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Abstract
Traditional anomaly detectors examine a single
view of instances and cannot discover multi-view
anomalies, i.e., instances that exhibit inconsis-
tent behaviors across different views. To tackle
the problem, several multi-view anomaly detectors
have been developed recently, but they are all trans-
ductive and unsupervised thus may suffer some
challenges. In this paper, we propose a novel induc-
tive semi-supervised Bayesian multi-view anomaly
detector. Specifically, we first present a genera-
tive model for normal data. Then, we build a hi-
erarchical Bayesian model, by first assigning pri-
ors to all parameters and latent variables, and then
assigning priors over the priors. Finally, we em-
ploy variational inference to approximate the poste-
rior of the model and evaluate anomalous scores of
multi-view instances. In the experiment, we show
the proposed Bayesian detector consistently out-
performs state-of-the-art counterparts across sev-
eral public data sets and three well-known types of
multi-view anomalies. In theory, we prove the in-
ferred Bayesian estimator is consistent and derive
a proximate sample complexity for the proposed
anomaly detector.

1 Introduction
Anomaly Detection (AD) is a fundamental task with broad
applications, such as in clinical diagnosis, fraud transaction
detection and cybersecurity [Chandola et al., 2009]. Tradi-
tional detectors only examine a single view1 of instances and
cannot discover multi-view anomalies, i.e., instances that ex-
hibit inconsistent behaviors across different views. One ex-
ample is in web image analysis, an image can be described its
category such as car or animal (view 1) and its web page such
as cars.com or animals.com (view 2). If an image is assigned
to the animal group in view 1 but car group in view 2, then it is
natural to consider this image anomalous [Marcos Alvarez et
al., 2013]. Other examples can be found in digit recognition

1A view is a set of features that often have similar semantics, e.g.,
a webpage can be described by one view of its content and another
view of its hyperlinks [Xu et al., 2013].

[Li et al., 2018b] and movie recommendation on MovieLens
dataset [Gao et al., 2011]. How to effectively leverage mul-
tiple views to detect anomaly is an interesting and significant
topic, often referred to as multi-view anomaly detection.

In the literature, a number of multi-view anomaly detectors
have been developed. Some of them try to find samples that
have inconsistent cross-view cluster membership. HOrizon-
tal Anomaly Detection (HOAD) [Gao et al., 2011] pioneers
this branch of methods. In HOAD, the author first constructs
a combined similarity graph based on the similarity matrices,
and computes the key eigenvectors of the graph Laplacian
of the combined matrix. Then anomalies are identified by
computing cosine distance between the components of these
eigenvectors. This idea is further studied by [Marcos Alvarez
et al., 2013] and [Liu and Lam, 2012] for different applica-
tion tasks. Another successful group of methods is developed
from a perspective of data representation [Li et al., 2015;
Zhao and Fu, 2015; Li et al., 2018a]. The intuition in these
works is that a normal sample usually serves as a good con-
tributor in representing the other normal samples while the
outliers do not. Low-rank matrix recovery is the technique
which can exploit the intrinsic structure of data and explore
the representation relationship of samples. Therefore, by cal-
culating the representation coefficients in low-rank matrix re-
covery, the multi-view outliers can be identified. In addition,
[Iwata and Yamada, 2016] utilizes a sophisticated statistical
machine learning algorithm to detect anomalies. They design
a probabilistic latent variable model to infer the consistent or
inconsistent characteristics of multiple views for each object.

We note that above detection methods are unsupervised
and transductive. In some applications, however, one can of-
ten get plenty of labeled normal data (e.g., one can collect
or simulate normal network traffic data for a certain period
of time). In these cases, it is natural to hypothesize these
data will enable the detector to better capture normal behav-
ior than unlabeled data. In addition, when an unseen testing
instance arrives, above methods have to add it to the existing
training set and rerun the detection algorithm (e.g., clustering
or matrix factorization), which often causes inefficiency.

To lift above limitations, in this paper we propose a novel
Bayesian model for semi-supervised multi-view anomaly de-
tection. To be specific, we first present a generative model
for normal data, assuming that different views of a normal
instance are generated from a single latent factor through
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Figure 1: Illustration of three types of outliers in multi-view setting.

different projection matrices; and the views are indepen-
dent conditioned on the factor [Blum and Mitchell, 1998;
Dasgupta et al., 2002]. Then we build a hierarchical Bayesian
model, by first assigning priors on model parameters and then
assigning priors over the priors. In particular, we assign the
automatic relevance determination (ARD) prior [Neal, 2012]
on the projection matrices to sparsify their columns for au-
tomatically determining the dimension of latent factor; we
also place Student’s t distributions on the latent factor prior
and the likelihood to improve robustness of the estimator [Ar-
chambeau et al., 2006; Gai et al., 2008]. Finally, we employ
variational inference to derive an analytical approximation to
the posterior probability (of unobserved variables and param-
eters) of model. To detect multi-view anomalies, we propose
to measure the outlier score by calculating the value of log
marginal distribution of multiple observed views.

The contributions of this paper are summarized as: 1) To
the best of our knowledge, this paper is the first attempt to de-
tect multi-view outliers under semi-supervised scenario via a
Bayesian model of inductive learning. 2) In theory, we proves
the proposed estimator approaches the true model at a rate
of O

(∑
v d

vm0 log(
∑
v d

vN)

N

)
, and under mild conditions we

derive a first sample complexity of O
(

1
ε2γ2

(
V 2 lnV +ln 1

δ

))
for a multi-view anomaly detector to achieve detection rate ε.
3) we experimentally evaluates the proposed method on both
synthetic and real-life multi-view data. The competing results
demonstrate the effectiveness of our model.

The rest of this paper is organized as follows. In Section
II, we introduce basic notations; in Section III, we present the
proposed Bayesian multi-view anomaly detection model; in
Section IV, we theoretically analyze the model; in Section V,
we show experimental results and discussions; in Section VI,
we conclude the study.

2 Preliminaries and Problem Setup
Before going further, we explain some preliminary knowl-
edge and notational conventions used throughout the paper.

To clarify, in anomaly detection applications, the term
semi-supervised detection has been widely used to describe
the scenario in which AD methods only incorporate the use of
labeled normal samples to learn a model that compactly char-
acterizes the “normal” class [Chalapathy and Chawla, 2019;
Akcay et al., 2018; Chandola et al., 2009; Blanchard et al.,

2010; Muñoz-Marı́ et al., 2010; Song et al., 2017]. However,
there are a few works [Das et al., 2016; Siddiqui et al., 2018;
Görnitz et al., 2013] having investigated the general semi-
supervised setting where one also utilizes unlabelled data. In
this work, we stick to the first AD setting.

Following the definition used in [Li et al., 2018a], there
are three kinds of outliers in multi-view setting. As shown
in Figure 1, Class-outlier is an outlier that exhibits inconsis-
tent characteristics (e.g. cluster membership) across different
views. Attribute-outlier is an outlier that exhibits consistent
abnormal behaviours in each view. Class-Attribute-outlier is
an outlier that exhibits class outlier characteristics in some
views while shows attribute outlier properties in the other
views. Suppose we are given a data set D which consists
of N instances, denoted by n = 1, 2, ..., N , described by V
views with each view v = 1, 2, ..., V . The feature represen-
tation of instance n under view v is xvn ∈ Rdv , where dv is
the dimensionality of view v. Xv =[xv1,x

v
2, ...,x

v
N ]∈Rdv×N

is sample set observed in view v. In this way, the whole data
set is denoted as D = {X1,X2, ...,XV }. Then, the multi-
view anomaly detector computes an anomaly score for each
instance and compares it to a threshold τ̂ζ for finding the out-
lier in multi-view setting.

3 Bayesian Muli-View Anomaly Detector
In this section, we illustrate the proposed probabilistic model
together with its estimation and the outlier score calculation.

3.1 Generative Process
To link the multiple views x1,x2, ..., and xV together, we in-
troduce a common latent variable z. The intuition here is that:
generally, an normal instance can be sufficiently described by
a single view for learning tasks. Therefore, it is reasonable to
suppose that these different views share some common fea-
tures or latent structure, then the problem is how to build a
framework to learn these common structure or the correspon-
dence between observed views and the unobserved space.
To explore it, we proposed a probabilistic model which de-
scribes the generative process of multi-view instances whose
views are linked via a single, reduced-dimensionality latent
variable space. Specifically, We assume x1,x2, ..., and xV

are generated from z by first choosing a value for the latent
variable z and then sampling observed variables conditioned
on this latent value. The d1, d2, ..., dV -dimensional observed
vectors x1

n,x
2
n, ...,x

V
n are defined by a linear transformation

governed by the matrix Wv ∈ Rdv×m of the latent vector
z ∈ Rm plus a projection noise εv ∈ Rdv , so that

xvn = Wvzn + µv + εv v = 1, 2, ..., V (1)

where µv ∈ Rdv is the data offset.

3.2 Model Specification
In the following, we introduce the probabilistic formulation,
assign prior distribution on latent variables and parameters
in Eq. (1), and assign priors on the priors. Specifically, we
define Student’s-t prior distribution over the latent variable z

z ∼ S(z | 0, Im, ν) =

∫ +

0

p(z|u)p(u)du (2)
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Figure 2: The proposed hierarchical Bayesian model for a data set
of N observations (For the concision of graph, here we omit the
dependence of xv

n on Wv,Ψv,µv).

In Eq. (2), we adopt Student’s-t distribution’s equivalent form
according to [Liu and Rubin, 1995; Archambeau et al., 2006].
u > 0 is a latent scale variable. Its Gamma prior p(u) and the
associated Gaussian condition p(z|u) are defined as:

u ∼ G
(
u | ν

2
,
ν

2

)
, z | u ∼ N

(
z | 0, u-1Im

)
(3)

Similarly, noise εv is a dv dimensional zero-mean Student’s-t
variable with precision Ψv and degree of freedom ν

εv ∼ S(εv | 0,Ψv, ν) (4)

By the property of affine transformation of random variable,
combining (1), (2), (3) and (4) gives the conditional distribu-
tions of observed variables xv

xv | z ∼ S(xv |Wvz + µv,Ψv, ν) (5)

xv | z, u ∼ N
(
xv |Wvz + µv, (uΨv)

-1) (6)
Next, we place priors on parameters Wv , µv and Ψv . Let
wvi∈Rm be the ith row of Wv , we first employ ARD prior
on Wv to automatically sparsify its columns

Wv | αv ∼
∏dv

i=1 N
(
wvi | 0,

(
diag(αv)

)-1)
(7)

Then we parameterize the distributions over µv and Ψv by
defining

µv ∼ N (µv | 0, β-1
v Idv ), Ψv ∼ W(Ψv | K-1

v , νv) (8)

where W(Ψv|K-1
v , νv) ∝ |Ψv|

(νv−dv−1)
2 exp

(
- 12Tr(KvΨv)

)
denotes Wishart distribution. Finally, we complete the spec-
ification of priors (ν,αv) over prior distributions of variables
u and wvi respectively

ν ∼ G(ν | aν , bν), αv ∼
∏m
j=1 G(αvj | aα, bα) (9)

where αv controls the magnitude of Wv . If certain αvj is
large, the jth column of Wv will tend to take value zero and
become little importance.

The graphical representation of Bayesian model over a
data set of N instances is illustrated by Figure 2 in which
arrows represent conditional dependencies between random
variables. Since we have no further knowledge about the
hyperparameters of priors, we choose broad ones by setting
aα = bα = βv = 10-3, Kv = 10-3Idv , νv = dv + 1, aν = 2
and bν = 0.1, m = min{dv − 1; v = 1, . . . , V }.

3.3 Model Inference
The goal of model inference is to learn posterior distribu-
tions of latent variables and parameters. Based on Figure
2, the joint probability of data set D, latent components
Z = {z1, . . . , zN}, U = {u1, . . . , uN}, and parameters
Θ = {{Wv,αv,µv,Ψv}Vv=1, ν} can be written as

p(X1, . . . ,XV ,Z, U,Θ) = p(ν)×∏V
v=1p(Wv|αv)p(αv)p(µv)p(Ψv)×∏N
n=1

∏V
v=1p(x

v
n|zn,un,Wv,µv,Ψv)p(zn|un)p(un|ν)

(10)

It is analytically intractable to derive the posterior distribution
p(Z, U,Θ|D) from Eq. (10) directly. Therefore, we adopt
variational inference for approxiamting the posterior by a fac-
terized distribution

q(Z, U,Θ) =
∏N
n=1q(zn)

∏N
n=1q(un)×

q(ν)
∏V
v=1

(
q(Ψv)q(µv)

∏m
j=1 q(αvj)

∏dv

i=1 q(wvi)
) (11)

The distribution q is found by maximizing the lower bound

Lq(Z,U,Θ) =log p(D)−KL(q(Z,U,Θ)||p(Z,U,Θ|D))

=

∫∫∫
q(Z,U,Θ) log

p(D,Z,U,Θ)

q(Z,U,Θ)
dZdUdΘ

(12)

Since log p(D) is constant, maximizing the low bound
is equivalent to minimizing the KL divergence between
q(Z,U,Θ) and p(Z,U,Θ|D). By substituting factor distribu-
tions in Eq. (11) into (12) and dissecting out the dependence
on one of the factors ql(Ωl), we have following result

log ql(Ωl) = Eqk(Ωk),k 6=l[log p(D,Z, U,Θ)] + const (13)

where Ω = {{zn, un}Nn=1, {Wv, {αvj}mj=1,µv,Ψv}Vv=1, ν}
refers all latent components and parameters of model, E·[·]
represents an expectation w.r.t. distribution qk(Ωk) for all
k 6= l. Combining (13), (10) with the distributions defined in
section 3.2, we obtain the following factor distributions

q(ν) = G(ν|âν , b̂ν), q(zn) = N (zn|µzn ,Σzn) (14)

q(un) = G(un|αun , βun), q(Ψv) =W(Ψv|K̂-1
v , ν̂v) (15)

q(µv) = N (µv|µµv ,Σµv ), q(αvj) = G(αvj |âα, b̂α) (16)

q(wvi) = N (wvi|µwvi ,Σwvi) i = 1, . . . , dv (17)

where n = 1, . . . , N , v = 1, . . . , V , j = 1, . . . ,m,

âν = aν+
N

2
, b̂ν = bν−

1

2

(
N+

∑
n

(
〈log un〉−〈un〉

))
(18)

µzn = Σzn

[∑
v〈WT

v 〉〈un〉〈Ψv〉
(
xvn − 〈µv〉

)]
Σzn =

(∑
v〈WT

v unΨvWv〉+ 〈un〉Im
)-1

(19)

âα = aα +
dv

2
, b̂α= bα +

〈||Wv,:j ||2〉
2

(20)
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βun =
〈ν〉+〈zTnzn〉

2
+

1

2

∑
v

(
xvn

T〈Ψv〉xvn− 2xvn
T 〈Ψv〉〈µv〉

−2xvn
T〈Ψv〉〈Wv〉〈zn〉+2〈zTn 〉〈WT

v 〉〈Ψv〉〈µv〉
+ 〈µTvΨvµv〉+ Tr[〈WvznzTnWT

v 〉〈Ψv〉]
)

αun =
1

2
(〈ν〉+m) +

∑
v
dv

2 (21)

K̂v = Kv +
∑
n

(
xvnxvn

T + 〈µvµTv 〉 − 〈µv〉xvnT − xvn〈µTv 〉

− 〈Wv〉〈zn〉xvn
T − xvn〈zTn 〉〈WT

v 〉+ 〈Wv〉〈zn〉〈µTv 〉
+ diag

(
[Tr(Σwv1

〈znzTn 〉), . . . , T r(Σwvdv
〈znzTn 〉)]

)
+ 〈µv〉〈zTn 〉〈WT

v 〉+ 〈Wv〉〈znzTn 〉〈WT
v 〉
)
〈un〉

ν̂v= νv+N (22)

µµv = Σµv
∑
n〈un〉〈Ψv〉

(
xvn − 〈Wv〉〈zn〉

)
Σµv =

(∑
n〈un〉〈Ψv〉+ βvIdv

)-1
(23)

Σwvi =
(
diag

(
〈αv〉

)
+
∑
n〈znzTn 〉〈unΨv〉ii

)-1
µwvi = Σwvi

∑
n

(
〈zn〉〈unΨv〉,:iT (xvn − 〈µv〉)

− 〈znzTn 〉
∑dv

i′=1,i′ 6=i〈unΨv〉i′i〈wvi′〉
) (24)

where M,:i is the ith column of matrix M , 〈·〉 denotes the
expectation, and we use Stirling’s approximation Γ(x) ∼√

2π exp(−x)xx−
1
2 for log

(
Γ(ν/2)

)
when deriving the fac-

tor q(ν). The equations (14-24) represent a set of consistency
conditions for the maximum of the lower bound subject to the
factorization constraint. We can find an optimal solution by
first initializing all qk(Ωk) properly and then cycling through
the factors and re-estimating each distribution in turn using
the updated moments of other factors. We monitor the con-
vergence of optimization by evaluating the lower bound.

3.4 Outlier Score Measurement
The distribution p(x1, ...,xV ) of V -view observed variable
(x1, ...,xV ) is expressed, from the sum and product rules of
probability, in the form

p(x1, ...,xV ) =

∫∫ V∏
v=1

p(xv|z, u)p(z|u)p(u)dzdu

= S(x1, ...,xV |M(µ),Λ(W,Ψ), ν)

(25)

by integrating out z and u, it gives a Student’s-t distribution
for p(x1, ...,xV ), where

M(µ) = [µ1;µ2; . . . ;µV ] (26)

and Λ(W,Ψ) is a
∑
v d

v-by-
∑
v d

v precision matrix

Λ
(W,Ψ)
vv′ =

{
WvW

T
v′ + Ψ-1

v if v = v′

WvW
T
v′ if v 6= v′

(27)

From Eq. (12), we know that the log marginal likelihood
can be approximated by the evidence lower bound (ELBO).

Through maximizing the ELBO, we find an optimum esti-
mate of the data distribution. According to theorem 1 in sec-
tion 4.1, this estimated distribution is close to the real model
distribution with theoretical guarantee. Since all parameters
of estimated data distribution are learned on the normal sam-
ple, thus it reasonably concludes that normal instance will
have bigger value in Eq. (25). By this insight, we formulate
the outlier score s(xi) of an instance xi = [x1

i ; x
2
i ; . . . ; x

V
i ]

as the negative unscaled Student’s-t density

s(xi) :=−
[
1+

(xi−M(µ))TΛ(W,Ψ)(xi−M(µ))

ν

]- ν+
∑
vd
v

2

(28)
Conceptually, a negative outlier score measures the probabil-
ity that the sample is generated from the multi-view distri-
bution defined by normal data, therefore bigger value in Eq.
(28) means this sample is less likely to be the normal class.

4 Theoretical Analysis
In this section, we show theoretical analysis for the proposed
model (Due to space limitation, detailed proofs are omitted).

4.1 Consistency of the Bayesian Estimator
Let XN

V := {{xvn}Vv=1}Nn=1 be a sample of i.i.d multi-view
random variables collected from distribution p0. We consider
statistical modelsMm = {pθm |θm ∈ Θm} with the count-
able collection

{
Mm|1 ≤ m ≤ min{dv; v = 1, . . . , V }

}
,

where Θm is the parameter set associated withm latent com-
ponents model. Let F+(Θm) be the set of all possible dis-
tributions over Θm. Now we assume that there exists a true
modelMm0 that contains the true data distribution pθ∗m0

(i.e.,
there exists m0 and θ∗m0

∈ Θm0 satisfying p0 = pθ∗m0
).

Assumption 1. There exists g(N) for which there is a distri-
bution ρm0,N,V ∈ F+(Θm0

) such that∫
KL(pθ∗m0

, pθm0
)ρm0,N,V dθm0

≤ g(N), (29)

KL(ρm0,N,V , πm0(θm0)) ≤ N · g(N) (30)
where πm0(·) on θm0 ∈ Θm0 is a prior over modelMm0 .

Theorem 1. Given assumption 1, for any α ∈ (0, 1), if
there exists a true model Mm0 such that p0 = pW∗

m0
and

the coefficients of W∗
m0

= [W∗
1,m0

; W∗
2,m0

; . . . ; W∗
V,m0

] ∈
R

∑
dv×m0 are bounded, then

E
[∫

Dα(pWm , pW∗
m0

) · π̂mα,N,V (Wm|XNV ) dWm

]
= O

(∑V
v=1 d

vm0 log(
∑V
v=1 d

vN)

N

) (31)

where π̂mα,N,V (Wm|XN
V ) is the approximate posterior distri-

bution derived by variational inference.
From Eq. 31, we see that, in expectation w.r.t the ran-

dom variables XN
V under distribution pW∗

m0
, the average α-

Renyi loss (Dα) [Van Erven and Harremos, 2014; Chérief-
Abdellatif, 2018] between a distribution in the selected model
and the true distribution over π̂mα,N,V (Wm|XN

V ) goes to zero
as n→ +∞. This shows the Bayesian estimator of our model
is consistent.
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Algorithm 1 Compute Optimal Threshold

Input: Data {X ,X ′}, Swapping Rate γ, Detection Rate ζ
Output: Detection Threshold τ̂ζ

1: Generate mixture set X γ via swapping views randomly.
2: Compute anomaly scores for all points in X and X γ via

Eq. (28), and denote them as S and Sγ respectively.
3: Calculate empirical CDF F̂a.
4: Optimize threshold by

τ̂ζ = max
{
s(x) ∈ {S,Sγ}| F̂a(s(x)) ≤ 1− ζ

}
4.2 Sample Complexity of Multi-View Detector
Let {X ,X ′} be two “clean” nominal sets (both containing k
i.i.d. multi-view draws from p0). We take X as training in-
put. For X ′, given a swapping rate γ, we use it to generate
a ‘mixture’ dataset X γ . In this case, the mixture data X γ
can be approximately treated as k points drawn from a mix-
ture distribution pγ , which generates a multi-view outlier and
nominal point with probability 2γ and 1−2γ respectively. Our
multi-view semi-supervised anomaly detector is trained on X
and assigns anomaly scores to all data points in X and X γ .
Intuitively, an ideal detector would rate all alien data points
higher than all nominals (higher score means more anoma-
lous). The key challenge in practice is to select a threshold
for anomaly score that gives the guarantee on achieving the
desired outlier detection rate. Motivated by [Liu et al., 2018],
our approach to obtaining a theoretical guarantee is based on
considering the cumulative distribution function (CDF) over
anomaly scores.

Let F̂ and F̂γ be the empirical CDFs of anomaly scores
of samples from p0 and pγ respectively. The empirical
CDF for an abnormal sample can be derived as F̂a(s(x)) =(
F̂γ(s(x))−(1−2γ)F̂ (s(x))

)
/2γ. With sufficient data and

knowledge of γ, empirical CDFs F̂ , F̂γ and F̂a will conver-
gence to the ground truth F, Fγ and Fa. After deriving Fa, a
detector can achieve an outlier detection rate of ζ by selecting
an anomaly score threshold τζ that is the 1− ζ quantile of Fa
and raises an alarm on the testing point whose anomaly score
is greater than τζ . Alg. 1 summarizes the steps for finding a
reasonable threshold achieving the desired outlier detection.
Theorem 2. Let X and X ′ be the nominal data sets contain-
ing k i.i.d V-view instances drawn from distribution p0. Given
a swapping rate γ, let X γ be the mixture set generated from
X ′ over the randomness of view selecting and view swapping.
For any ε ∈ (0, ζ) and δ ∈ (0, 1), if

k >
(1− γ)2

2ε2γ2
ln

2

1−
√

1− g(δ, V )
(32)

where 1
g(δ,V ) = 1

δ

∑V
Ṽ=2

V !
Ṽ !(V−Ṽ )!

⌊
Ṽ !
e

⌋
, b·c is the floor func-

tion, and e is Euler’s Number, then with probability at least
1 − δ, Algorithm 1 will output a threshold τ̂ζ that achieves
an multi-view outlier detection rate of at least 1− η, where
η = 1− ζ + ε.

Theorem 2 provides a value for the sample size k that guar-
antees at least ζ − ε fraction of outliers in the test points

(a) Attribute Outlier (b) Class Outlier

(c) Class-Attribute Outlier

Figure 3: The variation curves of AUC W.R.T outlier ratio.

will be detected (an additional error term ε is introduced
here because of the finite sample size). By using Stirling’s
formula for approximating factorials (e.g. Ṽ !, (V − Ṽ )!),
above guarantee is approximately polynomial since k grows
asO

(
1

ε2γ2

(
V 2 lnV +ln 1

δ

))
. We believe theorem 2 is the first

PAC-style guarantee for multi-view anomaly detection.

5 Experimental Evaluations
We now show the effectiveness of proposed method on pub-
lic Outlier Detection Datasets (ODDS)2, WebKB dataset3 and
MovieLens dataset4. We compared the proposed model with
representative and cutting edge multi-view anomaly detec-
tors: HOrizontal Anomaly Detection (HOAD) [Gao et al.,
2011], Affinity Propagation (AP) [Marcos Alvarez et al.,
2013], Probabilistic Latent Variable Model (PLVM) [Iwata
and Yamada, 2016] and Latent Discriminant Subspace Rep-
resentation (LDSR) [Li et al., 2018a]. For AD problems, the
most widely used performance evaluation metrics are ROC
curve and AUC score.

5.1 Evaluation on Synthetic Multi-View Settings
We employ 9 data sets, namely thyroid, annthyroid, forest-
cover, vowels, pima, vertebral, lympho, wine and glass, which
are obtained from the ODDS library [Rayana, 2016]. We gen-
erate multiple views by randomly splitting the features, where
each feature can belong to only one view. To generate three
types of multi-view outliers, we follow the strategy in previ-
ous works (e.g. [Li et al., 2018a]) for fair comparison. After
the outlier generation stage, we equivalently split all normal
instances into two parts, and use one of them as the training
set to train the proposed model. Then we verify the outlier
detection performance on the test set which consists of the
remaining normal data and generated outliers.

2http://odds.cs.stonybrook.edu
3http://lig-membres.imag.fr/grimal/data.html
4https://grouplens.org/datasets/movielens/latest
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Model Thyroid Annthyroid ForestCover Vowels Pima Vertebral Lympho Wine Glass
A

ttr
ib

ut
e

O
ut

lie
r

HOAD .5202±.0864 .5078±.0724 .6801±.0866 .8540±.0691 .5921±.0768 .8338±.0972 .5714±.1648 .6503±.1574 .7083±.1410
AP .6737±.1164 .5747±.0669 .6774±.0739 .7062±.1125 .9376±.0293 .8586±.0604 .5369±.1539 .6947±.1078 .7497±.1117

PLVM .8989±.0091 .8904±.0363 .4870±.0126 .5481±.0067 .9086±.0083 .7564±.0061 .5413±.0251 .4058±.0481 .4087±.0246
LDSR .9751±.0074 .9876±.0022 .9983±.0005 .9181±.0153 .9858±.0057 .9793±.0200 .9362±.0053 .9932±.0009 .9940±.0040

Our .9877±.0056 .9979±.0011 .9995±.0027 .9875±.0071 .9877±.0044 .9958±.0074 .9225±.0177 .9417±.0450 .9530±.0292

C
la

ss
O

ut
lie

r HOAD .5393±.0303 .5849±.0348 .6872±.0337 .3818±.0384 .5557±.0310 .5209±.0812 .6058±.0715 .7124±.0638 .4277±.0932
AP .5847±.0227 .5265±.0350 .7906±.0332 .7520±.0513 .5659±.0365 .5272±.0449 .7402±.0498 .5629±.0933 .5576±.0518

PLVM .5676±.0093 .4087±.0176 .6035±.0044 .5479±.0282 .5425±.0138 .4444±.0416 .5254±.0061 .4860±.0040 .5433±.0104
LDSR .8631±.0217 .7128±.0418 .7551±.0293 .9245±.0173 .5924±.0543 .6070±.0568 .8228±.0762 .5889±.0916 .7098±.0498

Our .8744±.0205 .7383±.0450 .8672±.0197 .9360±.0158 .6354±.0400 .8891±.1171 .8825±.0410 .8373±.0424 .7613±.0570

C
la

ss
-A

ttr
ib

ut
e

O
ut

lie
r

HOAD .4934±.0270 .4976±.0311 .4342±.0468 .5994±.1342 .4181±.0260 .7386±.0700 .7085±.0609 .5798±.0615 .5598±.0652
AP .6380±.0723 .5647±.0819 .8054±.0373 .8511±.0713 .7916±.0555 .7277±.0524 .5481±.0918 .5481±.1173 .7308±.0676

PLVM .7122±.0191 .8933±.0134 .8184±.0087 .6390±.0223 .8249±.0063 .6913±.0261 .6120±.0195 .7094±.0145 .9555±.0092
LDSR .9344±.0179 .9122±.0220 .9845±.0049 .9642±.0064 .9315±.0146 .9185±.0371 .9765±.0135 1±0 .9900±.0026

Our .9863 ±.0075 .9842±.0076 .9857±.0095 .9757±.0082 .9510±.0169 .9836±.0198 .9571±.0536 .9201±.0470 .9984±.0023

Table 1: AUC values (mean ± std) on nine UCI datasets with outlier ratio 5%.

On each dataset, we repeat the random outlier generation
procedure 20 times and at each time, we perturb 2.5% of the
data in that procedure. We average their performance and
report AUC results (mean ± standard deviation) in Table 1.
From table 1, we can observe that the proposed method con-
sistently outperforms all competing counterparts on almost
nine data sets for all kinds of multi-view outliers. The su-
periority of proposed method is expected, because it uses
the semi-supervised anomaly detection technique, which can
maximally capture the nature and property of normal in-
stances. This, in turn, can help the learned model to better
distinguish whether the test instance is normal or not, thus
improving the detection performance.

To investigate how the number of outliers affects the per-
formance of different models, we experiment on data cor-
rupted by progressively higher percentages of outliers. The
Figure 3 shows the variation of AUCs on data set pima with
outlier ratio of 2%, 5%, 10%, 15%, 20%, 25% and 30% for
three types of outliers. We see that, in general, as the anomaly
rate increases, the performance decreases. And the proposed
method is comparatively robust and outperforms other com-
pared ones with all outlier ratio settings.

5.2 Evaluation on Real World Multi-View Data
Further, we compare them on the WebKB dataset [Blum and
Mitchell, 1998] which has been widely used for evaluating
multi-view learning algorithms [Guo, 2013; Li et al., 2014].
We use its Cornell subset in our experiment. It contains 195
webpages over 5 labels. Each webpage is described by four
views: content, inbound link, outbound link and cites. Figure
4 shows the ROC curves of all compared methods on the We-
bKB dataset with outlier ratio of 5% (left) and 10% (right).
We can observe that clearly, our approach achieves higher
AUC than its competitors, which demonstrates the strength
of our Bayesian detector.

To present the qualitative analysis of Bayesian model in
detecting inconsistency between users’ rating behavior and
movie genre, we apply the proposed model to MovieLens
small dataset which contains 100,836 ratings over 9,742

Movie Title Score Movie Title Score

Spirited Away 0.982 The Rebound 0.162
Quiz Show 0.966 Scooties 0.150
Dance of Reality 0.962 Winslow Boy 0.092
The Dark Knight 0.956 Sacrifice 0.084

Table 2: High and low anomalous score movies

Figure 4: ROC curves of compared methods on WebKB dataset.
(PLVM method misses here, because it fails to execute on high di-
mensional dataset due to exponent overflow of Eq. 10 in their paper.)

movies by 610 users. We sample 1000 movies, and per-
form our model to calculate anomalous scores for them. Ta-
ble 2 lists some movies high and low anomalous scores.
Movie ’spirited away’ is categorized into animation and fan-
tasy genre, but it receives most of ratings from users that
watch and tag action-thriller movies. In other words, it ex-
hibits inconsistent behavior between genre view and rating
view, and thus has a high anomalous score. Contrarily, low
anomalous score movies, e.g. sacrifice, do not show view in-
consistency.

6 Conclusion
In this paper, we offer a novel hierarchical Bayesian model
to find multi-view outliers under a semi-supervised detection
scenario via inductive learning. We prove our Bayesian es-
timator is consistent and derive a sample complexity for the
detector. In experiment, we show the proposed model con-
sistently outperforms state-of-the-art multi-view anomaly de-
tectors across both synthetic and real-world multi-view data.
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