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Abstract
Label distribution learning has attracted more and
more attention in view of its more generalized abil-
ity to express the label ambiguity. However, it is
much more expensive to obtain the label distribu-
tion information of the data rather than the logi-
cal labels. Thus, label enhancement is proposed
to recover the label distributions from the logical
labels. In this paper, we propose a novel label
enhancement method by using privileged informa-
tion. We first apply a multi-label learning model
to implicitly capture the complex structural infor-
mation between instances and generate the privi-
leged information. Second, we adopt LUPI (learn-
ing with privileged information) paradigm to utilize
the privileged information and employ RSVM+ as
the prediction model. Finally, comparison experi-
ments on 12 datasets demonstrate that our proposal
can better fit the ground-truth label distributions.

1 Introduction
In recent years, the multi-label learning (MLL) framework
has been studied for fitting multi-semantic problems suc-
cessfully [Zhou and Zhang, 2017]. However, MLL can
not express the relative importance of each label (i.e., la-
bel importance) to an instance, that is a more general la-
bel ambiguity problem. It is worth noting that label distri-
bution learning (LDL) [Jia et al., 2018; Ren et al., 2019a;
Ren et al., 2019b; Jia et al., 2019a] has been an active re-
search area for the past few years due to its potential to ad-
dress the label ambiguity problem as well as successful ap-
plications in many real-world tasks [Ling and Geng, 2019;
Jia et al., 2019b]. In LDL, an instance x is assigned a real
number dyx to each possible label y, representing the degree
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to which y describes x. The LDL model has a stronger ex-
pression ability but also puts forward higher requirements for
the presentation of training data, resulting in a high cost for
labelling the datasets with distribution information. Fortu-
nately, we have many multi-label datasets containing simple
logical labels. To utilize existing mutli-label datasets, Xu et
al. [2018] proposed a learning paradigm called label enhance-
ment (LE), which aims to recover the hidden label distribu-
tion value from the logical labels of the datasets.

Label enhancement is to recover the label distributions
from the logical labels in the training set via leveraging the
topological information of the feature space and the correla-
tion among the labels. One recent attempt is the GLLE [Xu
et al., 2018] algorithm which uses a common measurement
method to construct a local similarity matrix based on the
manifold hypothesis and adds it to the model training as prior
knowledge. Another typical algorithm named ML [Hou et
al., 2016] assumes that each instance can be optimally re-
constructed by using a linear combination of its neighbors,
and according to the smoothness assumption, the topological
structure of the feature space can be transferred to the label
space local by local. In summary, how to mine and leverage
additional information is one of the key problems that label
enhancement concerns.

In this paper, we propose a privileged label enhancement
method with multi-label learning (PLEML). Firstly, we apply
a multi-label learning model to generate additional informa-
tion for LE, which has two advantages: one is that the multi-
label learning model itself can capture the mapping relation-
ship between the feature space and the label space, and the
predictions given on the instances imply the complex struc-
ture information of the data. Another one is that it is an
implicit way to leverage additional information, which can
avoid introducing noise by constructing structured informa-
tion manually and lose the structured information of the data
itself. Besides, in the multi-label learning procedure, we also
adopt the low-rank structure to implicitly exploit the correla-
tion of the labels. Secondly, inspired by [Vapnik and Vashist,
2009], we use LUPI (learning with privileged information)
paradigm to make reasonable use of additional information.
LUPI focuses on improving the learning with the auxiliary
information which is supplied by a teacher about instances at
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the training stage. Since this auxiliary information will not
be available at the test stage, it is referred to as privileged
information. Finally, we apply the RSVM+ model as the fi-
nal prediction model, which is a support vector machine dis-
criminative model implementing the LUPI paradigm. We also
compare our proposed method with existing LE methods on
12 real-world datasets. In summary, the major contributions
of this paper are:

1) We propose a novel privileged label enhancement
method with multi-label learning, named PLEML, which can
fully and accurately utilize the additional information to re-
cover label distributions from logical labels.

2) We apply the multi-label learning model to generate the
privileged information, which can implicitly capture the com-
plex structural information of the data itself.

3) We introduce the LUPI paradigm to make reasonable
use of the generated privileged information. To the best of
our knowledge, this is the first try of applying LUPI into the
field of LE.

The rest of this paper is organized as follows. Firstly, re-
lated works are briefly reviewed. Secondly, the technical de-
tails of the proposed approach is presented. Thirdly, the com-
parative experimental results on different tasks are reported.
Finally, we conclude this paper.

2 Related Work

The existing LE algorithms are mainly divided into two cate-
gories. The first category is fuzzy-based label enhancement,
which utilizes the idea of fuzzy mathematics, and uses meth-
ods such as fuzzy clustering, fuzzy operation, and nuclear
membership to dig out relevant information between labels
and convert logical labels into label distributions. For ex-
ample, the fuzzy clustering-based LE algorithm FCM [Ga-
yar et al., 2006] and kernel-based LE algorithm KM [Jiang
et al., 2006]. Another category is graph-based label enhance-
ment, which uses graph models to represent topological struc-
tures between instances, and enhances logical labels of an in-
stance to its corresponding label distribution by establishing
the relationship between instance correlations and label cor-
relations. Typical graph-based label enhancement methods
include label propagation-based LE algorithm (LP) [Li et al.,
2015], manifold learning-based LE algorithm (ML) [Hou et
al., 2016], and graph laplacian-based label enhancement al-
gorithm (GLLE) [Xu et al., 2018].

Learning Using Privileged Information (LUPI) was first
introduced by Vapnik and Vashist [2009], which assumes a
teacher-student learning scenario, where a teacher can pro-
vide descriptive information (privileged information) about
a course (primary data) to assist a student (model) to learn
through the guidance of similarity control and knowledge
transfer. And the privileged information stands for the in-
formation which is only available in the training stage but not
available in the testing stage. Besides classification [Yao et
al., 2019], privileged information has also been used for clus-
tering [Marcacini et al., 2014], hashing [Zhou et al., 2016],
and etc. This paper is the first work to use multi-label learning
to generate privileged information for label enhancement.

3 Proposed Method
3.1 Formulation of Label Enhancement
The main notations used in this paper are listed as follows.
Let X = {x1, x2, . . . , xn} ∈ Rn×d denote the feature space,
where n denotes the number of instances, d denotes the di-
mension of the feature. Y = {0, 1}c represents the complete
set of logical labels where c is the number of all possible la-
bels. For each instance xi ∈ X , the logical label vector of xi
is denoted by yi = {yi1, yi2, . . . , yic}, each element yik = 1
if the label yk is related to xi, otherwise yik = 0. The descrip-
tion degree of y to x is denoted by dyx, and the ground-truth la-
bel distribution of xi is denoted by di = {dy1xi

, dy2xi
, . . . , dycxi

}.
Given a training setM = {(xi, yi)|1 ≤ i ≤ n}, LE recov-

ers the label distribution d̂i of xi from the logical label vector
yi, convertingM to label distribution data D̂ = {(xi, di)|1 ≤
i ≤ n}, satisfying d̂ykxi

∈ [0, 1] and
∑c
k=1 d̂

yk
xi

= 1, making
the prediction label distribution D̄ as close as possible to the
the true label distribution D.

3.2 Privileged Information Learning
With the previous discussion, our goal is to get the prediction
value Y ∗ = [y∗1 , y

∗
2 , · · · , y∗n] by utilizing the complex struc-

ture information between instances implicitly through multi-
label learning, and add Y ∗ to the training of the label en-
hancement model as privileged information. Therefore, this
privileged information should have the following character-
istics: 1) Y ∗ is the instance’s prediction value, which is not
inherited from its original logical labels; 2) The generation
process of Y ∗ utilizes structural information transferred from
the instance feature space implicitly; 3) Y ∗ has a low-rank
property since the labels are related.

To solve this problem, we consider using a linear model for
prediction.

y∗ik = xiW̄k, (1)
here, we add an additional dimension with a constant value of
1 for each data xi(1 ≤ i ≤ n), so xi = [xi1, xi2, · · · , xid, 1].
The offset term b̄k has been expanded into W̄k, and W̄k =
[W̄1k, W̄2k, · · · , W̄dk, b̄k]T represents the weight parameters
of the linear model corresponding to the k-th label.

Accordingly, the goal of our method is to determine the
best parameter W̄ that can generate the privileged informa-
tion Y ∗ given the instance xi. Thus our goal becomes to find
the optimal model W̄ which minimizes:

W̄ = arg min
W̄

L(W̄ ) + λ1Ω(W̄ ) + λ2Z(W̄ ), (2)

where L is the loss function defined on the training data, Ω is
a regularizer to control the complexity of the output model, Z
is a regularizer to enforce the characteristic of label correla-
tions, and λ1 and λ2 are two parameters to balance the three
terms. Here, for easy computation, we use the square of the
Euclidean distance as the loss function defined by:

L(W̄ ) =
1

2
‖Y ∗ − Y ‖2F , (3)

where ‖ · ‖2F denotes the Frobenius norm of a matrix, Y ∗
and Y denote the predicted value and the logical value of the
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Figure 1: The framework of PLEML. The multi-label learning model captures the injective relationship between the feature space and the
label space. When predicting for the test instance, the prediction result implicitly uses the structural relationship between the instances, so
the prediction results Y ∗ can be used as a kind of privileged information, such as an Oracle teacher providing additional information in the
process of LE. Finally, we use the RSVM+ model for label enhancement, and use feature information and privileged information to obtain
the final label distribution value.

training set, respectively. For the second term of Eq. (2), we
simply implement it as follows:

Ω(W̄ ) = ‖W̄‖2F . (4)
The third term of Eq. (2) is employed to enforce the low-
rank structure of the predicted label value, which implicitly
exploits the label correlations. However, the rank of a matrix
is difficult to optimize, therefore, the trace norm ‖ · ‖tr is
utilized in this paper as a convex approximation of the rank
of a matrix. The trace norm ‖ · ‖tr is defined as the sum of
singular values, i.e., ‖ · ‖tr =

∑
i σi(·), where σi is the i-th

singular value of the matrix. Thus, the final term of Eq. (2)
based on low-rank label correlations is derived as follows:

Z(W̄ ) = ‖Y ∗‖tr. (5)
Formulating the multi-label problem into an optimization
framework over Eq. (3), Eq. (4) and Eq. (5), the following
optimization problem is obtained:

min
W̄

1

2
‖Y ∗ − Y ‖2F + λ1‖W̄‖2F + λ2‖Y ∗‖tr. (6)

If the best parameter W̄ is determined, the prediction value
of the test instance y∗i can be generated through Eq. (1). For
simplicity, we divide the datasets into 4/5 training set and 1/5
testing set. Therefore, after 5-fold cross-validation, we can
get the prediction value of each instance.

Eq. (6) can be optimized by using ADMM [Boyd et al.,
2011], thus, we first rewrite our objective into the following
equivalent form:

min
W̄ ,Z

1

2
‖Y ∗ − Y ‖2F + λ1‖W̄‖2F + λ2‖Z‖tr

s.t. Y ∗ − Z = 0.

(7)

The augmented Lagrangian function of Eq. (7) is:

min
W̄ ,Z,Λ

1

2
‖Y ∗ − Y ‖2F + λ1‖W̄‖2F + λ2‖Z‖tr

+ < Λ, Y ∗ − Z > +
ρ

2
‖Y ∗ − Z‖2F ,

(8)

where Λ is the Lagrange multiplier, ρ is the penalty parame-
ter, and < ·, · > is the Frobenius dot-product. The optimiza-
tion problem of Eq. (8) can be solved using the alternating
solution method.

W̄ t+1 = arg min
W̄

1

2
‖Y ∗ − Y ‖2F + λ1‖W̄‖2F + λ2‖Zt‖tr

+ < Λt, Y ∗ − Zt > +
ρ

2
‖Y ∗ − Zt‖2F ,

(9)

Zt+1 = arg min
Z
λ2‖Z‖tr+ < Λt, Y ∗t+1 − Z >

+
ρ

2
‖Y ∗t+1 − Z‖2F ,

(10)

Λt+1 = Λt + ρ(‖Y ∗t+1 − Zt+1‖2F ). (11)

L-BFGS [Yuan, 1991] can be applied to optimize Eq. (9),
and the closed-form solution of Eq. ( 10) can be solved by
the singular value thresholding (SVT) algorithm.

3.3 Label Enhancement using Privileged
Information

Following the first stage of privileged information learning,
the original datasets can be transformed into its essential
counterpart: D̃ = {(xi, y∗i , yi)|1 ≤ i ≤ n}, where xi rep-
resents available information, y∗i represents privileged infor-
mation, and yi represents logical label values, n represents
the number of instances. Here we use the LUPI (learning
with privileged information) paradigm to deal with the prob-
lem of label enhancement with privileged information. This
paradigm focuses on using privileged information about the
instances provided by the teacher during the training phase
to improve learning. In [Vapnik and Vashist, 2009], RSVM+
model based on the LUPI paradigm for regression is intro-
duced. The main idea of RSVM+ is to define a linear or non-
linear correction function in the privileged space, and use this
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Algorithm 1 The PLEML algorithm
Input: Feature matrix X ; logical label matrix Y .
Parameter: λ1, λ2, γ, C.
Output: The regression parameters matrix W .

1: Initialize Λ, Z, ρ and W̄ ;
2: solve W̄ in Eq. (8) using ADMM method;
3: obtain Y ∗ by the Eq. (1).
4: Initialize W,W ∗, W̄ ∗;
5: solve W in Eq. (12) using penalty function method;
6: return W .

correction function to estimate slack variables in support vec-
tor regression methods. Therefore, by converting it to the
LUPI paradigm based on RSVM+, we develop a novel label
enhancement model. The decision rule and correcting (slack)
function are defined as linear functions d̂ykxi

= xiWk+ bk and
ξi = y∗iW

∗
k + b∗k, ξ̂i = y∗i Ŵ

∗
k + b̂∗k , respectively. So the

objective function of PLEML can be expressed as:

min
θ

1

2

c∑
k=1

(‖Wk‖22 + γ(‖W ∗k ‖22 + ‖Ŵ ∗k ‖22))+

+ C

c∑
k=1

n∑
i=1

(y∗iW
∗
k ) + C

c∑
k=1

n∑
i=1

(y∗i Ŵ
∗
k )

s.t. xiWk − yik ≤ ε+ y∗iW
∗
k

yik − xiWk ≤ ε+ y∗i Ŵ
∗
k

y∗iW
∗
k ≥ 0

y∗i Ŵ
∗
k ≥ 0,

(12)

where θ = {Wk,W
∗
k , Ŵ

∗
k } are the parameters to be

optimized, and {γ,C} are the weighted coefficients. Par-
ticularly, we absorb the bias term to obtain a compact
variant of the original RSVM+, because it is turned out
to have a simpler form in the dual space and can be
solved more efficiently. Specifically, for each xi and
y∗i , an additional dimension with a constant value of
1 is added, so the Wk = {W1k,W2k, · · · ,Wdk, bk},
W ∗k = {W ∗1k,W ∗2k, · · · ,W ∗ck, b∗k} and Ŵ ∗k =

{Ŵ ∗1k, Ŵ ∗2k, · · · , Ŵ ∗ck, b̂∗k}.
Eq. (12) is an optimization problem with inequality con-

straints. Therefore, we can choose the penalty function
method to solve it [Sun and Yuan, 2006]. The basic idea
of the penalty function method is to use a penalty function
to convert a constraint problem into an unconstrained prob-
lem, and then use the unconstrained optimal method to solve
it. The framework of our PLEML is shown in Figure 1 and
the detailed algorithm of the proposed method is shown in
Algorithm 1.

4 Experiments
4.1 Datasets
There are 12 real-world label distribution datasets in
our experiments, including two facial expression datasets

No. Datasets #Instances #Features #Labels
1 SJAFFE 213 243 6
2 SBU 3DFE 2500 243 6
3 Yeast-spoem 2465 24 2
4 Yeast-spo5 2465 24 3
5 Yeast-dtt 2465 24 4
6 Yeast-cold 2645 24 4
7 Yeast-heat 2465 24 6
8 Yeast-spo 2465 24 6
9 Yeast-diau 2465 24 7
10 Yeast-elu 2465 24 14
11 Yeast-cdc 2465 24 15
12 Yeast-alpha 2465 24 18

Table 1: Statistics of the 12 datasets.

SJAFFE [Lyons et al., 1998] and SBU 3DFE [Yin et al.,
2006], ten biological experiments datasets Yeast [Eisen et al.,
1998]. Some basic statistics about these 12 datasets are given
in Table 1.

4.2 Evaluation Measures
To measure the distance or similairy between the recovered
label distributions and the ground-truth label distributions,
according to Geng’s suggestion [Geng, 2016], six LDL mea-
sures are adopted, i.e., Chebyshev distance (Cheb), Clark dis-
tance(Clark), Canberra metric (Canber), Kullback-Leibler di-
vergence (KL), Cosine coefficient (Cosine) and Intersection
similarity (Intersec). The former four are distance measures
and the last two are similarity measures. For Cheb, Clark,
Canberra and KL, the smaller the value, the better the gener-
alization performance. For Cosine and Intersec, the larger the
value, the better the performance.

4.3 Methodology
We implemented two groups of experiments. In the first
group, we use the same binarization method [Xu et al., 2018]
to generate the logical labels from the ground-truth label dis-
tributions for the regular-scale datasets. Then, we recover the
label distributions from the logical labels via the LE algo-
rithms. Finally, we compare the recovered label distributions
with the ground-truth label distributions. In the second group,
in order to further test the effectiveness of LDL after the LE
pre-process on the logical-labeled datasets, we first recover
the label distributions from the logical labels via the LE al-
gorithms and then use the recovered label distributions for
LDL training. We choose LDL-SCL [Zheng et al., 2018] as
the LDL algorithm in this experiment. Finally, the label dis-
tributions predicted by LDL-SCL on the recovered data are
compared with those predictions made on the original data
with ground-truth label distributions.

4.4 Experimental Setting
The performance of PLEML is compared against five label
enhancement learning algorithms, including FCM [Gayar et
al., 2006], KM [Jiang et al., 2006], LP [Li et al., 2015],
ML [Hou et al., 2016], and GLLE [Xu et al., 2018].

With the previous discussion, FCM, KM and LP are
fuzzy-based label enhancement, and ML, GLLE are graph-
based label enhancement. For the comparison algorithms,
parameter configurations suggested in corresponding litera-
tures are used, for GLLE, the parameter Λ is chosen among
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data algorithm SJAFFE SBU 3DEF Yeast-spoem Yeast-spo5 Yeast-dtt Yeast-cold Yeast-heat Yeast-spo Yeast-diau Yeast-elu Yeast-cdc Yeast-alpha

Cheb ↓

PLEML 0.0972 0.1209 0.0891 0.0921 0.0373 0.0540 0.0435 0.0603 0.0416 0.0165 0.0166 0.0137
GLLE 0.0906 0.1315 0.0891 0.1009 0.0407 0.0583 0.0449 0.0590 0.0503 0.0191 0.0185 0.0168
FCM 0.1341 0.1352 0.2354 0.1639 0.0942 0.1403 0.1566 0.1252 0.0865 0.0531 0.0309 0.0353
KM 0.2170 0.2368 0.4081 0.2764 0.2490 0.2470 0.1705 0.1747 0.1536 0.0758 0.0758 0.0616
LP 0.1071 0.1228 0.1633 0.1146 0.1286 0.1371 0.0863 0.0902 0.0989 0.0437 0.0415 0.0400
ML 0.2120 0.2341 0.4053 0.2746 0.2448 0.2432 0.1654 0.1715 0.1483 0.0721 0.0713 0.0568

Clark ↓

PLEML 0.4312 0.3640 0.1318 0.1855 0.1014 0.1465 0.1880 0.2559 0.2224 0.2043 0.2191 0.2124
GLLE 0.3081 0.3933 0.1321 0.1991 0.1112 0.1552 0.1949 0.2543 0.2816 0.2381 0.2540 0.2808
FCM 0.5121 0.4246 0.3812 0.3559 0.3053 0.4092 0.5097 0.4429 0.6660 0.6177 0.6342 0.8742
KM 1.8740 1.9062 1.0283 1.0590 1.4763 1.4714 1.8021 1.8110 1.8856 2.7673 2.8849 3.1521
LP 0.5050 0.5810 0.2718 0.2741 0.1286 0.2864 0.5683 0.5585 0.7879 0.9735 1.0143 1.1864
ML 1.8444 1.8761 1.0150 1.0469 1.4603 1.4546 1.7820 1.7882 1.8636 2.7377 2.8531 3.1175

Canber ↓

PLEML 0.8937 0.7801 0.1837 0.2849 0.1741 0.2528 0.3741 0.5284 0.4778 0.6014 0.6546 0.6879
GLLE 0.6267 0.8409 0.1840 0.3100 0.1919 0.2679 0.3920 0.5269 0.6411 0.7171 0.7818 0.9202
FCM 1.0706 0.9051 0.5169 0.5312 0.5226 0.7010 1.0603 0.9043 1.4674 1.9762 2.2488 2.6927
KM 4.0083 4.1209 1.2529 1.3820 2.5961 2.5674 3.8514 3.8548 4.2576 9.1129 9.8760 11.8116
LP 1.0708 1.2463 0.3655 0.4013 0.9434 0.5297 1.2939 1.2341 1.7490 3.3835 3.6460 4.5494
ML 0.7839 4.0593 1.2382 1.3680 2.5714 2.5415 3.8141 3.8116 4.2192 9.0292 9.7836 11.7027

KL ↓

PLEML 0.0658 0.0644 0.0272 0.0299 0.0066 0.0135 0.0134 0.0271 0.0159 0.0065 0.0073 0.0056
GLLE 0.0382 0.0730 0.0280 0.0345 0.0079 0.0148 0.0146 0.0269 0.0242 0.0088 0.0095 0.0090
FCM 0.1060 0.0811 0.2089 0.1169 0.0571 0.1003 0.1345 0.0980 0.1608 0.0773 0.0989 0.1128
KM 0.5613 0.6034 0.5318 0.3350 0.6166 0.5861 0.5865 0.5636 0.5399 0.6201 0.6341 0.6340
LP 0.0776 0.1054 0.0672 0.0427 0.1041 0.1035 0.0891 0.0846 0.1274 0.1094 0.1115 0.0492
ML 0.5398 0.5820 0.5148 0.3245 0.5986 0.5682 0.5689 0.5452 0.5211 0.6017 0.6146 0.6145

Cosine ↑

PLEML 0.9477 0.9361 0.9768 0.9736 0.9937 0.9873 0.9872 0.9747 0.9853 0.9938 0.9930 0.9945
GLLE 0.9613 0.9212 0.9777 0.9698 0.9926 0.9859 0.9863 0.9758 0.9775 0.9914 0.9912 0.9912
FCM 0.9022 0.9148 0.8815 0.9193 0.9569 0.9234 0.8893 0.9132 0.9225 0.9329 0.9410 0.9507
KM 0.8261 0.8130 0.8123 0.8816 0.7600 0.7803 0.7801 0.7995 0.7982 0.7590 0.7543 0.7518
LP 0.9410 0.9220 0.9503 0.9686 0.7855 0.9660 0.9323 0.9386 0.9146 0.9176 0.9158 0.9108
ML 0.8282 0.8139 0.8138 0.8828 0.7619 0.7822 0.7819 0.8015 0.8018 0.7613 0.7570 0.7546

Intersec ↑

PLEML 0.8581 0.8587 0.9109 0.9079 0.9570 0.9736 0.9385 0.9129 0.9334 0.9576 0.9569 0.9620
GLLE 0.8926 0.8472 0.9109 0.8991 0.9527 0.9332 0.9356 0.9133 0.9099 0.9489 0.9484 0.9496
FCM 0.8161 0.8361 0.7647 0.8361 0.8802 0.8355 0.8185 0.8437 0.8223 0.8590 0.8600 0.8752
KM 0.5927 0.5793 0.5919 0.7236 0.5411 0.5595 0.5591 0.5749 0.5883 0.5395 0.5327 0.5323
LP 0.8361 0.8096 0.8367 0.8855 0.9210 0.8756 0.8048 0.8184 0.7875 0.7814 0.7791 0.7733
ML 0.5961 0.5832 0.5947 0.7254 0.5437 0.5622 0.5617 0.5776 0.5902 0.5421 0.5534 0.5350

Table 2: Comparison results of label enhancement methods on real-world datasets. The best performance on each measure is marked in bold.

data Ground-truth PLEML GLLE FCM KM LP ML
SJAFFE 0.0968±0.0069 0.1205±0.0063 0.1229±0.0084 0.1229±0.0081 0.1225±0.0084 0.1189±0.0083 0.1193±0.0081

SBU 3DFE 0.1235±0.0016 0.1291±0.0016 0.1389±0.0016 0.1382±0.0016 0.1375±0.0015 0.1376±0.0016 0.1374±0.0016
Yeast-spoem 0.0886±0.0036 0.0903±0.0036 0.0908±0.0035 0.0916±0.0045 0.0990±0.0015 0.0912±0.0035 0.0904±0.0040
Yeast-spo5 0.0921±0.0019 0.0930±0.0022 0.1014±0.0025 0.1229±0.0021 0.1107±0.0009 0.0963±0.0024 0.1010±0.0028
Yeast-dtt 0.0361±0.0009 0.0373±0.0006 0.0405±0.0005 0.0641±0.0014 0.0790±0.0006 0.0416±0.0016 0.0566±0.0034

Yeast-cold 0.0510±0.0009 0.0541±0.0011 0.0582±0.0009 0.0846±0.0007 0.0835±0.00012 0.0897±0.0009 0.0941±0.0042
Yeast-heat 0.0421±0.0006 0.0435±0.0006 0.0436±0.0007 0.0553±0.0017 0.0689±0.0004 0.0491±0.0007 0.0511±0.0025
Yeast-spo 0.0585±0.0010 0.0603±0.0013 0.0590±0.0010 0.0867±0.0015 0.0684±0.0013 0.0665±0.0012 0.0692±0.0032
Yeast-diau 0.0371±0.0006 0.0416±0.0006 0.0502±0.0004 0.0494±0.0006 0.0689±0.0004 0.0712±0.0004 0.0863±0.0012
Yeast-elu 0.0164±0.0001 0.0166±0.0002 0.0191±0.0001 0.0262±0.0003 0.0249±0.0001 0.0266±0.0002 0.0283±0.0004
Yeast-cdc 0.0161±0.0003 0.0165±0.0003 0.0182±0.0002 0.0248±0.0001 0.0249±0.0001 0.0252±0.0001 0.0267±0.0006

Yeast-aplha 0.0135±0.0002 0.0137±0.0002 0.0168±0.0002 0.0248±0.0001 0.0249±0.0001 0.0252±0.0001 0.0308±0.0007

Table 3: Comparison of the LDL after the LE pre-process against the direct LDL measured by Cheb ↓. The best results on each row are
highlighted in boldface.
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data Ground-truth PLEML GLLE FCM KM LP ML
SJAFFE 0.8514±0.0070 0.8369±0.0063 0.8442±0.0010 0.8256±0.0069 0.8283±0.0076 0.8332±0.0073 0.8327±0.0070

SBU 3DFE 0.8541±0.0011 0.8508±0.0016 0.8442±0.0010 0.8406±0.0012 0.8483±0.0017 0.8409±0.0014 0.8472±0.0017
Yeast-spoem 0.9114±0.0036 0.9097±0.0036 0.9092±0.0035 0.9085±0.0045 0.9046±0.0010 0.9019±0.0036 0.9090±0.0008
Yeast-spo5 0.9079±0.0019 0.9070±0.0022 0.8986±0.0025 0.8771±0.0021 0.8893±0.0009 0.9037±0.0025 0.8990±0.0028
Yeast-dtt 0.9583±0.0009 0.9570±0.0006 0.9528±0.0012 0.9232±0.0017 0.8668±0.0006 0.9512±0.0019 0.9329±0.0010

Yeast-cold 0.9410±0.0009 0.9378±0.0011 0.9333±0.0009 0.8889±0.0039 0.8704±0.0007 0.9326±0.0014 0.8975±0.0038
Yeast-heat 0.9405±0.0006 0.9387±0.0006 0.9384±0.0007 0.8744±0.0026 0.8650±0.0008 0.9378±0.0008 0.9287±0.0029
Yeast-spo 0.9153±0.0010 0.9131±0.0013 0.9129±0.0010 0.8787±0.0024 0.9127±0.0013 0.9120±0.0015 0.8918±0.0053
Yeast-diau 0.9404±0.0006 0.9335±0.0006 0.9098±0.0004 0.8811±0.0013 0.8898±0.0005 0.9156±0.0012 0.8371±0.0027
Yeast-elu 0.9587±0.0001 0.9575±0.0002 0.9491±0.0001 0.9084±0.0019 0.8670±0.0006 0.9479±0.0009 0.9198±0.0017
Yeast-cdc 0.9579±0.0003 0.9575±0.0003 0.9491±0.0002 0.8837±0.0026 0.8656±0.0003 0.9486±0.0014 0.9180±0.0027

Yeast-aplha 0.9624±0.0002 0.9620±0.0002 0.9500±0.0002 0.8794±0.0019 0.8666±0.0002 0.9127±0.0014 0.9124±0.0030

Table 4: Comparison of the LDL after the LE pre-process against the direct LDL measured by Cosine ↑. The best results on each row are
highlighted in boldface.

data Measurements PLEML random PI

Yeast-cdc
Cheb ↓ 0.0166 0.0172

Canber ↓ 0.6546 0.6803
Cosine ↑ 0.9930 0.9925

Yeast-diau
Cheb ↓ 0.0416 0.0455

Canber ↓ 0.4778 0.5317
Cosine ↑ 0.9853 0.9824

SJAFFE
Cheb ↓ 0.0972 0.1001

Canber ↓ 0.8937 0.8598
Cosine ↓ 0.9477 0.9456

SBU 3DFE
Cheb ↓ 0.1209 0.1364

Canber ↓ 0.7801 0.8772
Cosine ↑ 0.9361 0.9203

Table 5: The comparison of PLEML and random privileged infor-
mation.

{10−2, 10−1, · · · , 102} and the number of neighbors k is set
to c+1. The kernel function in GLLE is Gaussian kernel. The
parameter α in LP is set to 0.5. The number of neighbors k
for ML is set to c+1. The parameter β in FCM is set to 2.
The kernel function in KM is Gaussian kernel. For PLEML,
the values of the parameters λ1 and λ2 are selected among
{2−4, 2−3, · · · , 28}, and γ = 0.1, C = 0.1. For LDL-SCL
algorithm, the parameters are set to λ1 = 0.001, λ2 = 0.001,
and m = 5.

It is worth mentioning that, for the first group of exper-
iments, it is not necessary to divide the dataset into training
set and testing set because LE is a kind of unsupervised learn-
ing procedure. Therefore, we can directly apply the privilege
information to the whole data. For the second group of ex-
periments, 10 times 10 fold cross-validation is employed for
each dataset and the average results are recorded.

4.5 Experimental Results
The experimental result of the first group is summarized in
Table 2. For the second group of experiments, due to page
limitation and refer to [Xu et al., 2018], we only show the
effect on the two evaluation measures of Chebyshev and Co-
sine in Table 3 and Table 4, respectively. The results of other
measures are similar.

From Table 2, we can see that PLEML significantly outper-
forms FCM, ML, LP, KM on the most measures. Compared
with the GLLE algorithm, PLEML performs slightly worse
on the SJAFFE and Yeast-spo datasets on all the measures,
and performed slightly worse on the Yeast-spoem dataset in
terms of Cosine. However, in other cases, the PLEML al-
gorithm is better than the GLLE algorithm. From Table 3

and Table 4, we can find that the PLEML algorithm signifi-
cantly outperforms other comparison algorithms in terms of
Cheb and Cosine. Therefore, we can obtain the following
three conclusions: 1) The specialized LE algorithms gener-
ally perform better than those algorithms obtained from algo-
rithm adaptation; 2) The predicted label distribution obtained
by PLEML fits best with the ground-true label distribution;
3) The LDL model trained with the label distribution dataset
obtained by PLEML has the best performance. In summary,
the proposed PLEML algorithm has obvious advantages over
other well-established label enhancement algorithms.

4.6 Validation

In order to verify that the privileged information obtained
through multi-label learning can effectively improve model
performance. We conducted an experiment using random val-
ues in the range (0, 1) as privileged information combined
with the RSVM+ model. The comparison results are shown
in Table 5, and “random PI” indicates that only random val-
ues in the range (0, 1) are used as the privilege information to
learn. From the comparison results of the two experiments,
the privileged information obtained through multi-label learn-
ing can significantly improve the performance of the label en-
hancement model. However, the result of PLEML is slightly
worse than “random PI” on the dataset SJAFFE in terms of
Canberra, because the number of instances is 213, which is
relatively small. This may cause the multi-label model to not
fully capture the mapping relationship between features and
labels, and the resulting privileged information will be inac-
curate.

5 Conclusion
In this paper, we studied LE problem and proposed a novel
PLEML method by using privileged information, which
mainly solves the problem of how to fully and accurately use
additional information to enhance model performance in la-
bel enhancement. Different from existing methods, PLEML
utilizes complex structure information to generate additional
information through a multi-label model. RSVM+ based on
LUPI paradigm is first introduced to LE problem to utilize the
privileged information. The experimental results on several
real-world datasets demonstrate the effectiveness of PLEML.
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