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Abstract

Recommender systems often involve multi-aspect
factors. For example, when shopping for shoes
online, consumers usually look through their im-
ages, ratings, and product’s reviews before mak-
ing their decisions. To learn multi-aspect factors,
many context-aware models have been developed
based on tensor factorizations. However, existing
models assume multilinear structures in the tensor
data, thus failing to capture nonlinear feature inter-
actions. To fill this gap, we propose a novel non-
linear tensor machine, which combines deep neu-
ral networks and tensor algebra to capture nonlinear
interactions among multi-aspect factors. We further
consider adversarial learning to assist the training
of our model. Extensive experiments demonstrate
the effectiveness of the proposed model.

1 Introduction

Context-aware recommendations have attracted great atten-
tion due to their beneficialness of exploring multi-aspect fac-
tors [Bhargava ef al., 2015; Chen and Li, 2017]. As an ex-
ample in Figure 1, user reviews are valuable to explain what
properties of an item they prefer; Item images provide abun-
dant information, including color, shape, and fashion style.
Furthermore, recommending a proper item to users at the
right time is also a fundamental task [Karatzoglou et al.,
2010]. Incorporating multi-aspect factors is thus a promising
strategy to improve recommendation accuracy.

Tensor-based models are naturally preferred due to their
ability to express multi-aspect data [Kolda and Bader, 2009].
However, existing tensor models suffer from three draw-
backs. First, it is well known that the performance can be
hindered by its multilinear assumption, thus failing to cap-
ture nonlinear patterns. Second, when the observed tensor
is sparse, only mining the tensor provides little information.
The coupled tensor-matrix models can alleviate data sparsity
by incorporating auxiliary information [Acar er al., 2011;
Chen and Li, 2018]. Nevertheless, they need to construct
fixed-dimensional feature matrices to couple with tensors. As
such, these feature matrices are insufficient to capture the
complicated data manifold, especially for image or textual
data [Zhang et al., 2017]. Finally, sampling negative training
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Figure 1: A user’s decision involves multi-aspect factors.

instances becomes a nontrivial task since the observed ten-
sor typically only contains positive instances [Yu et al., 2018;
Kolda and Bader, 2009; Chen and Li, 2019]. A uniformly ran-
dom sampling is widely used to generate negative instances.
However, those negative samples can be completely unrelated
and can be easily discriminated from observed samples, lead-
ing to zero loss phenomenon [Wang et al., 2017].

Here we propose a Neural Tensor Machine (NTM), which
extends multilinear tensor factorizations by combining the
deep neural networks and tensor algebra. Specifically, NTM
takes a multi-aspect tensor as input, and aims to learn nonlin-
ear feature interactions among data. NTM contains two com-
ponents: a shallow GCP layer and a deep tensorized MLP
(Figure 2). As such, NTM is able to characterize nonlinear
feature interactions. We further consider adversarial learning
to supply high-quality negative samples, which improve its
generalization performance.

2 Related Work

Context-Aware Recommendation. Many studies have fo-
cused on using contextual factors to improve system accu-
racy, such as review-aware [Catherine and Cohen, 2017,
Zhang et al., 20171, visually-aware [Yu et al., 2018; He and
McAuley, 2016], and time-aware recommendation [Karat-
zoglou et al., 2010; Wu er al., 2019]. For instance, Deep-
CoNN [Zheng et al., 2017] and ConvMF [Kim et al., 2016]
explored user reviews to study users’ behaviors; Vista [He et
al., 2016] and DCFA [Yu et al., 2018] incorporated visual fea-
tures of items to enhance the accuracy; MR [Karatzoglou et
al., 2010] and NTF [Wu et al., 2019] exploited temporal be-
haviors by mining a user-item-time tensor. Inspired by these
models, we seek to build a new tensor model that integrate
multi-aspect factors together.
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Tensor Factorization. Tensor machines have yielded great
promise in context-aware recommendation. Many of them
are built upon the multilinear CANDECOMP/PARAFAC
(CP) or Tucker tensor factorizations [Kolda and Bader, 2009].

The CP model decomposes a third-order tenor X €
RMXNXL into three factor matrices: U € RMX", V ¢ RVX",
and W € RY*", such that a tensor entry can be estimated by:

xijk = ZUiththt @))
t=1

The Tucker decomposes a tensor X € RM*N*L into a core

tensor G € R™*"2*73 with three orthogonal factor matrices:
U e RM*" v e RV*™2 and W € RE*73, such that:

1 72 T3

Xijk = Z Z Z GavcUia Vjs Wi 2)

a=1b=1 c=1
As we can see, both the CP and Tucker models interpret the
three-way interactions using multilinear multiplication. For
example, the CP model estimates X’;;; by linearly combining
of its latent factors with equal contribution. We argue that
this strategy may be insufficient to capture nonlinear feature
interactions. Our work here builds on this line of work and
address this limitation by using deep neural networks.

Nonlinear Tensor Factorization. Recent studies have
shown that nonlinear tensor models have superior perfor-
mance over multilinear tensor models [Fang et al., 2015;
Zhe et al., 2016; Xu et al., 2012; Liu et al., 2019; Wu et
al., 2019]. For instance, NLTF [Fang ef al., 2015] and In-
fTucker [Xu et al., 2012] proposed to use Gaussian kernel
to capture the nonlinear feature interactions. NTF [Wu et
al., 2019] replaced the multilinear operations with multi-layer
perceptrons. CoSTCo [Liu ef al., 2019] used convolutional
neural network to compress the tensor. In contrast, our work
explicitly uses tensor algebra to capture triple-wise interac-
tions among multi-aspect factors.

Lastly, it is worth mentioning that our work is different
from recent deep tensor networks [Novikov er al., 2015;
Socher et al., 2013; Cohen et al., 2016; Lebedev et al.,
2015]. The tensor in [Socher et al., 2013] aimed to con-
nect nodes in knowledge graphs. [Novikov er al., 2015;
Lebedev et al., 2015; Cohen et al., 2016] focused on estab-
lishing relationships between tensor and deep learning, not on
nonlinear tensor factorization. Our model here is more gen-
eral to study nonlinear patterns for multi-aspect tensor data.

3 Problem Formulation

3.1 Problem Setup

Following [Yu et al., 2018; Karatzoglou et al., 2010], we use
a user x item X time tensor X € RM*NXL (g indicate the
purchase events, where M, N, and L denote the number of
users, items, and time intervals, respectively. We consider
recommendation problem with implicit feedback: X;;, = 1,
if user ¢ purchases item j during time interval k, otherwise
X, = 0. Our goal is to generate for users a personalized
ranking of items that they have not yet provided feedback at
certain time [Yu ef al., 2018; Wu et al., 2019]. In other words,
we aim to infer the unobserved elements X’;;; to estimate a
score among user ¢, item j, and time k.
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3.2 Feature Extraction
In this section, we present the related features in details.

Embedding Look-up. Given a user 7, an item j, and a time
interval k, their one-hot features a, € R, b; € RY, and
¢, € RY can be obtained based on their identities. One can
obtain dense embeddings via three lookup tables:

u; < lookup(a;), V; < lookup(b;), Wy < lookup(c;) (3)

here 4; € R%, v, € R%, and wj, € R% are new embed-
dings for user ¢, item j, and time k, respectively.

In addition to identity features, we further extract the fea-
tures from users’ reviews and items’ images as follows.

Textual features. We extract features from users’ reviews
via the KimCNN [Kim, 2014]. Let text; denote the textual
reviews of user ¢, which concatenates all reviews written by
user ¢ [Zheng et al., 2017], we have:

x; < KimCNN(text;)
here x; € R™ is the review-based representation for user :.

Visual features. We adopt the well-known Caffe model to
extract visual features from images [Jia er al., 2014]. Given
an item’s image;, we obtain its visual feature by pulling out
the second fully-connected layer of the Caffe (i.e. FC7):

yj < CNN(image;)
here y; € R" is the image-based representation for item j.

Fusion features. We fuse all features together for better
representation learning. Given user’s features (U, x;), item’s
features (v, y;), and temporal feature Wy, we have:

u; + FC(O,; concar(;, x;)),
v; < FC(O,; conear(Vj,y,)), )
Wi < 6\V;C

here CONCAT(-) is the concatenation; {u;, v;, wi} € R" are
new representations for user 4, item j, and time k, respec-
tively. wy only contains the one-hot feature since there is
no other feature for time. Two fully-connected layer with
parameters O, and O, are applied to obtain more sophisti-
cated representations for both users and items. Furthermore,
by properly choosing the weights in ©,, and ©,,, we can re-
shape the vectors u; and v; to have the same dimension as
wp. As such, {u;, v;, wi} can be interpreted as latent vec-
tors in CP tensor model as shown latter in Sec. 4.1.

4 The Proposed Method

To learn multi-aspect features, a straightforward method is
to train a Multi-Layer Perceptron (MLP) [He er al., 2017,
Wu et al., 2019] However, MLP fails to capture the triple-
wise interactions among latent vectors due to its black-box
structure, which are important in recommender systems. For
example, a user will purchase an item if the item fits the user’s
preference and if the item is in season (at the right time).

To avoid such information loss, we propose NTM with two
modules: a GCP layer and a tensorized MLP layer (Figure 2).
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Figure 2: The architecture of the proposed NTM that consists of
GCP and T-MLP to exploit the multi-aspect factors.

4.1 Generalized CP Tensor Factorization

As shown in Eq. (1), the CP model can interpret triple-wise
interactions by its multilinear multiplication. Here we gener-
alize the CP model to learn nonlinear feature interactions.
Given the embeddings {u;,v;, wy} € R” from Eq. (4),
we design a novel GCP layer ¢(-), which contains a pooling
operator that converts a set of embeddings to one vector:

P(u;, v, wi) =1; ©v; © Wy %)

here © is the element-wise product. Clearly, the GCP layer
¢(-) does not introduce extra model parameters, and more
importantly, it can be efficiently computed with linear time.
Then, we can project the hidden vector ¢ into an output layer:

i'ijk = aour(h’ (u; © vV O W) (6)

here a,,¢ and h denote the activation function and weights.

Proposition 1. The CP tensor factorization in Eq. (1) is a
special case of generalized tensor factorization in Eq. (6).

Proof. Let G,y be an identity function (a.:(z) = z), weight
h be a uniform vector of 1 (h = [1,...,1]7 € R"), and u;(¢)
be the ¢-th element in the column vector u;, we have:

Xijk = aour(h” (0, © v; ©wi)) = Y ui(t)v; (t)wi(t)

which exactly recovers the CP factorization in Eq. (1) and the
embedding size r now becomes the tensor CP rank. 0

This is a very appealing connection, meaning that we can
design a nonlinear CP tensor model. For example, if we adopt
a nonlinear function a,,; and allow h to be trained from
data without uniform property, GCP provides a more power-
ful way to express the nonlinear interactions for multi-aspect
factors. Here we implement the GCP by using the sigmoid
function o (+) and learning h with the pairwise loss function.

4.2 Tensorized Multi-layer Perceptron

To better capture the triple-wise feature interactions, we fur-
ther propose to use an outer product on u;, v;, and wy:

E=u; Vv, QW (7
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here £ € R"*"*" is a tensor feature map and ® denotes the
outer product. Our motivation for £ is straightforward. The
& captures more signals than element-wise product in Eq. (5)
since it encodes any tripe-wise interactions. Such strategy is
simple but widely used in deep learning [He et al., 2018].

One can flatten £ into a vector and use a MLP to exploit
its nonlinearity. However, the size of € requires massive neu-
rons. Assuming we have a map £ € R%*54%64 and adopt a
MLP with a half-size tower structure. As such, even the first
layer requires 262, 144 x 131,072 parameters in total.

To address this issue, we turn our attention to n-mode Prod-
uct [Kolda and Bader, 2009]: Given a tensor X € Rt *In
and a matrix U € R”*/» the n-mode product of X and U
is denoted as X x,, U and is of size Rt~ *In-1XIxIns1xIN
Inspired by this shrinking technique, we propose a Tensorized
MLP to successively compress the tensor map € by using a
sequence of three weight matrices along each mode of € with
nonlinear transformation.

T-MLP block: We apply one T-MLP block as:

%Ig(8X1AX2BX3C+B) (8)
here # is output in the hidden layer; g(-) is the activation
function; {A, B, C} and B are the weights and bias. At first
glance, our T-MLP is very similar to Tucker in Eq. (2), but
they are essentially different. Tucker requires the orthogonal-
ity of latent factors and it does not have the bias B or activa-
tion function as in T-MLP.

As such, T-MLP significantly reduces the number of train-
ing parameters. For example, we can compress £ with size
]R64><64><64 to R16><16><16 by Weights {A, B, C} c R16><64 and
bias B € R'6*16%16 regulting in 3 x 16 x 64 4 16> parameters.

In back propagation, the gradient of weights and bias can
be derived using chain rule. We give the gradient of Eq. (8)
w.r.t. A inside g(-). Let J = € x1 A x2 B x3 C denote
the term w.r.t. A, its matricized form is written as: J(;) =
AE)(Co B)”, where o is the Kronecker product; J(1y and
E,) denote the mode-1 matricization of J and €. We have:

a;? = [(CoB)EJ)] o1
here I is the identity matrix. Similar strategy can be used to
compute the gradient for 0 /0B, 0J /9C, and 0T /0B.

Stacking T-MLP blocks: Arguably two of the key con-
tributors of the neural networks are its nonlinearity and the
stacking of multiple layers. Likewise, we stack multiple T-
MLP blocks with ReLU(+) as the activation function:

Hy = ReLU(Ex1 AV x,BO %3¢ 4 BO) |
M =ReLUH 11 ATV, BE D et 4 gy,

Dropout: Dropout [Srivastava et al., 2014] is a regulariza-
tion technique for neural networks to prevent overfitting. The
idea is simple: randomly “turn off” neurons with probability
p during training, and use all neurons when testing. To avoid
overfitting, we also apply a dropout layer on the feature £,
i.e., randomly dropping p percent of its elements.

Prediction layer: At last, the output of the last hidden
layer H 1, is transformed to the final predictive score:

Xijx = 0(W, x Reshape(#1) + b,) ®

here Reshape(-) flattens 7, into a vector. The output layer is
a fully connected layer with the sigmoid function as predictor.
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4.3 Joint Learning

We present our unified model NTM by joint learning GCP
and T-MLP. Let ¢, and #,; denote the outputs of the last
hidden layers of GCP and T-MLP. Then, we merge them as:

Xiji = o(Wj x concar(¢p, Reshape(Hz)) + by) (10)
this fusion strategy is inspired by the well-known wide&deep
learning [Cheng e al., 2016; He er al., 20171, which has the
benefits of memorization and generalization. Our GCP can be
regarded as a wide module whereas the T-MLP can be viewed
as a deep module. The key difference is that our model aims
to learn multi-aspect tensor data, while existing work can only
learn two-dimensional matrices.

Pairwise Loss Training. To optimize the model, we opt for
the margin-based ranking loss function [Socher ef al., 2013]:

LO)= Y [+ f04"k) - G0k AD

(i,3,k)€T

where [z];+ = max(x;0); f(-) and © denote our predictive
function and model parameters in Eq. (10); 7 denotes the
training set, where each instance is a positive triplet i.e.,
X = 1. (i,7, k) is a negative triplet w.r.t. (¢, j, k), which
can be randomly generated such that X';;,, = 0.

Although random sampling is commonly used to generate
negative triplets, it suffers from zero loss phenomenon [Wang
et al., 2018al. For example, it can easily generate some
women’s dresses for a male user as negative samples, which
contributes little for the model training.

4.4 Adversarial Training

To overcome above drawback, we adopt adversarial learn-
ing to provide high-quality negative samples in the training
step [Wang er al., 2017; Goodfellow et al., 2014]. Concretely,
the framework contains a Discriminator D and a Generator
G. The generator tries to generate useful negative samples,
while the discriminator aims to discriminate whether such
samples come from G or true data.
Discriminator: The discriminator DD aims to minimize:

‘CD(G)D): Z [1+fD(i7j/7k)_fD(i7j,k)]+
GG RET (12)

(i>j/7k) ~ pG(ivjl7 k|l7.77 k)

here pg(i,j’, k|, j, k) is the probability for generating
(i,4', k) (as Eq. (14)) ; fp denotes the loss function, which is
identical to f in Eq. (11). The only difference between these
two is that Eq. (12) uses negative samples from the generator
other than random sampling in Eq. (11).

Generator: The goal of the generator G is to maximize:

La(©®c)= Y ElfoGi,i k)] (i,5,k) ~pali,j',kli,j,k)

(i,9,k)ET
(13)
The distribution pg (4, ', ki, J, k) is:

eXp(fG(i,j/,k)) .
>orexp(fa(i,ji, k)’
(14)

here f¢ is the generator function, which is different from the
fp. Similar to [Wang et al., 2018b], we feed embeddings of

pG(i7j/7k|i7j>k) =

(i,ji, k) € Neg(i, j, k)

Dataset |User| | |Item| | |Interaction| | Density
Clothing 39,371 | 23,022 275,547 0.031%
Beauty 22,279 | 12,079 192,377 0.072%
Cell Phones 27,872 | 10,361 191,648 0.067%
Movies & TV | 101,916 | 47,975 984,060 0.021%

Table 1: The statistics of Amazon datasets (after 2010)

negative samples into a MLP, fo := MLP(concar(u;, v, Wg)).
Also, we generate Neg(i, 7, k) by uniformly sampling N,. =
60 triplets for each positive triplet, i.e., 60 items that user ¢ has
not interacted with at time k. We adopt the policy gradient to
optimize the generator [Wang ef al., 2017]. Its gradient is:

Vegle= >
(i,5,k)ET

EGi i/ iy mpg D 637 B) Vo g logpa iy 4, kli, 4, )]

Similar to many GAN-based models, the generator and dis-
criminator are trained alternatively toward their objectives.

4.5 Computational Complexity

The computational complexity of our model mainly comes
from GCP and T-MLP modules. The complexity for the
shallow GCP is O(r), where r is the embedding size in Eq.
(4). The complexity for the tensor-matrix multiplication in T-
MLP is L - O(r3d?), where d is the embedding size of hidden
layers and L is the number of layers. In practice, L and d are
typically small and the embedding size r < min(M, N, L)
in recommendation problems. The overall complexity can be
simplified as O(|c| - 7®), where |¢| is a constant.

S Experiments
In this section, we aim to answer the following questions:

RQ1: Do our proposed models capture better nonlinear fea-

ture interactions than existing tensor factorizations?

RQ2: Does the proposed NTM outperform the state-of-the-

art context-aware recommendation methods?

RQ3:

What is the influence of various components (e.g.,
GCP, T-MLP, and sampling strategy) in the NTM?

5.1 Experimental Setup

Dataset. We consider four benchmark Amazon! datasets:
Clothing Shoes&Jewelry, Beauty, Cell Phones&Accessories,
and Movies&TV. The standard 5-core dataset for each cate-
gory is utilized here. Similar to [Yu er al., 2018], we remove
the purchase record before 2010 and discretize the times-
tamps by weeks, leading to 237 time intervals. The statistics
are listed in Table 1. Also, a positive triplet X;;; means that
the user ¢ purchase the item j in the week k.

Baselines. (1) CP and Tucker [Kolda and Bader, 2009]:
both are linear models. (2) nTucker [Zhe et al., 2016]: a
nonlinear Gaussian Tucker. (3) NCF [He et al., 2017]: a
neural collaborative filtering model. (4) CoSTCo [Liu et al.,
2019]: a CNN-based tensor model. (5) CMTF [Acar et al.,
2011]: a coupled tensor-matrix model. (6) VBPR [He and
McAuley, 2016]: a Bayesian ranking method. (7) NTF [Wu

'http://jmcauley.ucsd.edu/data/amazon/index.html
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et al., 2019]: a neural model with MLP. (8) DCFA [Yu et
al., 2018]: a tensor model with images and time factors. (9)
JRL [Zhang et al., 2017]: a model with images and reviews.

Parameter Settings. The parameters for the baselines are
initialized as in the original papers and are then carefully
tuned to achieve optimal performance. For NTM, its embed-
ding size r in Eq. (4) is searched in [16, 32,64, 128]. For
T-MLP, we employ three hidden layers with dropout ratio 0.5
and each layer sequentially decreases the half size of the in-
put. We implement NTM in PyTorch? with Adam [Kingma
and Ba, 2015] as optimizer. We use grid-based search to find
the best batch size within [128, 256, 512, 1024] and the learn-
ing rate within [0.0005, 0.001, 0.005, 0.01].

Evaluation Protocols. We randomly split the datasets into
training, validation, and test sets in a 8:1:1 ratio. The val-
idation set is used for tuning hyper-parameters and the fi-
nal performance is conducted on the test set. We adopt two
widely used metrics, Hit@k and NDCG@k [He et al., 2017],
to evaluate the performance. To avoid heavy computation
on all triplets, we follow the strategy in [He ef al., 2017;
Yu et al., 2018]. For each user u,, at time t,, in the test set, we
randomly sample 100 negative items, and rank these items
with the ground-truth items. Based on the ranking results,
Hit@k and NDCG@FE can be evaluated.

5.2 Effect of Nonlinear Tensor Models (RQ1)

The proposed models GCP (Eq. (6)), T-MLP (Eq. (9)),
and the unified NTM (Eq. (10)) are able to capture nonlin-
ear feature interactions. In this part, we compare them with
CP, Tucker, nTucker, NCF, and CoSTCo. These baselines
are plain factorization machine without any information of
user reviews and item images. For fair comparison, we only
use the one-hot features in Eq. (3) and the loss function in
Eq. (11) for our methods. We simply omit the Movies&TV
dataset because its large size of data makes Tucker challeng-
ing to perform high-order SVD. Due to page limitation, we
only show the performance at top-10 scenario, and similar
trends can be observed at different top-k scenarios. Table 2
shows the results w.r.t. Hit@10 and NDCG@10.

We can observe that nonlinear tensor models consistently
outperform the multilinear CP and Tucker models. nTucker
performs better than Tucker due to its nonlinear Gaussian pro-
cess; GCP outperforms CP since it generalizes CP by using
a neural layer. Second, CoSTCo is comparable to nTucker
and NCF but worse than GCP. CoSTCo adopts a CNN to
perform convolution. Nevertheless, many multi-aspect ten-
sor data may not have spatial locality like images. Third,
the performances of T-MLP are better than GCP about 3.1%
on Hit@10 and 3.3% on NDCG@10, implying the benefit
of a deeper tensorized MLP. Finally, NTM achieves the best
performance, which demonstrates the high expressiveness of
NTM by fusing both wide and deep components.

5.3 Performance Comparison (RQ?2)

In this section, we compare the overall performance of NTM
with the baselines of interest. The results of CP, Tucker, NCF,

“https://pytorch.org/
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Clothing Beauty Phones

Model @10 N@io [ H@io Ne@io | Helo N@Io
Cp 0546 0.191 | 2239 0.713 | 2.134 0.745
Tucker | 0.521 0.189 | 2.396 0.755 | 2.008 0.713
nTucker | 0.816 0.283 | 2.607 0.909 | 2.544 0.902
NCF | 0965 0.407 | 3.012 1.135 | 2598 1.178
CoSTCo | 0.983 0.426 | 3.187 1.189 | 2.632 1235
GCP | 1272 0466 | 3.225 1.285 | 2.866 1.329
TMLP | 1.304 0495 | 3373 1302 | 2.927 1360
NTM | 1.353 0512 | 3.401 1326 | 3.012 1.404

Table 2: Results of pure tensor models. (all number are percentage
numbers without %, H is short for Hit and N is for NDCG).

CoSTCo, and nTucker are omitted due to their inferior per-
formances without auxiliary data. Figure 3 shows the top-k
performance, where k is set to 5, 10, and 15.

As shown in Figure 3, we observe that deep neural mod-
els (e.g., NTF, DCFA, JRL, and NTM) substantially outper-
form the shallow methods (e.g, CMTF and VBPR), indicating
the superiority of deep neural networks. More importantly,
unlike requiring pre-defined feature matrices in the CMTF,
these models allow end-to-end learning for contextual factors
like user reviews and item images without manually crafted
combinatorial features. Moreover, NTF performs much bet-
ter than VBPR and CMTF, but falls behind DCFA, JRL, and
NTM. This is because NTF only relies on the identity fea-
tures of users and items. In contrast, DCFA alleviates this
issue by incorporating visual features from item images. JRL
and NTM further improve the quality of recommendations by
joint exploring the contextual factors of user reviews and item
images. Finally, NTM achieves the best performance over all
the comparison methods, showing an average improvement
of 24.6% and 25.7% than the state-of-the-art JRL model in
terms of Hit@k and NDCG @K, respectively. The improve-
ments of NTM mainly come from its wide and deep compo-
nents for modeling triple-wise nonlinear interactions of multi-
aspect factors. In addition, NTM adopts the effectiveness of
a self-adversarial negative sampling technique to assist the
model training (see Figure 5(b)).

5.4 Study of NTM (RQ3)

Ablation Study. We analyze the influence of each compo-
nent via ablation studies. For each variant, we simply remove
one module and compare the results with the default NTM.
Table 3 shows the performance of five variants on Cloth-
ing and Beauty datasets. Our results are summarized as fol-
lows: 1) Remove GAN: we find that our GAN-based sampling
method can provide high-quality negative samples for NTM,
resulting in a better performance. In contrast, randomly sam-
pling negative samples may be effortlessly discriminated in
the training step; 2) Remove GCP: the performances are infe-
rior without GCP layer. Presumably this is because our wide
component GCP serve an important role of generalization in
the Wide&Deep learning; 3) Remove T-MLP: this variant sub-
stantially decreases the overall performance with a large mar-
gin, verifying the effectiveness of the T-MLP in capturing
useful interactions from feature outer product space; 4) Re-
move image CNN or Review CNN: not surprisingly, deleting
the module of either user reviews or item images significantly
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Figure 3: Performance of Top-k recommendations in terms of Hit@Fk (3a-3d) and NDCG@FE (3e-3h) with error bars.

. Clothing Beauty
Ablation Study Hit@l0 NDCG@I0 | Hit@10 NDCG@I0
NTM 4.992 1.986 12.931 4.902
Remove GAN 4.670 1.803 12.113 4712
Remove GCP 4.691 1.831 12.275 4.763
Remove T-MLP 4.023] 1.691] 10.615] 4.124
Remove Image CNN | 3.881] 1.563]) 10.218) 3.853]
Remove Review CNN | 3.782] 1.547) 10.324] 3.902)

Table 3: Ablation analysis on our model (all numbers are percentage
without %, ’]” means a severe performance drop).

hurts the overall performance. This implies that both review-
based CNN features and image-based CNN features are im-
portant to understand users’ preference.

Embedding Size of NTM. The embedding size 7 in Eq.
(4) is a key hyper-parameter since it affects the representa-
tion ability of NTM. Here we vary embedding size r within
[16, 32, 64, 128] and compare with the JRL model in terms of
Hit@10 and NDCG@10 on Clothing dataset. As shown in
Figure 4(a)-4(b), we observe that both NTM and JRL mod-
els benefit from a large embedding size. In general, NTM
achieves satisfactory performance with r > 64. Assessments
on other datasets are similar and omitted here.

Layers of NTM. We also conduct experiments to see
whether using a deeper network architecture is beneficial to
the recommendation task. To this end, we vary the number of
T-MLP blocks in the NTM within L = [2, 3,4, 5]. As shown

(a) The impact of embedding size (b) The impact of embedding size

0.06

o —-NTM™ 2
- ——JRL ®0.02
®0.05 / I}
T / g —-NTM
z
0.04 0.01 iR
16 32 64 128 16 32 64 128

r r
(c) The impact of layers

—f-NTM =)
2 —-JRL ®0.02
®o0.05 3
T 2 ——NT™
z —+-JRL
0.04 0.01
2 3 4 5 2 3 4 5
L L

Figure 4: The impact of embedding sizes r (4a-4b), and number of
layers L (4c-4d). on Clothing dataset.
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Figure 5: (a) The impact of dropout ratio. (b) Training loss w.r.t
Eq. (11) and Eq. (12). Both are for Clothing datasets.

in Figure 4(c)-4(d), stacking more layers gradually enhances
the recommendation performance. We attribute the improve-
ments to the usage of stacking more nonlinear layers to model
complex user-item-time interactions.

Dropout and Adversarial Training. Figure 5(a) shows the
performances of NTM w.r.t. dropout ratio. Our results show
that dropout offers better performance. Specifically, using a
dropout ratio p ~ 0.5 achieves an optimal accuracy.

The training progress w.r.t. Eq. (11) and Eq. (12) are
also shown in Figure 5(b). The performance of our GAN-
based sampling method is always in increasing trends, ver-
ifying the effectiveness of its high-quality negative training
samples. In contrast, random negative samples are often too
trivial to fit the model, which possibly leads to zero loss phe-
nomenon [Wang et al., 2018al.

6 Conclusion

In this work, we propose a nonlinear tensor machine that
combines deep neural networks and tensor algebra to inves-
tigate the impacts of multi-aspect factors. We also develop
a self-adaptive negative sampling strategy to assist the model
training. Experimental results demonstrate the effectiveness
of our proposed model for context-aware recommendations.
For future work, we will incorporate more contextual factors
such as location and user social network.
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