concept may nega-
tively impact the accuracy or could affect any generalization
retrieved from the original classifier [Donini et al., 2017].

Most of the present work in fair machine learning focuses
on categorical variables with a supervised classification prob-
lem and a binary sensitive feature. Recently, an approach for
continuous variables using the Witsenhausen’s characteriza-
tion of the Rényi correlation coefficient was presented [Mary
et al., 2019]. They extend the work proposed by [Kamishima
et al., 2011] with the minimization of an estimation of the
Mutual Information (MI) for categorical variables. This al-
gorithm is a ”in-processing” fairness approach. They mini-
mize the Hirschfeld-Gebelein-Rényi (HGR) correlation coef-
ficient by penalizing the χ2 divergence. However, they make
a strong assumption by basing their approach on a Gaussian
Kernel Distribution Estimator (KDE). This makes it difficult
to generalize on all different kinds of data sets. We propose
to extend this idea and make it as generalizable as possible by
minimizing the HGR directly with an adversarial algorithm
which is detailed in Section 4.

3 Fairness Definitions and Metrics
3.1 Continuous Fairness Objectives
Throughout this document, we consider a supervised machine
learning algorithm for regression problems. The training data
consists of n examples (xi, si, yi)

n
i=1, where xi ∈ Rp is the

feature vector with p predictors of the i-th example, si is its
continuous sensitive attribute and yi its continuous outcome.

We describe below two common fairness definitions that we
use in this work in the continuous setting.

Demographic Parity: One of the main objectives in fair ma-
chine learning is to ensure that the sensitive attribute S is in-
dependent of the output predictions Ŷ : Ŷ ⊥ S.

Compared to the most common discrete binary setting,
where the demographic parity can be reduced to ensure that
E[Ŷ |S] = E[Ŷ ] [Agarwal et al., 2018], the continuous case
is more complicated since it comes down to consider distribu-
tion divergences rather than simple conditional expectations.

Equalized Residuals: A model is considered fair when the
residuals Ŷ − Y are independent from the sensitive attribute
S: (Y − Ŷ ) ⊥ S. To illustrate it, let’s imagine a car insurance
pricing scenario where young people have higher claims than
older people. A classical pricing model would charge young
people a higher premium. In the case of demographic par-
ity, the average price must be the same across all ages. This
means that older people would generally pay more than their
real cost, and younger people less. In contrast, the equalized
residuals setting only ensures that for all ages, the overall er-
ror does not deviate too much.

3.2 Metrics for the Continuous Setting
In order to assess these fairness definitions in the continu-
ous case, it is essential to look at the concepts and measures
of statistical dependence. There are many methods to mea-
sure the dependence between two variables. A simple way
is to measure the Pearson’s rho, Kendall’s tau or Spearman’s
rank. Those types of measure have already been used in fair-
ness, mitigating the conditional covariance for categorical
variables [Zafar et al., 2017]. However, the major problem
with these measures is that they only capture a limited class of
association patterns, like linear or monotonically increasing
functions. The Pearson correlation, for instance, only mea-
sures the linear relationship. When choosing a single non-
linear transformation such as the square function of a uniform
distribution between -1 and 1, for example, this coefficient re-
sults in a theoretical correlation of 0.

Over the last few years, many non-linear dependence mea-
sures have been introduced like the Kernel Canonical Corre-
lation Analysis (KCCA) [Hardoon and Shawe-Taylor, 2009],
the Distance or Brownian Correlation (dCor) [Székely et al.,
2009], the Hilbert-Schmidt Independence Criterion (HSIC
and CHSIC) [Gretton et al., 2005; Póczos et al., 2012] or
the Hirschfeld-Gebelein-Rényi (HGR) [Rényi, 1959]. Com-
paring those non-linear dependence measures [López-Paz et
al., 2013], the HGR coefficient seems to be an interesting
choice: It is a normalized measure which is capable of cor-
rectly measuring linear and non-linear relationships, it can
handle multi-dimensional random variables and it is invari-
ant with respect to changes in marginal distributions.

Definition 3.1. For two jointly distributed random variables
U ∈ U and V ∈ V , the Hirschfeld-Gebelein-Rényi maximal
correlation is defined as:

1ρ(U, V ) := Cov(U ;V )
σUσV

, where Cov(U ;V ), σU and σV are the
covariance between U and V , the standard deviation of U and the
standard deviation of V , respectively.
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HGR(U, V ) = sup
f :U→R,g:V→R

E(f(U))=E(g(V ))=0

E(f2(U))=E(g2(V ))=1

ρ(f(U), g(V )) (1)

= sup
f :U→R,g:V→R

E(f(U))=E(g(V ))=0

E(f2(U))=E(g2(V ))=1

E(f(U)g(V )) (2)

where ρ is the Pearson linear correlation coefficient 1 with
some measurable functions f and g.

The HGR coefficient is equal to 0 if the two random vari-
ables are independent. If they are strictly dependent the value
is 1. The dimensional spaces for the functions f and g are
infinite. This property is the reason why the HGR coefficient
proved difficult to compute.

In information theory literature, the Witsenhausen’s char-
acterization [Witsenhausen, 1975] proposes a simple approxi-
mation of the HGR coefficient for discrete features. It demon-
strates the possibility to estimate this coefficient directly by
the calculation of the second largest value of a specific matrix
(Q below). It is briefly described in the following:
Theorem 1. Let U and V be discrete variables and the ma-
trix Q be defined as follows:

QU,V (j, j
′
) =

PU,V (j, j
′
)√

PU (j)
√
PV (j′)

(3)

Where PU,V is the joint distribution of U and V , PU and PV
are the corresponding marginal distributions.
Under mild conditions [Witsenhausen, 1975]:

HGR(U, V ) = σ2(QU,V ) (4)

where σ2 is the second largest singular value of a matrix.
It was shown that such a calculation of the HGR coefficient

can be used as fairness constraint for discrete variables [Ba-
harlouei et al., 2019]. For continuous variables, however, this
proved difficult. An approximation can be done with strong
assumptions such that the matrix Q is viewed as the kernel
of a linear operator on L2(dPUdPV ) [Witsenhausen, 1975].
This approximation has been used with Kernel density esti-
mation (KDE) as a fairness metric by [Mary et al., 2019]. We
will refer to this metric in our experiments as HGR KDE.
Another way to approximate this coefficient is to require
that f and g belong to Reproducing Hilbert Kernel’s spaces
(RKHS) by taking the largest canonical correlation between
two sets of copula random projections. This has been done
efficiently under the name of Randomized Dependency Coef-
ficient (RDC) [López-Paz et al., 2013]. We will make use of
this approximated metric as HGR RDC.

4 Neural HGR Minimization for Fairness
As explained in Section 3, the HGR coefficient can be lever-
aged for fairness learning. However, it’s direct use for train-
ing fair models is difficult, especially for the continuous
case, since it requires the optimization of the second largest
singular value of an estimated matrix Q (in the case of

HGR KDE), or the computation of random non-linear pro-
jections and the estimation of copula transformations (in the
case of HGR RDC), at each step of the learning process.

In this paper, we propose a novel neural HGR-based cost
for fairness in the continuous setting, that can be mitigated in
the following generic optimization problem:

arg min
φ

L(hφ(X), Y ) + λΨ(U, V ) (5)

where L is the regression loss function (the mean squared
error in our experiments) between the output hφ(X) ∈ R and
the corresponding target Y , with hφ a neural network with
parameters φ, and Ψ(U, V ) is a correlation loss between two
variables defined as:{

U = hφ(X) and V = S for demographic parity;
U = hφ(X)− Y and V = S for equalized residuals.

The aim is thus to find a mapping hφ(X) which both mini-
mizes the deviation with the expected target Y and does not
imply too much dependency of U with the sensitive S, ac-
cording to its definition for the desired fairness objective. The
hyperparameter λ controls the impact of the correlation loss
in the optimization. The correlation loss Ψ could correspond
to a Pearson coefficient, a Mutual Information Neural Esti-
mation (MINE [Belghazi et al., 2018]), or HGR neural esti-
mators proposed in the following of this section. In any case,
the objective function is optimized via stochastic gradient de-
scent.

4.1 HGR Estimation via Neural Network
Our proposed approach is to estimate the HGR coefficient
with neural networks. For this, we use two inter-connected
neural networks to approximate the optimal transformations
functions f and g from 2. Let fθf and gθg be two neural net-
works with respective parameters θf and θg . The estimation
of HGR can be written as the following maximization prob-
lem:

HGRΘ(U, V ) = max
θf ,θg∈Θ

E[f̂θf (U)ĝθg (V )] (6)

with f̂θf and ĝθg the respective standardization of outputs
from fθf and gθg according to PU and PV :

f̂θf (U) =
fθf (U)−mf

σf
ĝθg (V ) =

gθg (V )−mg

σg

where mf (resp. mg) is the expectation EU [fθf (U)] (resp.
EV [gθg (V )]) and σ2

f (resp. σ2
g) is the varianceEU [fθf (U)2]−

EU [fθf (U)]2 (resp.EV [gθg (V )2]−EV [gθg (V )]2) of f (resp.
g) w.r.t. PU (resp. PV ). The standardization of outputs from
fθf and gθg allows us to ensure the constraints on f and g in
(2).

Algorithm 1 depicts the optimization process of 6. Until
convergence, it samples instantiations of (U, V ) from PU,V
(or from a training set of data) to form mini-batches. At each
iteration, it computes expectation and variance estimators of
fθf and gθg on the current batch. These estimators are used to
standardize the outputs of both neural networks on the batch.
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Algorithm 1 HGR Estimation by Neural Network

Input: Distributions PU,V , Neural Networks fθf and gθg ,
Input: Batchsize b, Learning rates αf , αg
repeat
Draw b samples from the joint distribution:
(u1, v1), ..., (ub, vb) ∼ PUV
Calculate the average and variance of the transformation
predictions:
mf ← 1

b

∑b
i=1 fθf (ui) ; σ2

f ← 1
b

∑b
i=1(fθf (ui)−mf )2

mg ← 1
b

∑b
i=1 gθg (vi) ; σ2

g ← 1
b

∑b
i=1(gθg (vi)−mg)

2

Standardize w.r.t. the minibatch:
∀i : f̂θf (ui)←

fθf (ui)−mf√
σ2
f+ε

; ĝθg (vi)←
gθg (vi)−mg√

σ2
g+ε

Maximize the following objective function J by gradient
ascent:
J(θf , θg) = 1

b

∑b
i=1 f̂θf (ui) ∗ ĝθg (vi)

θf ← θf + αf
∂J(θf ,θg)

∂θf
; θg ← θg + αg

∂J(θf ,θg)
∂θg

until convergence

Finally, it updates the parameters of both networks by gra-
dient ascent on the objective function to maximize J(θf , θg).
Note that the gradients are computed by back-propagating not
only through the output values of θf and θg but also through
means and variances of the batch, to ensure convergence. At
the end, the HGRΘ(U, V ) estimator can be computed by
considering the expectation of the products of standardized
outputs of both networks.

This neural estimator HGRΘ(U, V ) is a lower-bound of
HGR(U, V ) (at least on the training data set). However, as
experimentally shown in figure 1, our estimator gives very
accurate approximations in various settings. For these experi-
ments, we produced artificial data (U, V ) with non-linear de-
pendencies. Four data sets were generated by instantiating U
with samples drawn from a uniform distribution U(−10; 10)
and defining V according to a non-linear transformation of
U : V = F (U) + ε, with F a given association pattern and
ε ∼ N (0, σ2) a random noise added to V . Each sub-figure
in Fig.1 corresponds to a data set generated according to the
association pattern plotted in the small box in its left corner
(500 pairs (U, V ) were generated for each data set). Note that
for each of the scenarios, the linear correlation between U
and V is 0, but the HGR coefficient is theoretically equal to 1
when no noise is added to the transformation (when σ2 = 0).
The aim is to assess the ability of the HGR estimators to re-
cover the HGR value, despite some complex association pat-
terns and some noise in the data. We compare the HGR esti-
mation values for HGR KDE, HGR RDC and our estimator
HGR NN, for which we consider neural networks f and g
of three layers, each including ten units with tanh activation
function and Xavier initialization.

Results show that, when no noise is added to the data,
HGR KDE and HGR RDC have difficulties to recover the
optimal transformations on the two last scenarios in which
the relationship is either not continuous or highly unsteady.
Thanks to the higher freedom provided by the use of neural
networks, HGR NN succeeds in retrieving a HGR of 1 for
these settings. When noise is added to the data, the true HGR

coefficient could be lower than 1. We thus assess the ability
of the estimators to approach the HGR value that would be
induced by optimal transformations f and g on the data. Note
that our approach cannot exceed its value, due to the use of
a restricted set of neural transformation functions. From the
figure, we observe that the curve of HGR NN is always the
highest (thus the closest to the optimal value from the data),
and that the difference between our approach and the others
increases with noise. HGR NN appears more robust to noise.
Additional experiments on the power of dependence of our
estimator have also shown that our estimator is usually more
efficient than its competitors for discerning dependent from
independent samples in various settings.
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Figure 1: HGR estimation in various settings

4.2 Fairness via Neural HGR
Our neural HGR estimator is thus a good candidate for stand-
ing as the adversary Ψ(U, V ) to plug in the global regression
objective (5). Figure 2 gives the full architecture of our ad-
versarial learning algorithm using the neural HGR estimator
for demographic parity. It depicts the prediction function hφ,
which outputs Ŷ from X , and the two neural networks fθf
and gθg , which seek at defining the more strongly correlated
transformations of Ŷ and S. Left arrows represent gradient
back-propagation. The learning is done via stochastic gradi-
ent, alternating steps of adversarial maximization and global
loss minimization. The algorithm 2 depicts our Fair HGR NN
algorithm for the Demographic Parity task. The algorithm
takes as input a training set from which it samples batches
of size b at each iteration. At each iteration it first standardize
the output scores of networks fθf and gθg to ensure 0 mean
and a variance of 1 on the batch. Then it computes the objec-
tive function to maximize to estimate the HGR score and the
global regression objective. Finally, at the end of each itera-
tion, the algorithm updates the parameters of the adversary θf
and θg by one step of gradient ascent and the regression pa-
rameters φ by one step of gradient descent. Back-propagation
is performed on the full architecture, including means and
variance calculations, to avoid oscillations.
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Figure 2: The Fair HGR NN algorithm for demographic parity.

Algorithm 2 Fair HGR NN for Demographic Parity

Input: Training set T , Loss function L, Batchsize b,
Input: Neural Networks hφ, fθf and gθg ,
Input: Learning rates αf , αg and αh, Fairness control λ
Repeat
Draw b samples (x1, s1, y1), ..., (xb, sb, yb) from T
Calculate the mean and variance of the transformations:
mf ← 1

b

∑b
i=1 fθf (hφ(xi)) ; mg ← 1

b

∑b
i=1 gθg (si)

σ2
f ← 1

b

∑b
i=1(fθf (hφ(xi))−mf )2

σ2
g ← 1

b

∑b
i=1(gθg (si)−mg)

2

Standardize the transformations:
∀i : f̂θf (hφ(xi))←

fθf (hφ(xi))−mf√
σ2
f+ε

∀i : ĝθg (si)←
gθg (si)−mg√

σ2
g+ε

Compute the objectives:
J(θf , θg) = 1

b

∑b
i=1 f̂θf (hφ(xi)) ∗ ĝθg (si)

L(φ, θf , θg) = 1
b

∑b
i=1 L(hφ(xi), yi) + λJ(θf , θg)

Update the adversary by gradient ascent:
θf ← θf + αf

∂J(θf ,θg)
∂θf

; θg ← θg + αg
∂J(θf ,θg)

∂θg

Update the predictor model hφ by gradient descent:
φ← φ− αh(

∂L(φ,θf ,θg)
∂φ )

5 Empirical Results
5.1 Synthetic Scenario
In order to test the efficiency of our algorithms, we set up a
simple toy scenario. The subject is a pricing algorithm for a
fictional household insurance policy. The goal of this exer-
cise is to achieve demographic parity by producing a fair pre-
dictor which estimates the average cost without incorporat-
ing any bias against the policyholder’s age. We want to com-
pare our proposed algorithms (Fair HGR NN with a classical
neural network called Standard NN). We create three explicit
variables: Age of the policyholder, total surface and age of
the building. We consider the policyholder’s age as sensitive
attribute and we construct the average cost variable Y with
the last two variables only (without the sensitive variable).
To evaluate this, we create the target variable Y with an ex-
ponential function which takes into account the two explicit
variables mentioned above. The surface variable is a poly-
nomial transformation of age. This transformation is chosen
such that no linear correlation exists between surface and age

(Pearson correlation = 0.00). On the other hand, it is expected
that the HGR coefficient will be non-zero for the Standard
NN (estimated to 62%). We report below details on the distri-
butions used in this synthetic scenario:

Age ∼N (40, 5); ε1 ∼ N (0, 1); ε2 ∼ N (0, 1)

Surface =− 0.25 ∗ (−Age+ 40)2 + 150 + 5 ∗ ε1
BldgAge ∼N (30, 10)

Y =100 + 0.0005 ∗ e(0.06∗Surface+0.1∗BldgAge+0.2∗ε2)

In order to solve this problem and, thus, to minimize the
non-linear dependence between the age and the predictions
we execute different scenario and use specific hyperparam-
eters λ for each of them. For each scenario, we repeat five
experiments by randomly sampling two subsets, 70% for the
training set and 30% for the test set. The choice of this value
depends on the main goal, resulting in a trade-off between
accuracy and fairness. In figure 3, we see clearly that higher
values of λ produce fairer predictions, while a specific hyper-
parameter λ near 0 allows to only focus on optimizing the pre-
dictor loss. We note a MSE error gap of 700 between λ = 0
and λ = 125. Choosing λ between 25 and 50 appears to be
an interesting choice for this scenario.

In Figure 4, the blue curves represent the predictions of
the Standard NN. The quadratic link between the prediction
and the sensitive attribute age can be easily observed. As ex-
pected, increasing the lambda leads to predictions almost sta-
ble, around a price of about 226 euros.
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Figure 3: Impact of hyperparameter. λ Higher values of λ produce
fairer predictions, while λ near 0 allows to only focus on optimizing
the regression predictor.

5.2 Real-world Experiments
Our experiments on real-world data are performed on the
three following data sets:

• The US Census demographic data set is an extraction of
the 2015 American Community Survey, with 37 features
about 74,000 census tracts. The target is the percentage
of children below the poverty line, the sensitive attribute
is the percentage of women in the census tract.

• The Motor Insurance dataset originates from a pricing
game organized by The French Institute of Actuaries in
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Demographic Parity Equalized Residuals
MSE HGR NN HGR KDE HGR RDC FairQuant MSE HGR NN HGR KDE HGR RDC FairQuant

U
S

C
en

su
s Standard NN 0.274 ± 0.003 0.212 ± 0.094 0.181± 0.00 0.217 ± 0.004 0.059 ± 0.00 0.274 ± 0.003 0.157 ± 0.006 0.098 ± 0.002 0.122 ± 0.002 0.008 ± 0.001

Fair HGR NN 0.526 ± 0.042 0.057 ± 0.011 0.046 ± 0.030 0.042 ± 0.038 0.008 ± 0.015 0.334 ± 0.021 0.068 ± 0.019 0.053 ± 0.04 0.055 ± 0.046 0.003 ± 0.002
Mary2019 [Mary et al., 2019] 0.541 ± 0.015 0.075 ± 0.013 0.061 ± 0.006 0.078 ± 0.013 0.019 ± 0.004 0.408 ± 0.004 0.092 ± 0.017 0.049 ± 0.003 0.063 ± 0.005 0.009 ± 0.001
Fair MINE NN 0.537 ± 0.046 0.058 ± 0.042 0.048 ± 0.029 0.045 ± 0.037 0.012 ± 0.016 0.406 ± 0.021 0.083 ± 0.017 0.055 ± 0.017 0.082 ± 0.015 0.008 ± 0.006

M
ot

or

Standard NN 0.945 ± 0.011 0.201 ± 0.094 0.175 ± 0.0 0.200 ± 0.034 0.008 ± 0.011 0.945 ± 0.015 0.145 ± 0.005 0.102 ± 0.038 0.123 ± 0.041 0.075 ± 0.006
Fair HGR NN 0.971 ± 0.004 0.072 ± 0.029 0.058 ± 0.052 0.066 ± 0.009 0.006 ± 0.02 0.991 ± 0.021 0.102 ± 0.007 0.082 ± 0.008 0.092 ± 0.009 0.011 ± 0.015
Mary2019 [Mary et al., 2019] 0.979 ± 0.119 0.077 ± 0.023 0.059 ± 0.014 0.067 ± 0.028 0.006 ± 0.002 1.019 ± 0.01 0.111 ± 0.007 0.079 ± 0.005 0.098 ± 0.005 0.015 ± 0.011
Fair MINE NN 0.982 ± 0.003 0.078 ± 0.013 0.068 ± 0.004 0.069 ± 0.009 0.004 ± 0.001 1.024 ± 0.017 0.121 ± 0.022 0.091 ± 0.007 0.092 ± 0.005 0.031 ± 0.009

C
ri

m
e

Standard NN 0.384 ± 0.012 0.732 ± 0.013 0.525 ± 0.013 0.731 ± 0.009 0.353 ± 0.006 0.384 ± 0.024 0.472 ± 0.036 0.244 ± 0.01 0.440 ± 0.011 0.047 ± 0.004
Fair HGR NN 0.781 ± 0.016 0.356 ± 0.063 0.097 ± 0.022 0.171 ± 0.03 0.039± 0.008 0.583 ± 0.044 0.382 ± 0.089 0.151 ± 0.017 0.222 ± 0.045 0.028 ± 0.006
Mary2019 [Mary et al., 2019] 0.778 ± 0.103 0.371 ± 0.116 0.115 ± 0.046 0.177 ± 0.054 0.064 ± 0.023 0.579 ± 0.074 0.381 ± 0.097 0.152 ± 0.035 0.221 ± 0.068 0.048 ± 0.035
Fair MINE NN 0.782 ± 0.034 0.395 ± 0.097 0.110 ± 0.022 0.201 ± 0.021 0.136 ± 0.012 0.583 ± 0.054 0.413 ± 0.15 0.161 ± 0.027 0.232 ± 0.018 0.052 ± 0.013

Table 1: Results for Demographic Parity and Equalized Residuals in terms of accuracy (MSE) and fairness metrics.
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Figure 4: Average predictions by age. Higher value of lambda tends
to decrease the link between predictions and the sensitive feature.

2015, with 15 attributes for 36,311 observations. The tar-
get is the average claim cost of per policy, the sensitive
attribute is the driver’s age.

• The Crime dataset is obtained from the UCI Machine
Learning Repository [Dua and Graff, 2017], with 128
attributes for 1,994 instances. The target is the number
of violent crimes per population, the sensitive attribute
is the ratio of an ethnic group per population.

For all data sets, we repeat five experiments by randomly
sampling two subsets, 80% for the training set and 20% for
the test set. Finally, we report the average of the mean squared
error (MSE), and the mean of the fairness metrics HGR NN,
HGR KDE, HGR RDC from the test set. Since none of these
fairness measures are fully reliable (they are only estima-
tions which are used by the compared models), we also in-
troduce a metric based on discretization of the sensitive at-
tribute. This FairQuant metric splits the test samples in 50
quantiles with regards to the sensitive attribute, in order to
obtain sample groups of the same size. For each of them,
we compute the mean of h(X) for demographic parity, and
h(X)−Y for equalized residuals. Finally, FairQuant equals
the mean absolute difference between the global average and
the means computed in each quantile (e.g., for demographic
parity, FairQuant = 1

50

∑50
i=1 |mi −m|, with mi the mean

of h(X) in the i-th quantile and m its mean on the full test
set). As a baseline, we use a classic, ”unfair” deep neural net-
work, Standard NN. We compare with a similar approach that

would use mutual information rather than HGR in our frame-
work (see section 4) and with Mary2019 [Mary et al., 2019] 2

which suggests relaxing the calculation of the HGR by using
a χ2 divergence upper bound (by KDE estimation).

For each algorithm and for each data set, we obtain the best
hyperparameters by grid search in five-fold cross validation
(specific to each of them). Depending on the task, we param-
eterized the number of layers between 3 and 5 and between
8 and 32 for the number of units. We used Tanh activation
functions, Dropout and Xavier initialization. The considered
regression loss is MSE. Notice, we applied a mean normaliza-
tion to the different outcome true value. Results of our exper-
iments can be found in Table 1. For all of them, we attempted
to obtain comparable results by giving similar accuracy of
the models (MSE) in a same setting, via the hyperparameter
λ of our models that allows us to balance the relative impor-
tance of accuracy and fairness while learning. As expected,
the baseline, Standard NN, is the best predictor but also the
most biased one. It achieves the lowest prediction errors and
ranks amongst the highest and thus worst values for all fair-
ness measures throughout all data sets and tasks.

For demographic parity, Fair HGR NN achieves on the
three datasets the best level of fairness assessed by HGR
estimation and FairQuant. It is also better in terms of
MSE, except on the Crime data set where the approach by
Mary2019 [Mary et al., 2019] 2 gets slightly better results but
with a very high volatility. This volatility can also be observed
on the Motor dataset. It can be attributed to the fact that these
two datasets are the smallest ones: the small amount of data
seems to make it difficult to estimate the chi-square by KDE.

For equalized residuals, Fair HGR NN achieves the lowest
values for the metric FairQuant for all three data sets (like for
demographic parity). The approach from Mary2019 [Mary et
al., 2019] 2 performs slightly worse. For MINE, except on
the UC Census data set, it achieves worse results in fairness
and accuracy. Globally, our neural approach Fair HGR NN,
appears to be very competitive in every setting.

6 Conclusion
We developed a new adversarial learning approach to pro-
duce fair continuous predictions with a continuous sensitive
attribute. We propose to mitigate a neural estimation of the
HGR correlation of the model outputs with the sensitive at-
tributes. This method proved to be very efficient for two fair-
ness objectives on various artificial and real-world data sets.

2https://github.com/criteo-research/continuous-fairness
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