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Abstract

Detecting fraud users, who fraudulently promote
certain target items, is a challenging issue faced
by e-commerce platforms. Generally, many fraud
users have different spam behaviors simultane-
ously, e.g. spam transactions, clicks, reviews and
so on. Existing solutions have two main limita-
tions: 1) the correlations among multiple spam be-
haviors are neglected; 2) large-scale computations
are intractable when dealing with an enormous user
set. To remedy these problems, this work pro-
poses a collaboration based multi-label propagation
(CMLP) algorithm. We first introduce a generic
version that involves collaboration technique to ex-
ploit label correlations. Specifically, it breaks the
final prediction into two parts: 1) its own predic-
tion part; 2) the prediction of others, i.e. collabo-
rative part. Then, to accelerate it on large-scale e-
commerce data, we propose a heterogeneous graph
based variant that detects communities on the user-
item graph directly. Both theoretical analysis and
empirical results clearly validate the effectiveness
and scalability of our proposals.

1 Introduction
The rapid growth of information technologies enables billions
of people to shop online. E-commerce platforms connect cus-
tomers with factories, stores, and third-party merchants, pro-
viding them a convenient, reliable and fast manner of shop-
ping. Meanwhile, e-commerce has brought huge economic
benefits to society. For instance, in the fiscal year of 2018,
eBay GMV (gross merchandise volume) is reported to reach
US $95 billion1 and Alibaba GMV is reported to reach US
$673 billion2.

Most e-commerce platforms calculate a ranking index and
a reputation factor for sellers using the number of actions, e.g.
clicks, purchases, and reviews. In general, items with a better
ranking index will be listed in the front of the search results,

∗Zhao Li and Weiwei Liu are corresponding authors.
1https://investors.ebayinc.com/overview/default.aspx
2https://www.alibabagroup.com/cn/ir/earnings 2018.php

Service Description 

Spam Search & 
Clicking 

Spammers use specific query to complete a search 
link and click target items, attemping to promote 

Click through Rate (CTR) and the number of clicks. 

Spam Add-to-Cart 

Spammers seek a specific item or service in a 
fraudulent way, then add target item into online 
shopping cart. Their purpose is to fake Add-to-

Cart factor and receive over exposures. 

Spam Transactions 

Spammers are asked to make certain transactions 
in a specified manner and charge fraudulent 

merchants a certain amount of label cost. This 
behavior attempts to hack ranking mechanisms. 

Spam Product 
Reviews 

Spammers evaluate products with serious bias. 
Usually they put unreal reviews aiming to mislead 

consumers’decisions. 

Two-day Task 
First add target item into online shopping cart, and 

then create a spam transaction on the next day 
… … 

 

Figure 1: Some services that a malicious service platform provides.
The dishonest merchants can freely select different combinations of
these services, e.g. Two-day Task.

and buyers prefer those items with a good reputation. Regu-
lar ways to boost these measurements include providing high-
quality items, good services, and advertising, which usually
take much effort. It motivates some malicious merchants to
promote their items by spam actions. Such dishonest behav-
iors lead to serious consequences: 1) for the customers, they
are misled to purchase items seemingly only good on num-
bers over quality; 2) for regular sellers, their incomes are di-
rectly affected, which causes unfair competition; 3) for the
e-commerce platforms, it increases the difficulty of recogniz-
ing good sellers and decreases the advertising revenues. As
demonstrated in [Tian et al., 2015], the malicious promotion
has caused hundreds of millions of dollars loss worldwide.

To deal with this problem, e-commerce platforms usually
treat the fraud detection task as a binary classification prob-
lem, i.e., detecting fraud ones from an extremely huge num-
ber of users. For example, some algorithms [Li et al., 2014;
Tian et al., 2015; Vlasselaer et al., 2017] propagate the label
information on the user adjacency graph to discover the ab-
normalities. However, in reality, a fraud user may perform
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multiple species of fraud operations simultaneously, such as
spam transactions, clicks, reviews and so on. As illustrated
in Figure 1, the third-party fraud platforms will provide some
combinational fraudulent strategies. Hence, a simple binary
classification model is less powerful to deal with such rich
labeling information.

To bridge this gap, we propose to assign each user multi-
ple fraud labels. Moreover, since there are hundreds of mil-
lions of users, fully-annotation is impossible and only a few
labeled data is available. Hence, it is formalized to a semi-
supervised multi-label learning (SSML) problem. A straight-
forward solution is binary relevance [Zhang and Zhou, 2014],
that decomposes the original problem to a series of semi-
supervised binary classification tasks. Despite its simplic-
ity and computational efficiency, it ignores the correlations
among the labels and the predictive performance is limited.
Utilizing off-the-shelf SSML methods [Kong et al., 2013;
Wang and Tsotsos, 2016; Tan et al., 2017] seems to be an ap-
pealing strategy. However, most of them are either incompat-
ible for e-commerce tasks or incapable of handling instance-
level large-scale datasets.

Consequently, this paper proposes a novel collaboration
based multi-label propagation method (CMLP) for large-
scale SSML fraud detection task. First of all, we present
a generic version that only propagates the independent la-
bel information and recovers the original labels by collabo-
ration. To accommodate the large-scale e-commerce data, we
employ the user-item interaction matrix as a bipartite graph
to detect the communities and propose a scalable heteroge-
neous graph propagation variant of CMLP (H-CMLP). Fur-
thermore, we rigorously prove that the resultant algorithm
actually propagates information using Adamic-Adar weight.
Extensive experiments demonstrate that the proposed method
not only outperforms on ordinary multi-label datasets, but is
effective and scalable on large-scale e-commerce dataset.

The main contributions of this work include: 1) A generic
semi-supervised multi-label learning method CMLP is pro-
posed. It integrates the collaboration and label propagation
techniques to fully utilize the label dependencies and latent
data distribution. 2) To handle e-commerce data, we acceler-
ate CMLP by propagating information on the user-item graph
directly. 3) Both theoretical analysis and empirical results
verify the efficiency and effectiveness of our method.

2 Related Work
2.1 Fraud Detection
Malicious promotion is one of the major threats faced by e-
commerce platforms. Dishonest merchants usually employ
many fraud users to create unreal transactions, clicks, reviews
and so on. To find out these fraud users, various detection
algorithms have been proposed. One of the most popular ap-
proaches [Li et al., 2014; Tian et al., 2015; Tseng et al., 2015;
Hu et al., 2017; Vlasselaer et al., 2017] focuses on graph-
based fraud detection. Other detecting techniques include
mixture model based methods [Bahrololum and Khaleghi,
2008], deep neural network models [Guo et al., 2019] and
so on. However, they cannot be directly applied to our prob-
lem for two reasons. First, many of them are either dedicated

to one specific platform or designed for other application do-
mains, e.g. click fraud [Li et al., 2014], phone call fraud
[Tseng et al., 2015] and so on. Second, existing fraud detec-
tion methods can handle single-label classification problems
only.

2.2 Semi-Supervised Multi-Label Learning
Multi-label learning (MLL) [Chen and Lin, 2012; Zhang and
Zhou, 2014; Liu and Tsang, 2017; Liu et al., 2019] assumes
that each data example is associated with multiple labels si-
multaneously. Most existing MLL methods focus on a full-
supervised setting. However, in real-world applications, it
is expensive and difficult to obtain precisely annotated data.
Therefore, semi-supervised multi-label learning (SSML) has
significantly attracted the attention of researchers. To learn
from both unlabeled and multi-labeled data, some algorithms
[Zhan and Zhang, 2017] involve co-training technique in
SSML, but they work well only when the conditional inde-
pendence assumption holds. Another practical solution re-
lies on utilizing the graph structure of data. For instance,
manifold regularization based approaches [Jing et al., 2015;
Tan et al., 2017] explore the topological structure of data; la-
bel propagation based methods [Kang et al., 2006; Kong et
al., 2013] aggregate the neighbor information iteratively. Al-
though these graph-based methods are promising on ordinary
multi-label data, they are time-consuming and impractical in
e-commerce fraud detection task. Specifically, manifold reg-
ularization algorithms usually require complex optimization
techniques, and thus are demanding in large-scale datasets.
Moreover, all of them are designed to run on the user-user
adjacency graph, which is usually dense and large.

Note that that there are also some works study large-scale
MLL problems [Bhatia et al., 2015]. However, they focus on
the eXtreme Multi-Label learning (XML) setting, i.e. there
are extremely many labels. We concentrate on the instance-
level large-scale problem, because a malicious service plat-
form usually provides only dozens of kinds of services.

3 Proposed Method
In this section, we first introduce a generic solution to SSML,
i.e. collaboration based multi-label propagation algorithm
(CMLP). Then, to make it feasible in large-scale e-commerce
data, we accelerate it by propagating label information on a
heterogeneous graph directly.

3.1 Collaboration Based Multi-Label Propagation
We denote the instance matrix by X ∈ Rn×p. The tar-
get matrix of labeled data is denoted by Y ∈ {−1,+1}l×q
(q � n). Given an undirected graph G = 〈E, V,W 〉,
vanilla label propagation method iteratively updates the la-
bels of one certain node by aggregating its neighbor’s la-
bel information. Here E, V are edge, vertex sets, respec-
tively. W = [wij ]n×n is a non-negative weight matrix. Let
P = D−1/2WD−1/2 be the propagation matrix by normal-
izing the columns of W , where D = diag[d1, d2, ..., dn] is a
diagonal matrix with di =

∑n
j=1 wij . Denote the model out-

put by F =
[
F l

Fu

]
∈ Rn×q , where F l ∈ Rl×q . According to
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[Zhou et al., 2003], on t-th round, the updating procedure of
vanilla label propagation algorithm is as follows,

Ft+1 = ((1− β − βµ)I + βP )Ft + βµỸ (1)

where Ỹ =
[
Y
0

]
and F0 = Ỹ . Here β is the learning rate

and µ is a regularization parameter.
In multi-label setting, such a simple strategy fails to uti-

lize the label correlations and achieves degenerated perfor-
mance. To cope with this limitation, CMLP makes a collab-
orative assumption [Feng et al., 2019] that the prediction for
an individual label consists of two parts: its own prediction
and the prediction of others. We involve a correlation matrix
R = [rij ]q×q where rij reflects the contribution of i-th label
to j-th label and rii = 0, i.e. there is no collaboration from
the label itself. Suppose the desired method gives an ordinary
prediction f(X), the final prediction is made by,

Ŷ = (1− α)f(X) + αf(X)R (2)

That is, the final output absorbs the prediction of other labels
in a collaborative fashion. By regarding the ground-truth of
labeled data as final prediction, CMLP estimates R by,

min
rj

||((1− α)yj + αY rj)− yj ||2 + γ||rj ||2

s.t. rjj = 0
(3)

where yj , rj denote the j-th columns of Y , R. Here α is
the collaboration degree, a tradeoff parameter between the
original prediction and the collaborative prediction. γ is the
regularization parameter. By simple reformulation, it can be
transformed to a standard ridge regression problem and there-
fore can be efficiently solved.

Recall the main drawbacks of existing multi-label propaga-
tion algorithms that they are either time-consuming or inca-
pable of exploiting label dependencies. To tackle these prob-
lems, we propose an effective method that propagates only
the independent part of labels instead of original label infor-
mation. By assigning an intermediate variable Z ∈ Rl×q to
the labeled instances, CMLP aims to optimize the following
objective,

L(F ,Z) =
1

2
(

n∑
i,j=1

wij ||
1√
dii

f i − 1√
djj

f j ||2)

+
1

2
µ||F l −Z||2F +

1

2
λ||ZQ− Y ||2F

(4)

where Q = (1 − α)I + αR, µ and λ are trade-off parame-
ters. f i is the i-th row vector of F . || · ||F is the Frobenius
norm. To be more specific, CMLP simultaneously solves two
subproblems: 1) propagating independent label information
Z on the graph; 2) fitting the final predictions using corre-
lation matrix R. Such an objective not only encourages the
mutuality of these two subproblems, but enables our method
to be highly scalable.

In this work, we initialize the variables by F0 =
[
Y
0

]
and

Z0 = Y . Since Eq. (4) is a biconvex problem, it can be
solved in an alternating way.

Updating F With Fixed Z
When Z is fixed, the remaining items constitute an objective
of soft label propagation algorithm with independent label Z.
We first derive the gradient by,

∂L(F ;Zt)

∂F
= F − PF + µ(F − Z̃t) (5)

where Z̃t =
[
Zt
0

]
. Then we perform a gradient descent step

with learning rate β for F such that,

Ft+1 = Ft − β(Ft − PFt + µ(Ft − Z̃t))

= ((1− β − βµ)I + βP )Ft + βµZ̃t

(6)

Updating Z With Fixed F
With F being fixed, the optimization problem reduces to,

min
Z

1

2
µ||F l −Z||2F +

1

2
λ||ZQ− Y ||2F (7)

A closed-form solution can be obtained by setting the gradi-
ent to zero,

Zt+1 = (F l
t+1 + ηY Q>)(I + ηQQ>)−1, η =

λ

µ
(8)

When the iterations end, we have to transform the output
to final prediction Ŷ u = Ψ(F uQ). Here Ψ is a post-process
operator, consisting of normalization and binarizing.

Time Complexity
The main computation of our method lies in the iteratively
propagating labels on the graph. In Eq. (6), the matrix prod-
uct of P and Ft dominates and takes O(qn2), which is the
same as vanilla LP method. As for Eq. (8), ηY Q> and
(I+ηQQ>)−1 can be pre-computed with only few computa-
tion. Thus, updating Z requires O(lq2) and is much cheaper
than updating F . In this paper, we do not consider extreme
classification setting, and thus q � n. We conclude that our
algorithm is as fast as the original LP method with time com-
plexity O(qn2) in each iteration.

Compared to other state-of-the-art multi-label propagation
algorithms, our method is more scalable. For instance, CLP
[Kang et al., 2006] solves a constrained optimization prob-
lem in each iteration, which is infeasible in large-scale semi-
supervised MLL problems. Our updating procedure only
requires simple matrix operations and can be highly paral-
lelized to achieve good scalability.

3.2 Heterogeneous Graph Propagation
Yet, we proposed a generic correlation-aware propagation al-
gorithm for ordinary SSML tasks. In effect, the graph can be
collected in a variety of ways, e.g. k-nearest neighbor adja-
cency graph [Wang and Tsotsos, 2016], webpage links [Wu et
al., 2014; Wu et al., 2015] and so on. In the e-commerce fraud
detection scenario, our goal is to determine whether a user
has some fraud behaviors. In general, malicious merchants
will hire many fraud users to buy the same items. Therefore,
a natural choice is to synthesize a user-user mapping (U-U
graph) from the user-item bipartite graph (U-I graph), i.e. two
users are connected to each other if they are interested in the
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(a) User-Item Graph

 

(b) User-User Graph

Figure 2: An example of User-Item graph and the corresponding
User-User graph. The U-I graph has 12 edges and the U-U graph
has 24 edges. The popular item chocolate is linked to seven users,
and thus the U-U graph contains a complete subgraph with seven
nodes. The red lines in U-I graph represent fraud behaviours.

same item. Though this strategy avoids building a graph ex-
plicitly, which is usually time-consuming, we observe that it
gives a really dense graph in practice (Figure 2). In many
e-commerce platforms, a popular item can be connected to
millions of users. Thus, U-U graph may contain many com-
plete subgraphs and the number of edges grows dramatically.
As we discussed above, the main computation cost of CMLP
lies in the propagation procedure, i.e. aggregating label infor-
mation from adjacent nodes. Thus, it will be demanding in
large-scale datasets.

To alleviate this problem, we present a heterogeneous
graph propagation (H-CMLP) approach, which detects com-
munities on U-I graph directly. For simplicity, we concentrate
on the propagation part in Eq. (6), i.e. At+1 = PFt. The
calculation of At+1 can be divided into two steps. In the first
step, for each item, we aggregate information from its neigh-
bor users. Denote the temporary label vector for an item ek
by sk. On t-th round, it is updated by,

skt =
∑

j∈N (ek)

f j
t (9)

where N (ek) is the index set of users that connect to ek, and
f j
t is the j-th row vector in Ft. In the second step, H-CMLP

propagates the labels back to the users. Formally, for i-th user
ui, its propagation part ai

t+1 is calculated by,

ai
t+1 =

∑
k∈N (ui)

sk
t−f

i
t

log(|N (ek)|)∑
k∈N (ui)

|N (ek)|−1
log(|N (ek)|)

(10)

Here | · | denotes the capacity of a set and log(·) is natural
logarithm.
Lemma 1. The updating rule defined by Eq. (9) and Eq. (10)
is equivalent to propagating information on U-U graph using
Adamic-Adar weight.

Proof. Consider a U-U graph based LP method that adopts
Adamic-Adar [Adamic and Adar, 2003; Benson and Klein-
berg, 2019], a common measure in graph mining problems,

to represent the weight between two users ui, uj ,

wij =
∑

k∈N (ui)∩N (uj)

1

log(|N (ek)|) (11)

In words, we expect that more sharing items lead to larger
weight, while more popular item results in smaller contribu-
tion. The propagation part is produced as follows,

ai
t+1 =

∑
j∈Φ(i) wijf

j
t∑

j∈Φ(i) wij
, Φ(i) = {j|N (ui) ∩N (uj) 6= ∅}

(12)

Define Hg,h(i, j, k) =
∑

j∈Φ(i)

∑
k∈N (ui)∩N (uj) h(k)g(j)

with given function h and g. Namely, once there is
an item ek shared by ui and uj , it contributes h(k)g(j)
to Hg,h(i, j, k). Actually, we can reformulate it to
Hg,h(i, j, k) =

∑
k∈N (ui)

h(k)
∑

j∈N (ek),j 6=i g(j). Note
that in Eq. (12), the numerator is a typical H function with
h(k) = (log(|N (ek)|)−1 and g(j) = f j

t . The denominator is
also anH function with a same h and g(j) = 1. We conclude
that Eq. (12) can be rewritten to,

ai
t+1 =

∑
k∈N (ui)

∑
j∈N(ek),j 6=i f

j
t

log(|N (ek)|)∑
k∈N (ui)

(|N (ek)|−1)
log(|N (ek)|)

(13)

We observe that
∑

j∈N (ek),j 6=i f
j
t = skt − f i

t . Hence, Eq.
(12) is equivalent to Eq. (10) and the lemma is proved.

Time Complexity
According to Eq. (12), original CMLP takes O(2q|E|) time,
i.e. summing up the degree number of all the nodes, to up-
date the labels of each node. When the U-U graph is dense,
e.g. many users are interested in some popular items, |E|
can be extremely large. However, in heterogeneous graph
setting, each propagation step travels all the edges on U-I
graph. Thus, the time complexity isO(2q|Ê|), where Ê is the
edge set of U-I graph. As illustrated in Figure 2, |Ê| is much
smaller because user-item interactions are usually sparse.

4 Experiments
4.1 Ordinary Multi-Label Data
To show the effectiveness of our collaboration technique, we
test CMLP on some ordinary multi-label datasets.

Datasets
We choose four real-world multi-label datasets from different
task domains: 1) Medical [Pestian et al., 2007]: a text dataset
contains clinical free texts, each of which is with 45 ICD-
9-CM labels, from CCHMC Department of Radiology. 2)
Image [Wang et al., 2019]: a collection of 2, 000 images that
are annotated by 5 labels. 3) Slashdot [Read et al., 2009]: a
web text dataset collects 3, 782 technology-related news from
22 categories. 4) Eurlex-sm [Loza Menc’ia and Fürnkranz,
2008]: a large text dataset contains 19, 348 legal documents
about European Union law, having 201 subject matters tags.

All the datasets are randomly partitioned to 5% labeled
data and 95% unlabeled data. In this paper, we focus on

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2480



Dataset Ranking Loss↓
CMLP Vanilla-LP SMILE TRAM CPLST DeepFraud

Image .2569±.0123 .2741±.0088 .4391±.0230 .2823±.0220 .3018±.0133 .5917±.0434
Medical .1158±.0205 .1814±.0280 .2064±.0194 .1974±.0120 .1747±.0196 .6836±.0302

Eurlex-sm .0454±.0013 .0544±.0033 .1002±.0045 .1528±.0033 .1791±.0045 .5472±.0064
Slashdot .1691±.0034 .1914±.0038 .2558±.0045 .1860±.0057 .2088±.0082 .8327±.0130

Dataset Example-F1↑
CMLP Vanilla-LP SMILE TRAM CPLST DeepFraud

Image .5240±.0154 .5082±.0078 .3966±.0187 .4430±.0190 .4320±.0211 .4187±.0434
Medical .4946±.0129 .4617±.0180 .2860±.0353 .4119±.0270 .4032±.0370 .3204±.0274

Eurlex-sm .5946±.0056 .5864±.0063 .3599±.0091 .2688±.0068 .2448±.0067 .4700±.0065
Slashdot .3537±.0160 .3355±.0218 .2467±.0089 .3423±.0202 .2414±.0185 .1688±.0132

Dataset Macro-F1↑
CMLP Vanilla-LP SMILE TRAM CPLST DeepFraud

Image .5199±.0135 .5024±.0086 .3291±.0288 .3996±.0275 .4638±.0116 .4618±.0592
Medical .1444±.0072 .1392±.0179 .0416±.0092 .0649±.0299 .0838±.0085 .0923±.0136

Eurlex-sm .2866±.0090 .2705±.0072 .1226±.0092 .3517±.0027 .0249±.0009 .1951±.0076
Slashdot .1875±.0152 .1719±.0053 .1319±.0045 .1585±.0151 .0926±.0145 .0963±.0056

Dataset Micro-F1↑
CMLP Vanilla-LP SMILE TRAM CPLST DeepFraud

Image .5181±.0188 .5016±.0082 .4075±.0202 .4367±.0178 .4651±.0216 .4760±.0412
Medical .4854±.0141 .4565±.0224 .2822±.0352 .4115±.0172 .5250±.0156 .4287±.0229

Eurlex-sm .5670±.0128 .5622±.0090 .3553±.0125 .3808±.0120 .3032±.0100 .5595±.0044
Slashdot .3133±.0083 .3042±.0177 .2227±.0056 .3342±.0201 .3177±.0142 .2462±.0163

Table 1: Transductive performance comparison on ordinary multi-label datasets. The best ones are in bold.

(a) α (b) λ

Figure 3: Performance of CMLP changes as parameters α and λ
change on Slashdot dataset.

the transductive setting. We conduct these experiments for 5
times and the mean metric values with standard deviations are
provided. In this work, we use four popular multi-label eval-
uation metrics [Zhang and Zhou, 2014], i.e. Ranking Loss,
Example-F1, Macro-F1, and Micro-F1.

Benchmarks
The baselines include three state-of-the-art SSML methods
and two supervised MLL algorithms: 1) Vanilla-LP [Zhou
et al., 2003]: Vanilla label propagation algorithm utilizes the
smooth property between labeled and unlabeled data to de-
sign a classifying function. It can also be regarded as a bi-
nary relevance model with LP model as the base classifier. 2)
SMILE [Tan et al., 2017]: SMILE explores second-order la-
bel correlations by estimating a label correlation matrix from

labeled data. Then it trains a linear multi-label classifier with
manifold regularizer. 3) TRAM [Kong et al., 2013]: TRAM
is a popular SSML algorithm that uses a hard label strategy
to find out communities on the graph. 4) CPLST [Chen
and Lin, 2012]: CPLST is a supervised MLL method that
combines the concepts of principal component analysis and
canonical correlation analysis. 5) DeepFraud [Guo et al.,
2019]: DeepFraud is a deep neural network based fraud de-
tection algorithm, which can deal with single-label problems
only. Hence, we decompose the SSML problem into a set of
single-label classification tasks to run this method.

Inspired by [Wang et al., 2019], we build a k-NN adjacency
graph and the weight matrix is learned by reconstructing each
instance using its neighbors. When building graphs, k is set
as 20. For our methods, γ is selected from {0.1, 1, 10, 100}.
α is chosen from {0.01, 0.05, 0.1, 0.2, 0.5}. β, λ and µ are
empirically fixed to 0.1. For Vanilla-LP, β and µ are the same
as CMLP. The parameter α and s in SMILE are both set as
0.5. For DeepFraud, we apply a three layer neural network
with ReLU activation. The hidden size is set as 128. The
learning rate and regularization parameter are set as 0.001
and 0.5. Other parameters of the baselines are set to their
recommended values in their papers.

Results
Table 1 lists the transductive results on all the datasets. Figure
3 reports the parameter sensitivity of α and λ. From the em-
pirical results, we conclude that: 1) CMLP generally achieves
the best performance. For instance, on Image dataset, in
terms of Example-F1, Macro-F1 and Micro-F1, CMLP im-
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Method Ranking Loss↓ Example-F1↑ Macro-F1↑ Micro-F1↑
H-CMLP .0419±.0001 .3828±.0026 .3220±.0015 .5243±.0071
HV-LP .0424±.0001 .3616±.0064 .3078±.0102 .5131±.0064

H-TRAM .0515±.0013 .2801±.0039 .1884±.0021 .4610±.0077
DeepFraud .0445±.0009 .3769±.0046 .1713±.0081 .5071±.0060

Table 2: Transductive performance comparison of three graph-based algorithms on Taobao-FUD dataset. The best ones are in bold.

Property ]User ]Item ]U-I Edges ]U-U Edges ]Label
Value† 72M 80 M 877 M > 100 B 4
† M, B represent million, billion.

Table 3: The characteristics of Taobao-FUD dataset.

proves the best results of the baselines by 3.1%, 3.5% and
3.3%. 2) Vanilla-LP and TRAM underperform our method,
because they neglect the correlations among labels. 3) The
effectiveness of SMILE is limited since it exploits the second-
order correlations only. 4) CPLST and DeepFraud are inferior
to other methods because they ignore the distribution infor-
mation of unlabeled data. 5) α has a significant influence on
the final performance. Empirically, relatively small α leads to
good performance. Moreover, CMLP is relatively stable with
varying values of λ.

4.2 E-commerce Fraud Data
Experimental Setting
The other experiment is conducted on a large-scale e-
commerce dataset Taobao-FUD. Taobao-FUD collects an
interaction matrix from more than 72 million users and 80
million items. Each user is equipped with four binary labels
{Transaction, Cart, Click, Review}, indicating whether the
users have corresponding fraud behaviors on some items. If
we construct a U-U graph from Taobao-FUD, the number
of edges can be larger than 100 billion. Obviously, mining
on such an extremely large graph is impossible. To verify
the time efficiency of H-CMLP, we sample some user subsets
with capacities of {1 K, 5 K, 10 K} (1 K = 1000) to construct
three subgraphs and report the running time of H-CMLP and
Vanilla-LP. Then, to compare the predictive performance, we
implemented heterogeneous versions of Vanilla-LP (HV-LP)
and TRAM (H-TRAM). We randomly select 5% examples
as labeled data and the rest are used to evaluate the trans-
ductive performance. The statistical information of Taobao-
FUD can be found in Table 3.

Note that SMILE and CPLST are incapable of dealing with
instance-level large-scale data. Thus, we choose Vanilla-LP,
TRAM, and DeepFraud as the benchmarks. Nevertheless,
there are only graph-structured data in Taobao-FUD dataset,
and DeepFraud cannot be applied directly. Therefore, we
firstly extracts user embeddings using GraphSAGE on the U-I
Graph and then feed them into DeepFraud model. The param-
eter setup and evaluation metrics are the same as last subsec-
tion. The computations are performed on MaxCompute plat-
form, a fast, distributed and fully hosted GB/TB/PB level data
warehouse solution. We use three computation instances for

Method
Capacity 1K 5K 10K

H-CMLP 50.8 52.5 53.8
Vanilla-LP 234.2 501.0 2712.8

Table 4: Average time on an iteration (in seconds) of H-CMLP and
Vanilla-LP on different subsets.

time comparison and 3000 instances for performance com-
parison.

Results
Table 2 reports the transductive performance of all the meth-
ods on Taobao-FUD. From the results, we observe that H-
CMLP is the most successful method. In terms of Micro-F1,
Macro-F1, and Example-F1, H-CMLP improves the best re-
sults of the baselines by 1.6%, 4.6%, 2.2% respectively. The
results demonstrate that the proposed method can effectively
address the fraud detection task because our collaboration
technique can sufficiently exploit the label correlations.

Table 4 shows the average running time on each iteration of
H-CMLP and Vanilla-LP on three subgraphs. For H-CMLP,
the running time has no obvious fluctuation. The reason is the
size of U-I graph is really small, and the main computation
is the scheduling procedure of MaxCompute. For Vanilla-LP,
the U-U graph is much larger, and thus its running time grows
quickly. By these observations, we conclude that our method
can efficiently address the multi-label fraud detection task.

5 Conclusion
The huge success of online shopping motivates dishonest sell-
ers to illegally promote their reputations. In general, these
malicious merchants will hire many fraud users to create dif-
ferent kinds of spam actions concurrently. To tackle this prob-
lem, we treat the fraud user detection task as semi-supervised
multi-label learning (SSML) problem and propose a scalable
graph-based SSML algorithm. We first introduce a generic
version that decomposes the final prediction to an indepen-
dent part and a collaborative part. Then, to accommodate
large-scale e-commerce data, we accelerate it by detecting
communities on the user-item interaction graph directly. Ex-
tensive experiments demonstrate that our method can effec-
tively and efficiently handle both ordinary SSML problems
and fraud detection task.
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