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Abstract

Urban traffic light control is an important and chal-
lenging real-world problem. By regarding intersec-
tions as agents, most of the Reinforcement Learn-
ing (RL) based methods generate actions of agents
independently. They can cause action conflict and
result in overflow or road resource waste in ad-
jacent intersections. Recently, some collaborative
methods have alleviated the above problems by
extending the observable surroundings of agents,
which can be considered as inactive cross-agent
communication methods. However, when agents
act synchronously in these works, the perceived ac-
tion value is biased and the information exchanged
is insufficient. In this work, we propose a novel
Multi-agent Communication and Action Rectifica-
tion (MaCAR) framework. It enables active com-
munication between agents by considering the im-
pact of synchronous actions of agents. MaCAR
consists of two parts: (1) an active Communica-
tion Agent Network (CAN) involving a Message
Propagation Graph Neural Network (MPGNN); (2)
a Traffic Forecasting Network (TFN) which learns
to predict the traffic after agents’ synchronous ac-
tions and the corresponding action values. By using
predicted information, we mitigate the action value
bias during training to help rectify agents’ future
actions. In experiments, we show that our proposal
can outperforms state-of-the-art methods on both
synthetic and real-world datasets.

1 Introduction

Urban Traffic Light Control (TLC) is a critical and challeng-
ing real-world problem, which aims to maximize the traffic
efficiency with limited urban road resource and avoid traffic
conflict inside intersections. Finding an appropriate TLC ap-
proach can significantly mitigate traffic congestion and bring
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in significant economic, environmental and societal benefits
[Wei et al., 2018].

Most of the recently proposed reinforcement learning (RL)
based methods [Wei et al., 2018; Nishi et al., 2018; Casas,
2017] were focusing on independently controlling intersec-
tions in the same road network. In these works, the observ-
able surrounding of an agent is limited to itself, which may
cause action conflict between agents and deviate action value
from expectation. One example of this action conflict is in-
creasing green-light time in directions suffering heavy traffic
can significantly mitigate the traffic. However, it may cause
severe congestion in adjacent regions if the adjacent agents
cannot adjust themselves in time. Such congestion often oc-
curs because traffic changes caused by agent action changes
can be rapid and abrupt.

To overcome this problem, some collaborative optimiza-
tion based works [Van der Pol and Oliehoek, 2016; Nishi et
al., 2018; Chu et al., 2019; Wei ef al., 2019b] were proposed
recently. These works mitigate the action conflict problem
mainly by expanding the observable surroundings of agents.
It can be seen as establishing an inactive communication
mechanism between agents, in which agents can obtain not
only the traffic state of themselves but also adjacent inter-
sections. This mechanism is inactive because agents do not
directly share decision information such as actions and agent
states, but share noised responses of the road network.

There are two shortcomings of this inactive communica-
tion mechanism. First, agents cannot know each other’s new
actions before perceiving the traffic changes in this inactive
communication mechanism. Hence, the perceived action val-
ues of agents are biased, since agents perceive traffic pat-
tern changes always lag behind action change. Secondly, the
information propagated is insufficient for collaborative opti-
mization, because the shared information only includes the
surrounding traffic states, but not includes important agent
decision information such as historical actions.

In this work, we propose a novel Multi-agent Communi-
cation and Action Rectification (MaCAR) framework, which
consists of two parts. The first part is a Communication
Agent Network (CAN) with a Message Propagation Graph
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Neural Network (MPGNN) based active communication net-
work. The purpose of CAN is to generate actions considering
other agents’ actions and states. By introducing the action in-
formation, agents can effectively learn the traffic pattern un-
der the corresponding action, helping reduce the action space
and improve model performance. The second part of MaCAR
is a novel Traffic Forecasting Network (TFN). TFN forecast
the traffic of the whole road network under agents’ new ac-
tions, together with the corresponding action values. Using
this predicted information, we further amend the action value
of agents during training to mitigate action value deviation.

We carried out experiments on both synthetic and real-
world datasets to evaluate the performance of MaCAR. Ex-
perimental results demonstrate that by introducing the active
communication mechanism and taking advantage of traffic
forecasting information, our proposal can achieve superior
performance against the state-of-the-art methods.

We summarize the contributions of this work as follows:

1. We focus on the action conflict problem in previous in-
dependent RL methods, which can leads to severe con-
gestion at adjacent intersections when multiple agents
act synchronously.

2. In this work, we propose a novel Multi-agent Commu-
nication and Action Rectification (MaCAR) framework
to control multiple agents collaboratively. MaCAR con-
sists of two components: (1) a novel Message Prop-
agation based Communication Agent Network (CAN),
which generates coordinated actions via an active cross-
agent communication mechanism; (2) a novel Traffic
Forecasting Network (TFN) which helps to rectify ac-
tion against action value bias.

3. In experiments, we demonstrate that our proposal can
achieve state-of-the-art performance on both synthetic
and real-world datasets by involving the active commu-
nication mechanism and take advantage of traffic fore-
casting information.

2 Related Works

2.1 Reinforcement Learning based Traffic Light
Control

Independent Control v.s. Collaborative Control

Most recently proposed methods [Aslani et al., 2017; Wei et
al., 2018; Zheng et al., 2019; Chen et al., 2020] were focus-
ing on optimizing agent independently, in which an indepen-
dent RL agent is compelled to control a certain intersection
without noticing other agents’ existing. However, as part of
the whole road network, the impact of other agents cannot be
completely blocked out in real-world applications.

To mitigate this problem, some collaborative control based
methods were proposed recently [Lee ef al., 2019; Van der
Pol and Oliehoek, 2016; Wei et al., 2019b]. Wei et al. [2019b]
proposed the CoLight, an independent TLC algorithm with
inactive communication mechanism. Their inactive commu-
nication mechanism extended agent’s receptive field to help
make coordinated action. Agents do not share decision infor-
mation directly in their work, but rather share the road net-
work’s responses to historical actions. Therefore, agents do
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Figure 1: Framework of the Multi-agent Communication and Action
Rectification (MaCAR).

not know the latest actions of other agents until it feels the
traffic changes, resulting in a possible action conflict. Differ-
ent from them, MaCAR is a multi-agent collaborative control
based method with an active communication mechanism. In
MaCAR, we use the traffic prediction information to actively
rectify agents’ future actions during training by alleviating
action value bias caused by other agents’ actions.

Adaptive Control v.s. Pre-defined Phase Scheme

Most recently proposed RL methods [Wei et al., 2018;
Nishi et al., 2018; Wei et al., 2019a; Wei et al., 2019b;
Aslani et al., 2017; Casas, 2017] were based on adaptive con-
trol strategy in which agent selects whether switch the permit-
ted phase (lanes) per second based on traffic situation. Adap-
tive control provides excellent controllability since the per-
mitted phase can be switched in seconds. However, frequent
phase switching may cause traffic accidents and significantly
affect the driving experience. To avoid bad driving experi-
ence and traffic accidents caused by a sudden phase switch-
ing, some pre-defined phase scheme based RL approaches
[Aslani er al., 2017; Casas, 2017] were proposed. A typical
phase scheme consists of a fixed phase execution cycle and
the corresponding execution time list. The agent’s action is to
adjust the phase execution time. Similarly, MaCAR using a
pre-defined phase scheme based control strategy to provides
practicability in real-world applications.

2.2 Graph Neural Network

Recently proposed GNNs can be divided into two categories,
spectral-based (mainly GCN based) methods [Li er al., 2018;
Yu et al., 20191, and Message Propagation based methods
[Battaglia er al., 2018; Wei et al., 2019c]. A typical GCN
based model that trained on a specific graph could not be
directly applied to a graph with a different graph [Zhou et
al., 2018]. Hence, plain GCNSs is inconvenient in a TLC sce-
nario because multiple agents’ actions can change the weight
of each road tremendously. More recently, several Message
Propagation based methods were proposed to solve this prob-
lem [Wei et al., 2019¢]. Similarly, MaCAR uses Message
Propagation based neural networks to model dynamic graphs
from traffic.
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Figure 2: Sketch of the Communication Agent Network (CAN).

3 Our Method

We first introduce some notations and terms. We define term
period as the time length of executing all phases once. For
simplicity, we set the period length of all intersections as P
to ensure agents’ synchronous actions. The action applied in
period t is defined as a(®), and its corresponding perceived
action value is defined as v(*). The adjacent intersection set
of intersection n is defined by N (n), and it is obtained from
the road network topology G.

The input traffic state q(*) is a tensor contains the queue
lengths of all roads in the road network after ¢-th period. Our
purpose is to minimize the queue length q*) of the whole
road network, which is a common practice in previous works.
To achieve that, we use a concatenated tensor contains the
input traffic state and the corresponding actions of the past M
periods as input, and we denote this concatenated tensor as
{{q, a}(t_M), +1{4q, a}(t_l)}, where M is a training interval
hyper-parameter selected by practice.

To provide good agent customization capability in real-
world applications and avoid causing bad driving experience
and traffic accidents, we use pre-defined phase scheme based
control strategy in MaCAR. A typical action of MaCAR is
to redefine the intersection’s phase execution time list at the
beginning of a new period. The pre-defined phases can be
hand-crafted by experts according to real-world applications.

3.1 Communication Agent Network

The framework of MaCAR has shown in Figure 1, the first
part is the Communication Agent Network (CAN). CAN
is a multi-agent action generation network consisting of an
MPGNN based central active communication network and
several customized agent subnets, as shown in Figure 2. In
CAN, the embedding of the previous M periods’ traffic states
and its corresponded actions are extracted and propagated via
the active communication network, and then feed into the cus-
tomized agent subnets. By introducing the decision informa-
tion, we impel the model to learn the message propagation
pattern while considering the impact of agents’ actions.
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Active Communication Network
The active communication network of CAN is formed by
several linear layers and Message Propagation based Graph
Neural Networks (MPGNNs) which is designed by follow-
ing the strong discriminant graph theory proved by Xu et
al. [2019]. MPGNN learns the spatio-temporal message
propagation mechanism between agents.

MPGNN has a multi-layered network architecture, which
can learn complex propagation pattern with a wide receptive
field. Formally, the feature embedding of intersection n in

k-th layer h¥is:
> by, (1)
ueN(n)

hy = fo((14 €9hE™ +m), )

where mX is the aggregated message received from adjacent
intersections of intersection n in k-th layer. f, and f, is the
propagation and aggregation function respectively, both of
them are learned by using a neural network consists of two
linear layers. ¥ is a learnable parameter which helps to gen-
erate discriminant graph representation. The input intersec-
tion features {{d,a,}*™, ... {qn,a, }*" D} are defined
as h¥. The output of the last layer of MPGNN h°" is a graph
embedding contains all aggregated features {h%"* | n € G}.
Based on MPGNN, we establish the active communication
network to learn the message aggregation and propagation
among agents under certain actions, as shown in Figure 2. We
then feed the output into agent subnets to generate actions.

Customized Agent Subnet
To fit different types of intersection’s traffic light settings,
agents in CAN are still decentralized agents. The intersection
number determines the number of customized agent subnets.
Meanwhile, agent subnet is customized according to the cor-
responding intersection settings, such as its channelization or
direction number. By doing so, MaCAR can fit most existing
intersection settings and commonly used control strategies.
Each agent (subnet) of CAN learns a continuous action dis-
tribution P. We then sample action from the learned distribu-
tion using following equations:

Sample ag) ~ Pn(fn(hout))v (3)
agf) = softmax(« agf)), )

where n is the intersection index, f,, learns the mapping from
the global feature embedding h°"* to the mean and variance
of action distribution P,,.

Action sampled from the continuous distribution P is first
uniformed by using a uniform multiplier &« > 0, and then

rescaled by using a Softmax function to generate the new

phase executing time ratio a( D, At last, we multiply an ) and

P to get the new execution time list.

3.2 Traffic Forecasting Network

The second part of MaCAR is the Traffic Forecasting Net-
work (TFN), which aims to predict the future traffic and the
action value of the given actions. By using this forecasting
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Figure 3: Sketch of the Traffic Forecasting Network (TFN).
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information, we amend the action value and further rectify
agent action against other agents’ actions.

As shown in Figure 3, TFN first extracts feature embed-
dings from the previous M periods’ traffic using an MPGNN
(k=2), and then concatenates them with the embeddings of
the corresponding actions. The concatenated embeddings are
then fed into two branches (Predictor and Critic). The Pre-
dictor branch is used to predict the future traffic G*) of the
whole road network. The Critic branch aims to predict the
action value v(*) of the given actions a(*).

As shown in Figure 3, there is a shortcut from the Predictor
branch to the Critic branch. We argue that this shortcut can
bring in the predicted future traffic under the given actions to
help mitigate the impact of other agents’ actions on v(*).

3.3 Online Training Algorithm

We devise a policy gradient based online training algorithm
to train the CAN and TEN after each specific periods M. The
online training algorithm has shown in Algorithm 1.

As shown in Algorithm 1, to collect the initial information
for MaCAR, we first let simulator run for M periods under
initial action a(®) in which all phases have the same executing
time. After that, new predictions and actions are generated by
using the traffic states and corresponding actions of previous
M periods. We train the MaCAR network after every M pe-
riods, in which one period is equal to P time steps. During
training, we first calculate the action values of the past M pe-
riods by using Eq. 5. The action values of ¢-th period are
defined by the difference of queue lengths between (¢t — 1)
and (¢) period:

v = qt=1 — @), 5)
We then optimize the TFN network by minimizing the fol-
lowing loss function:

M
Lren =Y (VD =3D)lg +1la® =qDl,),  (6)

t=0
where || - ||¢, represents ¢; norm. It’s worth noting that both

v(®) and G*) are generated before generating a(*).

Algorithm 1 Online Training algorithm

Input: Initial action a(?), parameters frpy and fcan, period
length P, simulation time length ¢,,,,, training interval M,
simulator S
Output: Optimized Orpyn and fcan

I: Lett =M

2: run S(al”) M periods — {{q,a}'?, ..., {q,a}*"V}

3: TFEN({{q, a}(o), e {Qy a}(tfl)};HTFN) —v® g®

4: CAN({{q,2}?, ..., {q, a}(tfl)},'o](t); Ocan) — a®

5: S(a(t)) — {q,a}®

6:t=t+1

7: while (¢ X P < tmmao) do

8 if(t%M # 0)then

9: TFN({{q7 a}(tiM)7 cey {Cb a}til}; GTFN) — ’{;(t) ) a(t)
10: CAN({{q,a}*™™ .. {q,a} "'}, d";0can) — a®
11: S@@®) = {q,a}®
12: t=t+1
13:  else
14: calculate {v(*~™) .. v} viaEq. 5
15: optimize f1rn, @can by minimizing Eq. 6 and Eq. 7
16:  endif

17: end while
18: return Ortpn,fOcan

As we discussed above, other agents’ newly generated ac-
tions will impact the action values and cause action value de-
viation between perceived and real action values. To over-
come this problem, we use the difference between predicted
and perceived action value to help anchoring agent action. We
optimize the CAN by minimizing the following loss function:

M
LoaN = Z log(a®)(F® — v, (7)
t=0

4 Experiment

We conduct experiments in two open-source traffic simula-
tors: CityFlow ! and SUMO 2. Both of them are commonly
used in previous works [Wei et al., 2018; Wei et al., 2019b;
Wei et al., 2019a].

4.1 Datasets

Real-world Datasets

We used three real-world datasets: Dgangzhous D Jinan and
Dyewyork- All three datasets are obtained from CoLight
[Wei et al., 2019b]. The New York, Hangzhou and Jinan
datasets have 196, 16 and 12 intersections, respectively. We
used the same simulator (CityFlow) and experimental settings
as CoLight to conducted fair comparison.

Synthetic Datasets

In SUMO simulator, we build a road network with 21 inter-
sections to simulate the urban trunk roads, as shown in Figure
4. The road network is constructed by following Wei et al.
[2019c]. Intersections in the middle of the road network have
four directions, and intersections on the boundary have three

"https://cityflow-project.github.io
*http://sumo.dlr.de/index html

2494


https://cityflow-project.github.io
http://sumo.dlr.de/index.html

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

~

Figure 4: Left: Sketch of the simulated 21 intersections road net-
work [Wei et al., 2019c] we used in synthetic experiments. Right:
An intersection example with four directions.

N Arrival Start End

Config  Traffic Rate (car/300s) Trend Time  Time
T1 150 mixed 0 20000

1 T2 150 mixed 0 20000
T3 150 mixed 0 20000

T4 120 mixed 0 10800

2 T5 180 mixed 10800 18000
T6 300 mixed 10800 18000

3 T7 150 mixed 0 20000
T8 210 W—E 0 20000

Table 1: Configurations for simulation traffic. ‘W—E’ represents
that most vehicles are running from west to east on the road network.

directions. Each road is 500 meters long, except roads in the
corner is 680 meters. Each road has two directions and three
lanes per direction. Road speed limit is set as 16.68 m/s, and
the period length is 120 seconds.

As shown in Table 1, we built three different traffic sce-
narios based on the road network above to mimic the prevail-
ing and challenging traffic conditions in the real world. In
Config 1, we synthesized the daytime with heavy flat traffic.
In Config 2, we synthesized the traffic switching from light
flat-time traffic to heavy peak-time traffic. In Config 3, we
simulated the tidal traffic in which part of traffic has a strong
trend (West—East) during heavy peak-time traffic. All three
kinds of configurations are widespread in metropolitan areas
around the world.

The arrival rate defines the traffic density in these configu-
rations. The traffic trend of different traffic groups (T1-T8 in
Table 1) is determined by each road’s probability of becom-
ing a starting point, via point and destination from a uniform
distribution. End time represents the departure time of the
last vehicle. All data contain bidirectional and dynamic flows
with turning traffic. Moreover, we used the vehicle rerouter
algorithm provided by SUMO to synthesize vehicle rerouting
cases as in the real world.

Traffic Forecasting Dataset

To evaluate the traffic forecasting performance of TFN, we
conduct experiments in the persuasive real-world traffic fore-
casting dataset METR-LA [Li et al., 2018] comparing with
several state-of-the-art methods.

4.2 Compared Methods

We compare MaCAR with several baseline methods, includ-
ing several state-of-the-art methods.

In synthetic experiments, we compare with four different
baseline methods, including Fixed-time Control (FT), Ran-
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Methods Avg.speed (m/s) Avg.Queue Avg.Waiting (s)

FT 422 3.08 28.55

RA 5.61 3.19 27.52
SOTL 6.76 2.44 17.64
QLTSO 5.35 3.71 41.76
MaCAR-noTFN 6.62 2.75 17.98
MaCAR 7.30 2.19 13.40

Table 2: Results on Synthetic Dataset Config 1.

Methods Avg.speed (m/s) Avg.Queue Avg.Waiting (s)

FT 7.82 0.81 6.94

RA 8.20 0.81 6.75
SOTL 8.42 0.70 5.32
QLTSO 8.13 0.95 10.19
MaCAR-noTFEN 8.29 0.71 5.43
MaCAR 8.69 0.68 513

Table 3: Results on Synthetic Dataset Config 2.

dom Adjustment (RA), Actuated Control (SOTL [Cools et
al., 2013]), and Q-Learning Traffic Light Optimization within
Multiple Intersections Traffic Network (QLTSO) [Chin et al.,
2012]. Each baseline represents a type of commonly used
method in real-world applications.

We then conduct experiments in three real-world datasets,
comparing with several state-of-the-art methods [Wei et al.,
2019b; Wei et al., 2018; Chu et al., 2019; Nishi et al., 2018;
Arel et al., 2010; Van der Pol and Oliehoek, 2016]. The
state-of-the-art method CoLight [Wei ef al., 2019b] is a col-
laborative optimization based method, in which information
exchange between agents is carried out by expanding other
agents’ observable surrounding.

4.3 Experiments on Synthetic Datasets

We first compare our proposal with several baselines under
three traffic scenarios, experimental results have shown in Ta-
ble 2—4. We can notice that MaCAR can effectively improve
traffic efficiency under all three different traffic conditions.
Meanwhile, our proposal outperforms all baselines signifi-
cantly in Avg.Waiting in Config 2 and Config 3. It demon-
strates that when traffic shifts, our method still can effectively
change the phase plans to mitigate traffic congestion.

In Figure 5 (a) and (b), we show that MaCAR can signif-
icantly reduce the total queue length and increase the avg.
speed. In Figure 5 (b), we can notice the curve of MaCAR
is flatter than other methods and has an upward trend even
when the traffic starts to increase from 60 periods. More-
over, the upward trend of MaCAR’s curve is more signifi-
cant than MaCAR-noMPTF. These experiments validate our
idea of taking advantage of prediction information is feasible
while demonstrating the effectiveness of the proposed cross-
agent communication mechanism.

4.4 Experiments on Real-world Datasets

We then compare our proposal with several state-of-the-art
methods in real-world datasets. We followed the experimen-
tal setup used by CoLight to compare our method with pre-
vious works fairly. Results have shown in Table 5, MaCAR
achieves consistent performance improvements over state-of-
the-art methods on all three real-world datasets: the aver-
age improvement is 2.78% compare with CoLight. The per-
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Figure 5: (a) Total queue length of the road network under traffic Config 1. The lower the curve, the higher the road patency. (b) The average
speed of all vehicles under traffic Config 1. The higher the curve, the higher the road network efficiency.

Methods Avg.speed (m/s)  Avg.Queue  Avg.Waiting (s)
FT 3.47 4.72 50.88
RA 3.26 4.92 52.46
SOTL 3.18 4.33 47.32
QLTSO 7.25 2.15 15.83
MaCAR-noTEN 7.24 2.66 20.63
MaCAR 7.83 2.07 15.58

Table 4: Results on Synthetic Dataset Config 3.

Methods DNewyork DHangzhou D jinan
CGRL [Van der Pol and Oliehoek, 2016] 2187.12 1582.25 1210.70
NeighborRL [Arel et al., 2010] 2280.92 1053.45 1168.32
GCN [Nishi et al., 2018] 1876.37 768.43 625.66
OneModel [Chu et al., 2019] 1973.11 394.56 728.63
Individual RL [Wei et al., 2018] - 345.00 325.56
CoLight [Wei et al., 2019b] 1459.28 297.26 291.14
MaCAR 1425.00 (+2.30%) 291.18 (+2.04%) 279.49 (+4.00%)

Table 5: Results on Real-world Datasets w.r.t average travel time.

formance improvements of our method are attributed to the
unique design of our proposal.

Our method also outperforms the joint-action modeling
method CGRL. To achieve cooperation, CGRL establishes
one model to determine the joint actions of two adjacent in-
tersections, and then conducts centralized coordination of the
global joint actions. It needs to search a large operating space,
and may faces scalability issues. Compare with CGRL, our
method has a smaller search space since we still use indepen-
dent agents.

In experiments on the New York dataset, we show that
MaCAR can outperforms state-of-the-arts in a 196 intersec-
tions road network. These experiments also demonstrate that
MaCAR has good scalability in practice.

4.5 Experiments on Traffic Forecasting Dataset

We then conduct traffic forecasting experiments on METR-
LA dataset to demonstrate the traffic forecasting performance
of TFN comparing with state-of-the-art traffic forecasting
methods. Results have shown in Table 6, TFN can outper-
forms all the state-of-the-art methods. We can notice that the
state-of-the-art methods may perform properly for short-term
forecasting, but their long-term predictions are not accurate
due to the error accumulation.
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MAE
Methods [Smins 30mins  60mins
FC-LSTM 3.44 3.77 437

STGCN [Yan et al., 2018] 2.87 3.48 4.45
DCRNN [Li et al., 2018] 2.77 3.15 3.60
ST-UNet [Yu er al., 2019] 2.72 3.12 3.55

TFN 2.68 2.99 3.28

Table 6: Traffic forecasting experiment results on METR-LA. MAE
metric is compared for different future time steps.

4.6 Ablation Study

We also compared the performance of variants of our pro-
posed method, as shown in Table 2 - 4. By removing TFN,
we notice that the performance of MaCAR-noTFN is reduced
significantly, but still can outperforms baseline methods in
most metrics. These experiments show that our idea of com-
bining traffic forecasting with traffic light control can effec-
tively improve traffic efficiency.

5 Conclusion

In this work, we address the traffic light control problem
by proposing a novel Multi-agent Communication and Ac-
tion Rectification (MaCAR) framework. We conduct exten-
sive experiments on both synthetic and real-world datasets
to demonstrate the superior performance of our proposed
method over baseline and state-of-the-art methods. Besides,
we show in-depth case studies and observations to understand
how the proposed method overcomes two shortcomings of
previous collaborative optimization methods. Several future
directions are worth exploring, global optimization methods
that consider local importance, and causal inference based
methods.
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