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Abstract
Label enhancement (LE) is a procedure of recov-
ering the label distributions from the logical labels
in the multi-label data, the purpose of which is to
better represent and mine the label ambiguity prob-
lem through the form of label distribution. Exist-
ing LE work mainly concentrates on how to lever-
age the topological information of the feature space
and the correlation among the labels, and all are
based on single view data. In view of the fact that
there are many multi-view data in real-world appli-
cations, which can provide richer semantic infor-
mation from different perspectives, this paper first
presents a multi-view label enhancement problem
and proposes a tensor-based multi-view label en-
hancement method, named TMV-LE. Firstly, we
introduce the tensor factorization to get the com-
mon subspace which contains the high-order re-
lationships among different views. Secondly, we
use the common representation and multiple views
to jointly mine a more comprehensive topological
structure in the dataset. Finally, the topological
structure of the feature space is migrated to the la-
bel space to get the label distributions. Extensive
comparative studies validate that the performance
of multi-view multi-label learning can be improved
significantly with TMV-LE.

1 Introduction
Multi-label learning (MLL) can address the label ambiguity
problem by describing an instance with a set of labels. How-
ever, MLL cannot obtain the relative importance of each la-
bel to an instance, so Geng [2016] proposed a more general
machine learning paradigm called label distribution learning
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(LDL) to express the label intensities. In recent years, LDL
has made a great progress, but it is still limited by the lack
of datasets with label distributions, because 1) it is costly to
examine and weigh the description degree of each label to
a particular instance, and 2) the description degree of each
label to the instance often has no objective quantitative cri-
teria. Therefore, a new learning paradigm called label en-
hancement (LE) is proposed by Xu et al. [2018] to convert
multi-label datasets consisting of logical labels into label dis-
tribution datasets.

Existing LE work mainly concentrates on how to lever-
age the topological information of the feature space and the
correlation among the labels. However, all these studies are
based on single view data. In many real-world applications,
a lot of data exists in the form of multiple views. For ex-
ample, in image classification, a natural scene image can of-
ten be represented by its visual features such as HSV color
histogram, globe feature (Gist) and scale invariant feature
transform (SIFT), meanwhile it can be annotated with mul-
tiple labels {water, tree, sky}. These different descriptions of
the same object from different approaches or different per-
spectives constitute multiple views (multi-view) of the ob-
ject. Each individual view cannot characterize different la-
bels comprehensively since different views encode different
properties of data. In other words, there is consistency and
complementarity in multi-view data, which can provide more
comprehensive and richer information for label enhancement.
Hence, in this paper, we first present the multi-view label en-
hancement problem and propose a tensor-based multi-view
label enhancement method (TMV-LE) for multi-label classi-
fication.

The main challenge of multi-view label enhancement is
how to integrate the multiple types of heterogeneous infor-
mation. A natural way is to perform LE on each view sep-
arately, and dispose the obtained label distributions with de-
cision fusion. However, there is a lack of effective commu-
nication among different views in this way. Another smarter
way is mapping each view into a low-rank common repre-
sentation subspace which contains shared semantics. This
way enhances communication among different views, but the
method of linear mapping can only mine the low-order rela-
tionships in multi-view dataset, and cannot excavate the more
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complex high-order non-linear relationships. Therefore, it
is hard to ensure that common semantic information is fully
tapped. To solve the above problem, we not only reconstruct
each view individually through the mapping matrix and low-
rank common representation, but also mine shared informa-
tion from the integrated multi-views. Specifically, we stack
the isomorphically processed views to form a third-order ten-
sor, and construct the mutual constraints of the factor matri-
ces and the mapping matrices, which allows us to not only
ensure the rationality of local single views, but also take ad-
vantage of the complementarity of global multiple views. By
introducing the tensor, we can effectively enhance the poten-
tial communication among different views to obtain the more
complex relationship. Finally, we jointly use the common
representation and all original views to capture the more com-
prehensive topological structure in the dataset, then migrate
it to the label space to reconstruct the label distribution. Be-
cause of the lack of multi-view label distribution datasets, we
apply TMV-LE to multi-view multi-label classification tasks,
and compare our proposed method with several state-of-the-
art multi-view multi-label learning approaches.

The main contributions of this paper are as follows: 1) We
propose a novel label enhancement method TMV-LE, to our
best knowledge, it is the first try to study label enhancement
in the multi-view framework. 2) We propose a new method
for constructing multi-view common representation. By in-
troducing tensor factorization, the high-order relationships
among different views can be mined.

2 Related Work

2.1 Multi-View Multi-Label Learning

Multi-label learning has been widely studied in recent years.
Following [Zhang and Zhou, 2014], existing multi-label
methods can be categorized into two groups, i.e, problem
transformation methods and specialized algorithms. Problem
transformation methods aim to decompose the problem into
a series of binary classification problems. Such as Binary
Relevance [Boutell et al., 2004] and ML-kNN [Zhang and
Zhou, 2007]. Specialized algorithm methods tackle multi-
label learning problem by designing specialized algorithms
according to the characteristics of multi-label learning. Both
ML-KM [Elisseeff and Weston, 2001] and ML-CC [Read et
al., 2011] are specialized algorithms.

Multi-view learning can be embedded into multi-label
learning naturally to further improve the classification per-
formance by exploit a multi-view latent space [Zhou et al.,
2020]. Recently, a few MVML classification methods [Luo
et al., 2013] were proposed to exploit the complementarity of
different types of features for the improved classification per-
formance. Such as lrMMC [Liu et al., 2015] seeked a com-
mon low-dimensional representation under the matrix factor-
ization framework and then conducts classification based on
matrix completion. Zhang et al. [2018] tried to remain latent
semantic when studying the low-dimensional common repre-
sentation.

2.2 Label Enhancement
Label Enhancement (LE) aims at recovering the label distri-
butions from the logical labels in the training set. Many LE
algorithms have been proposed in recent years. Graph lapla-
cian label enhancement (GLLE) [Xu et al., 2018] mines the
hidden label importance from the training set via leveraging
the topological information of the feature space. The LE al-
gorithm based on label propagation (LP) [Li et al., 2015] re-
covers the label distributions from logical labels by using iter-
ative label propagation technique. And the fuzzy clustering-
based LE algorithm (FCM) [Gayar et al., 2006] uses mem-
bership degree to determine the degree of which cluster each
instance belongs to, and then converts it into the membership
of each label by fuzzy composition. To the best of our knowl-
edge, there are currently no related work reports on multi-
view label enhancement.

3 Notation and Background
We first introduce some related concepts and notations of ten-
sors used throughout of the paper. More details about tensor
algebra, please refer to [Kolda and Bader, 2009]. The order of
a tensor is the number of dimensions, also known as modes.
An M-th order tensor is represented as X ∈ RI1×···×IM ,
where IM is the cardinality of its IM-th mode.
Definition 1 (Rank-One Tensors). An M-way tensor X ∈
RI1×···×IM is rank-one if it can be written as the outer product
of M vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · ·a(M), (1)

the symbol “◦” represents the vector outer product. This
means that each element of the tensor is the product of the
corresponding vector elements:

xi1i2···iN = a
(1)
i1
a
(2)
i2
· · · a(M)

iM
1 ≤ in ≤ IM . (2)

Definition 2 (CP Factorization). Given an M-th order tensor
X ∈ RI1×···×IM , the CP factorization is defined by factor
matrices A(m) ∈ RIm×r for m = 1, 2, ...,M , respectively,
such that

X =

r∑
i=1

a
(1)
i ◦ a

(2)
i ◦ · · · ◦ a

(M)
i = [[A(1), A(2), ..., A(M)]],

(3)
where r is the rank of the tensor X , defined as the small-
est number of rank-one tensors in an exact CP factorization.
The factor matricesA(1), A(2), ..., A(M) can be viewed as the
common latent feature matrices in different modes.

4 Methodology
Given a multi-view dataset consisting of n instances with
V views that are denoted as a set of feature matrices X =
{X(v) ∈ Rn×dv}Vv=1, where dv is the dimension of the v-th
view. And the label space is Y = [y1, y2, ..., yn] ∈ {0, 1}n×l,
where l is the number of labels. We use both the matrix factor-
ization framework and CP factorization to decompose a low-
rank common representation matrix P from all views. Then,
we design the LE algorithm with the topological structure
from the common representation and all views. The whole
framework of TMV-LE is shown in Figure 1.
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Figure 1: The general flowchart of the proposed TMV-LE method. Firstly, TMV-LE jointly mines multi-view shared semantics representation
P through subspace mapping and tensor CP factorization. Secondly, TMV-LE mines the topological structure of feature space with the
common representation P and the original multi-view matrices. Finally, the topological structure and local label correlations are synergized
to obtain the label distribution.

4.1 Construct Common Representation
To find a low-rank common representation P , the traditional
distributed strategy is adopted to optimize the following prob-
lem [Liu et al., 2015; Zhang et al., 2018]:

min
P,{B(v)}

V∑
v=1

‖X(v) − PB(v)T ‖2F + ‖P‖tr, (4)

where P ∈ Rn×r is the low-rank common representation.
Since the rank of a matrix is difficult to optimize, the trace
norm ‖.‖tr is utilized as a convex approximation of the rank
of a matrix. B(v) ∈ Rdv×r is the mapping matrix of v-th
view. Each X(v) can be reconstructed using B(v) and P . But
in this framework, the mapping process of different views
is completely independent, which makes it difficult for the
common representations to obtain complete shared informa-
tion. So we introduce tensor to enhance the communication
between different views during the mapping process.

First, we need to construct an initial tensor. In order to
eliminate the heterogeneity between different views, that is,
the feature dimensions of different views are different. we
propose an isomorphism approach. Specifically, each view
is extended to a n × ds matrix, where ds =

∑V
v=1 dv , and

the expanded views are stacked to form a tensor X . Each
feature matrix is arranged diagonally in the third-order tensor.
And in the following method, we will replace the original
views with expanded views. This isomorphism approach can
do not only completely retain the information of all views,
but also reflect the sequence relationship between views. It
is worth mentioning that how to assign extended features on
each view will have a great impact on the entire model. A
simple way is to take 0, but this will cause the entire tensor
to be sparse, and assigning 0 to unknown data is also not a
realistic choice. So we introduce a tensor completion method.
A nonnegative weight tensorW , which has the same size as

X , is constructed as:

Wijk =

{
0, if Xijk is the extended feature,
1, otherwise.

(5)

We focus on using a weighted version of the error function to
ignore extended features and model the original views only.
As mentioned above, the CP factorization model is applied
to get the common factor matrices across all the views. The
weighted version is

min
P,B∗,H

‖W ◦ (X − [[P,B∗, H]])‖2F , (6)

where X ∈ Rn×ds×V , B∗ ∈ Rds×r and H ∈ RV×r, “◦”
is the Hadamard product, i.e. the elementwise matrix prod-
uct. Eq. (4) and Eq. (6) contain the same common repre-
sentation P to jointly mine shared semantic from multiple
views. As mentioned above, the tensor we constructed can
well reflect the sequence relationship among views, while the
factor matrix H is the combination of the rank-one compo-
nents on the axis of views’ sequence. So H needs to iden-
tify different views as an indicator matrix. In other words,
H should contain only the information that distinguishes dif-
ferent views but not the specific information about different
feature views. Therefore, we add the l2,1-regularization onH
to make it row-sparse.

According to [Kolda and Bader, 2009], CP factorization
can be written in the following matricized form:

X(1) ≈ P (H �B∗)T , (7)

where X(1) is the mode-1 matricization of X , � denotes
Khatri-Rao product. Meanwhile, according to Eq. (4), our
initial tensor also can be written as a representation consist-
ing of {P (B(v))T }Vv=1. H is the indicator matrix with no
feature information, so the difference between B∗ and each
mapping matrix B(v) should not be too large. At the same
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time, in order to better explore the complementarity between
different views, we learn a non-negative weight parameter θv
for each view v. The larger the weight θv , the more the v-th
view should ensure that the mapping matrix B(v) is similar
to B∗. After explaining all the factor matrices and applying
the corresponding constraints, the final objective function is
as follows:

min
P,B∗,H,

{B(v),θv}

V∑
v=1

θv‖X(v) − PB(v)‖2F

+ λ1‖W ◦ (X − [[P,B∗, H]])‖2F

+ λ2‖P‖tr + λ3

V∑
v=1

θv‖B∗ −B(v)T ‖2F + λ4‖H‖21,

s.t. θv ≥ 0,
∑

θv = 1

(8)
where λ1, λ2, λ3, λ4 are trade-off parameters. By optimizing
Eq. (8), we can obtain the low-rank common representation
P from multiple views, and then we use LE for multi-label
classification.

4.2 Label Enhancement
In LE, the information of the feature space and the logical la-
bel space are usually used to reconstruct the numerical labels
of each instance. Thus we assume that the feature space and
the label space are linearly related, and we get the following
loss terms:

min
W
‖D − Y ‖2F , (9)

where D = PW + b, P is the common representation ob-
tained in the above, D is the predicted label distributions, W
is the weight matrix, and b is a bias vector.

Considering that the common representation is a low-rank
space, we introduce Local Linear Embedding (LLE) [Tuia
et al., 2011] and the smoothness assumption [Zhang et al.,
2013] into our method. Specifically, each point can be recon-
structed by a linear combination of its neighbors, at the same
time, the numerical label space and the feature space should
share similar local topological structure. We use the com-
mon representation and multiple views to jointly mine a more
comprehensive topological structure in the dataset. The ap-
proximation of the topological structure of the feature space
can be obtained by solving the following problem:

min
M

n∑
i=1

(‖Pi −
∑
j 6=i

MijPj‖2F

+
∑
v

θv‖X(v)
i −

∑
j 6=i

MijX
(v)
j ‖

2
F )

s.t.
n∑
j=1

Mij = 1,

(10)

where Mij represents the weight of the relationship between
instance i and instance j, and Mij = 0 if Pj is not one of
Pi’s K-nearest neighbors.

∑n
i=1Mij is constrained because

of the translation invariance. θv is the parameter to measure

the complementarity between different views that was learned
in Eq. (8). In order to make the topological structure more
flexible, we use this weight parameter in Eq. (10). By solving
Eq. (10), we obtain the weight matrix M , and then migrate
the topological structure of the feature space to the label space
by using Eq. (11):

min
W
‖D −MD‖2F . (11)

In addition, considering there may be correlations among dif-
ferent labels, i.e., some labels often appear together while
some often conflict to each other, we introduce the label cor-
relations into our LE method.

In real-world applications, label correlations are usually lo-
cal, where a label correlation may be shared by only a subset
of instances rather than all instances. So we adopt a low-rank
structure to implicitly exploit the label correlations at the lo-
cal level [Jia et al., 2019]. The training set is divided into k
clusters and each cluster has a low-rank structure,

min
W

k∑
i=1

‖Di‖tr. (12)

Combining Eq. (9), Eq. (11) and Eq. (12), the LE framework
can be rewritten as:

min
W
‖D − Y ‖2F + α‖D −MD‖2F + β

k∑
i=1

‖Di‖tr, (13)

where α, β are trade-off parameters. In order to distinguish
the relevant and irrelevant labels, we add an extra virtual la-
bel in the training set, which represents the threshold of dis-
tinguishing the relevant and the irrelevant labels. Since 1 or
0 is used in multi-label data to indicate whether the label is
relevant to the example or not, we initialize the virtual label
to 0.5 and train the corresponding parameters for the virtual
label. At the prediction stage, given a test instance, the pre-
dicted numerical label greater than the predicted virtual label
is relevant to the example, and vice versa.

4.3 Optimization Framework
ADMM (Alternating Direction Method of Multipliers) [Boyd
et al., 2011] which is suitable for addressing those objective
functions with linear constraints, is proper for solving Eq. (8)
and Eq. (13).

Eq. (8) can be solved by the following alternative methods
in iteration t:

P t+1 = arg min
P t

V∑
v=1

θtv‖X(v) − P tB(v)t‖2F

+ λ1‖W1 ◦ (X(1) − P tCT )‖2F
+ < Λt1, P

t − Zt > +
ρ1
2
‖P t − Zt‖2F ,

(14)

B(v)t+1 = arg min
B(v)t

V∑
v=1

θtv‖X(v) − P t+1B(v)t‖2F

+ λ3

V∑
v=1

θtv‖B∗t −B(v)t‖2F ,

(15)
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B∗t+1 = arg min
B∗t

λ1‖W2 ◦ (X(2) −B∗tET )‖2F

+ λ3

V∑
v=1

θtv‖B∗t −B(v)t‖2F ,

(16)

Ht+1 = arg min
Ht

λ1‖W3 ◦ (X(3) −HtFT )‖2F

+ λ4‖Ht‖21,
(17)

θt+1 = arg min
θt

V∑
v=1

θtv‖X(v) − P t+1B(v)t+1‖2F

+ λ3

V∑
v=1

θtv‖B∗t+1 −B(v)t+1T ‖2F − q(
∑
v

θtv − 1),

(18)

Zt+1 = arg min
Zt

λ2‖Zt‖tr+ < Λt1, P
t+1 − Zt >

+
ρ1
2
‖P t+1 − Zt‖2F ,

(19)

Λt+1
1 = Λt1 + ρ1(P t+1 − Zt+1), (20)

whereC = H�B∗,E = H�P , F = B∗�P , Z = P ,Ws is
theW spread out on mode-s, Λ1 is the Lagrange multipliers,
q, ρ1 are penalty parameters and< ·, · > is the Frobenius dot-
product. Eq. (14), Eq. (15), Eq. (16), Eq. (17), and Eq. (18)
can be solved by the limited memory quasi-Newton method
(L-BFGS), due to the page limitation, we do not describe the
details of the solution of every sub-problem. Eq. (19) has
closed-form solution according to [Tibshirani, 1996], and can
be solved by the following Lemma 1:
Lemma 1 For matrix Y ∈ Rn×d and µ > 0, the problem as
follows has the only one analysis solution,

arg min
M∈Rn×d

µ‖M‖tr +
1

2
‖M − Y ‖2F .

This solution can be described by singular value thresholding
operator,

SV Tµ(Y ) = Udiag[(σ − µ)+]V T

(σ − µ)+ =

{
σ − µ σ > µ

0 otherwise,

U ∈ Rn×r, V ∈ Rd×r and σ = {σ1, σ2, · · · , σr} ∈ Rr×1
can be achieved by singular decomposition of matrix Y , Y =
UΣV T and Σ = diag(σ).

Eq. (13) can be solved by the following alternative meth-
ods in iteration t:

W t+1 = arg min
W t
‖Dt − Y ‖2F +

k∑
i=1

ρ2
2
‖D(i)t −Qt‖2F

+ λ1‖Dt −MDt‖2F +
k∑
i=1

< Λ
(i)t
2 , D(i)t −Q(i)t >,

(21)

Dataset Emotions Yeast Corel5k PASCAL VOC
#Instances 593 2417 4999 9963
#Views 2 2 3 3
#Features 8 / 64 24 / 79 100 / 512 / 1000 100 / 512 / 1000
#Labels 6 14 260 20

Table 1: Statistics of the four datasets.

Qt+1 = arg min
Qt

λ2

k∑
i=1

‖Q(i)t‖tr +
k∑
i=1

ρ2
2
‖D(i)t+1 −Qt‖2F

+
k∑
i=1

< Λ
(i)t
2 , D(i)t+1 −Q(i)t >,

(22)

Λ
(i)t+1
2 = Λ

(i)t
2 + ρ2(Dt+1 −Q(i)t+1), (23)

where Λ2 is the Lagrange multipliers, ρ2 is penalty parameter
and Q(i) = D(i). Eq. (21) can be solved by L-BFGS. Sim-
ilar to Eq. (19), we get the closed-form solution of Eq. (22)
according to Lemma 1.

5 Experiments
5.1 Datasets & Features
In this section, we implement our experiments on four real-
world MVML datasets. Yeast is a biological experiments
dataset, it has two views including the concatenation of the
genetic expression (79 attributes) and the phylogenetic pro-
file of a gene (24 attributes). Emotions is a music emotion
experiments dataset, it has two views including rhythmic (8
attributes) and timbre (64 attributes). Corel5k [Duygulu et al.,
2002] and PASCAL VOC [Everingham et al., 2010] are two
image recognition datasets. There are three types of features,
i.e., two types of local features: DenseHue and DenseSift and
one type of global features: Gist, where each type of features
can be regarded as one view. The dimensionalities of Dense-
Hue, DenseSift and Gist are 100, 1000 and 512, respectively.
Some basic statistics about these four datasets are given in
Table 1.

5.2 Comparing Algorithms & Evaluation Metrics
Since this is the first time to propose LE in the multi-view
framework, in order to verify the effectiveness of our pro-
posed method, we apply TMV-LE to multi-view multi-label
classification task, and compare with several existing multi-
view multi-label algorithms.

The TMV-LE algorithm is compared with five algorithms,
including three MVML algorithms lrMMC, LSA-MML and
F2L21F [Zhu et al., 2016], a multi-label algorithm ML-kNN
with two types of feature inputs. ML-kNN(C) means the
input to ML-KNN is the concatenation of all views, and
ML-kNN(B) means input is the view with best performance.
We use the suggested parameters reported in corresponding
literature. For ML-kNN(B) and ML-kNN(C), the parame-
ter k is set to 10. In F2L21F, the parameters λ1 and λ2
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Dataset Metric
MVML methods LE methods

TMV-LE ML-kNN(B) ML-kNN(C) LSA-MML F2L21F lrMMC MV-LE GLLE-C GLLE-L

Emotions

Ham-Loss↓ 0.158±0.006 0.200±0.016• 0.193±0.012• 0.284±0.019• 0.225±0.024• 0.262±0.020• 0.173±0.010• 0.221±0.012• 0.218±0.011•
Coverage↓ 0.286±0.021 0.303±0.021• 0.299±0.021 0.315±0.030• 0.301±0.024 0.338±0.030• 0.301±0.023 0.310±0.025• 0.302±0.020
Ave-Pre↑ 0.818±0.007 0.795±0.020• 0.799±0.032 0.779±0.040• 0.798±0.030 0.772±0.033• 0.799±0.013• 0.783±0.022• 0.792±0.019•

Micro-F1↑ 0.742±0.010 0.652±0.030• 0.668±0.026• 0.185±0.067• 0.651±0.038• 0.662±0.035• 0.672±0.018• 0.651±0.036• 0.662±0.033•

Yeast

Ham-Loss↓ 0.158±0.004 0.208±0.008• 0.195±0.009• 0.298±0.005• 0.315±0.012• 0.286±0.008• 0.184±0.006• 0.205±0.006• 0.192±0.004•
Coverage↓ 0.442±0.012 0.455±0.008• 0.450±0.012 0.623±0.011• 0.627±0.011• 0.625±0.014• 0.448±0.012 0.459±0.011• 0.455±0.013•
Ave-Pre↑ 0.812±0.006 0.753±0.009• 0.764±0.012• 0.611±0.013• 0.607±0.016• 0.608±0.013• 0.770±0.009• 0.743±0.012• 0.751±0.012•

Micro-F1↑ 0.739±0.007 0.608±0.013• 0.639±0.016• 0.035±0.008• 0.465±0.020 • 0.565±0.018• 0.651±0.010• 0.614±0.010• 0.626±0.011•

Corel5k

Ham-Loss↓ 0.012±0.000 0.012±0.000 0.012±0.000 0.013±0.000• 0.017±0.000• 0.014±0.001• 0.013±0.001 0.014±0.000• 0.014±0.000•
Coverage↓ 0.258±0.010 0.262±0.014 0.249±0.013 0.327±0.013• 0.559±0.020• 0.502±0.016• 0.262±0.011 0.267±0.012 0.265±0.011
Ave-Pre↑ 0.553±0.000 0.416±0.009• 0.441±0.010• 0.475±0.014• 0.314±0.013• 0.452±0.013• 0.464±0.005• 0.439±0.009• 0.446±0.008•

Micro-F1↑ 0.356±0.004 0.226±0.013• 0.259±0.011• 0.146±0.014• 0.278±0.014• 0.205±0.014• 0.276±0.008• 0.246±0.012• 0.258±0.014•

PASCAL

Ham-Loss↓ 0.067±0.001 0.055±0.001◦ 0.064±0.002◦ 0.064±0.001◦ 0.091±0.004• 0.069±0.001• 0.070±0.001• 0.071±0.001• 0.069±0.001•
Coverage↓ 0.193±0.011 0.222±0.006• 0.233±0.008• 0.202±0.010 0.240±0.022• 0.256±0.013• 0.219±0.008• 0.230±0.007• 0.227±0.009•
Ave-Pre↑ 0.738±0.011 0.658±0.011• 0.571±0.009• 0.690±0.012• 0.644±0.019• 0.563±0.002• 0.684±0.009• 0.624±0.010• 0.639±0.012•

Micro-F1↑ 0.482±0.012 0.447±0.019• 0.327±0.019• 0.259±0.013• 0.471±0.017 0.251±0.017• 0.462±0.013• 0.404±0.015• 0.422±0.014•

Table 2: Comparison results on all datasets are shown as “mean±std”. The best results on each row are highlighted. The two-tailed t-tests
are performed at the 5% significance level. •/◦ indicates whether TMV-LE is statistically superior/inferior to the comparing algorithms.

are both set 10. For LSA-MML, the parameter r is cho-
sen among {2, 3, 4, 5}, the parameters α and β are chosen
among {0.01, 0.1, 1, 10, 100}. In lrMMC, the parameter µ
is determined as in MC-1, and the parameter γ is tuned
over the set {10i|i = −4,−3, ..., 3}. For TMV-LE, the
parameters {λi|i = 1, 2, 3, 4}, α and β are chosen among
{0.01, 0.1, 1, 10, 100}, the parameter k is set to 10. And the
clustering method used in TMV-LE is spectral clustering.

In addition, we select three comparing algorithms to distin-
guish the different roles of tensor factorization and LE frame-
work. In order to verify that our method of constructing the
common representation has an effect on the experimental re-
sults, in MV-LE, we adopt the method of constructing the
common representation in Eq. (4), and then use our proposed
LE method to perform label enhancement and classification.
We also modify a popular LE method GLLE to adapt the
multi-view datasets, named GLLE-C and GLLE-L, respec-
tively. In GLLE-C, we use the concatenation of all views as
the input. In GLLE-L, we make a decision fusion of the re-
sults on different views. Specifically, we add the weights of
different views during the training process, and finally use
the weights to fuse multiple results. For GLLE, the parame-
ter λ is chosen among {0.01, 0.1, ..., 100}, and the number of
neighbors K is set to c + 1, c is the number of labels. The
kernel function in GLLE is Gaussian kernel.

Due to page limitation, we just choose four evalua-
tion metrics that mostly used for multi-label classification,
including Hamming Loss(Ham-Loss), Coverage, Average
Precision(Ave-Pre) and Micro-F1, which consider the perfor-
mance of multi-label predictor from various aspects. The for-
mer 2 measures are smaller the better and the latter 2 mea-
sures are larger the better. For each dataset, ten-fold cross-
validation is performed where the mean results and standard
deviations are recorded for all comparing algorithms.

5.3 Experimental Results
Comparison with MVML methods. Table 2 demonstrates
the classification comparison of different methods on four

datasets. The two-tailed t-tests at the 5% significance level
are performed. By analyzing the experimental results, we
can obtain the following two conclusions: 1) Among the 16
configurations (4 datasets × 4 evaluation metrics), TMV-LE
ranks 1st in 81.3% cases respectively. In a big picture, our al-
gorithm almost achieves the best performance on all datasets,
which clearly demonstrates the advantages of our method in
exploring MVML data. 2) It is clear that for the traditional
single-view multi-label method, the performance of the view
concatenating strategy is always better than the best single
view. This verifies the effectiveness of multi-view learning
compared to single-view learning, as the complementarity
among different views is very important.

Comparison with LE methods. From Table 2, we can
draw the following conclusions: 1) The tensor-based com-
mon representation construction method we proposed is ef-
fective, because compared with MV-LE, TMV-LE achieves a
significantly better result, while both TMV-LE and MV-LE
applied the same LE method; 2) The LE method we proposed
is effective, because MV-LE is better than most MVML meth-
ods, and MV-LE only uses a very simple method to construct
a common representation. 3) Both GLLE-C and GLLE-L
adopt the multi-view datasets, however, their results are al-
most all worse than that of TMV-LE and MV-LE, which also
indicates the effectiveness of our proposal.

6 Conclusions
In this paper, we first propose a novel two-stage multi-view
label enhancement algorithm TMV-LE. By constructing the
mutual constraint between tensor factorization and mapping
matrices, we mine the high-order relationships among multi-
ple views. Then, we use multiple views to more comprehen-
sively mine the topological structure in the feature space and
migrate it to the label space to obtain the label distribution.
The experimental results on several datasets demonstrate the
superiority of TMV-LE on multi-view multi-label tasks.
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