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Abstract
Information theoretical based methods have attract-
ed a great attention in recent years, and gained
promising results to deal with multi-label data with
high dimensionality. However, most of the exist-
ing methods are either directly transformed from
heuristic single-label feature selection methods or
inefficient in exploiting labeling information. Thus,
they may not be able to get an optimal feature selec-
tion result shared by multiple labels. In this paper,
we propose a general global optimization frame-
work, in which feature relevance, label relevance
(i.e., label correlation), and feature redundancy are
taken into account, thus facilitating multi-label fea-
ture selection. Moreover, the proposed method has
an excellent mechanism for utilizing inherent prop-
erties of multi-label learning. Specially, we provide
a formulation to extend the proposed method with
label-specific features. Empirical studies on twen-
ty multi-label data sets reveal the effectiveness and
efficiency of the proposed method. Our implemen-
tation of the proposed method is available online at:
https://jiazhang-ml.pub/GRRO-master.zip.

1 Introduction
Multi-label learning deals with examples which may be as-
sociated with multiple labels simultaneously. It has attract-
ed significant interests from the research community and
has a wide range of applications. For example, in text cat-
egorization, a text needs to be tagged with several topics
[Schapire and Singer, 2000]; in image annotation, an image
needs to be tagged with multiple scenes [Boutell et al., 2004];
in bioinformatics, one wishes to recognize a gene with mul-
tiple functions [Elisseeff and Weston, 2001]. Normally, the
aforementioned resources (e.g., text, image, and gene) are
represented by feature vectors with high dimensionality. The
high dimensionality of multi-label data not only leads to the
increasing of the computational cost and memory storage
requirement, but also limits the usage of machine learning
models in real applications [Jian et al., 2016]. Feature se-
lection is proved to be effective for removing irrelevant and
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redundant features in the feature representation, thus carry-
ing the most discriminative information for multi-label learn-
ing [Lee and Kim, 2017; Lin et al., 2016; Wei and Li, 2019;
Zhang et al., 2019].
However, it is unwise to perform feature selection for

multi-label learning directly. It means that achieving the pur-
pose in a label-wise effective manner is deemed to be cru-
cial for improving the generalization performance. First, la-
bels in multi-label data are not independent but inherent-
ly correlated. For example, an image is likely to be anno-
tated as sky if it has label cloud. Thus, it is necessary to
capture label correlation to guide the feature selection pro-
cess. Second, labels have their own inherent properties (e.g.,
the issues of the class-imbalance [Krawczyk, 2016], the rel-
ative labeling-importance [Li et al., 2015] and label-specific
features [Zhang and Wu, 2015]), and utilizing these inherent
properties is also beneficial for multi-label feature selection.
To tackle the learning problem, a large family of ex-

isting algorithms is information theoretical based methods
[Vergara and Estévez, 2014]. Algorithms in this family main-
ly focus on exploiting feature evaluation criteria, such as fea-
ture relevance maximization and feature redundancy mini-
mization [Peng et al., 2005], to access the importance of fea-
tures. For implementation, they select candidate features one
by one with heuristic search, until obtain a size-specific sub-
set of relevant features. Nevertheless, these methods are eas-
ily trapped in local optima. Not surprisingly, they may be
in trouble to find an optimal feature subset. Furthermore,
such heuristic search is time-consuming while ineffective and
repetitive calculations are involved in the criteria function.
In order to address the aforementioned problems, we pro-

pose a new multi-label feature selection method via glob-
al relevance and redundancy optimization, named GRRO. In
particular, we present a global optimization method with the
goal of considering feature relevance, label relevance (i.e.,
label correlation), and feature redundancy for feature evalua-
tion. Allowing for achieving the goal efficiently, the proposed
method only needs to go through the relevance and redundan-
cy information one time, and can be easily solved for gener-
ating the optimal solution. By analyzing discriminative fea-
tures for each label, we also give an extension of the proposed
method to conduct label-specific feature selection. Extensive
experiments on twenty multi-label data sets demonstrate the
advantages of the proposed method.
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2 Related Work
Towards information theoretical based methods for multi-
label feature selection, one straightforward way for feature
evaluation is to maximize the relevance of candidate feature
(e.g., f+) with all labels on label set L [Li et al., 2018].

JMax Rel(f
+) =I(f+, L) (1)

where I(., .) denotes the function for mutual information es-
timation. In Eq. (1), it describes the decreased uncertainty
for f+ while labeling information L is given, that is, their
shared information. Based on this, some other feature evalu-
ation criteria are proposed, which can be roughly categorized
into two groups: Feature redundancy minimization and newly
classification information maximization.
Methods in the first group is based on the assumption that

good features should be strongly correlated with labels, but
not be highly correlated with each other. Thus, the general
framework to evaluate f+ can be formulated as follow:

JRed(f
+) =I(f+, L)− I(f+,S) (2)

where S denotes the selected feature subset, and I(f+,S)
denotes the redundant information between f+ and S . Lot-
s of methods in the first group focus on modeling fea-
ture redundancy to improve the performance. For exam-
ple, many methods used multivariate mutual information to
measure the conditional redundancy under multiple label-
s [Lee and Kim, 2013; Lin et al., 2015]. Besides, some au-
thors give a concern for computational efficiency. For exam-
ple, Lee and Kim [Lee and Kim, 2015] proposed a fast multi-
label feature selection method by discarding unnecessary cal-
culations and reusing pre-calculated entropy terms. They al-
so proposed a scalable relevance criterion for large label set
[Lee and Kim, 2017], which can estimate feature relevance
and feature redundancy efficiently.
For the second group, methods in this group are expected to

guarantee that the selected feature subset has a strong predic-
tive ability with the smaller redundancy. Specially, the gen-
eral framework of the methods can be defined as I(f+, L|S),
which quantifies the new classification information provid-
ed by f+ while S is given. For multi-label feature selec-
tion, some methods extended the criterion to the classification
model [Sechidis et al., 2014], or directly adopted this criteri-
on to achieve the purpose [Bermejo et al., 2018].
By employing the aforementioned criteria, heuristic strate-

gy is widely used to rank features. Another strategy regards
the feature selection process as an optimization problem, but
the research is still lacking. A few methods tried to obtain
the optimized feature weight using the aforementioned cri-
teria [Lim and Kim, 2016; Sun et al., 2019]. However, these
methods have the poor ability to exploit labeling information.
Moreover, they utilize iterative optimization with the gradi-
ent descent strategy to approximate the solution, which may
cause the inefficiency for large-scale data analysis.

3 The Proposed Method
3.1 Preliminaries
We denote matrices with bold uppercase letters (e.g., A), vec-
tors with bold lowercase letters (e.g., a), the (i,j)-th element

of A as aij , and the i-th row and column of A as ai. and a.i
respectively. The transpose of A is denoted by AT , and the
trace of A is denoted by tr(A). Suppose that in the multi-label
data set, there are d features, we denote the training data ma-
trix as F = [f.1, f.2, ..., f.d], where f.i (1 ≤ i ≤ d) is the vec-
tor which contains the information of feature fi. Then each
instance can be denoted by a d-dimensional feature vector.
Additionally, each instance is associated with a finite set of q
possible labels L = {l1, l2, ..., lq}. Let Y = [y.1, y.2, ..., y.q]
be the label matrix, y.j (1 ≤ j ≤ q) contains the ground-truth
label information of all training data on label lj . Arbitrary el-
ement in Y whose value is 1 indicates that a label is relevant
to an instance, otherwise the value is -1.

3.2 Global Relevance and Redundancy
Optimization - GRRO

Aimed at seeking relevant features for multi-label feature se-
lection, leveraging information theory to exploit feature eval-
uation criteria is a popular and effective way. In general, fea-
ture selection in this way is with heuristic search, which easily
leads to a suboptimal feature subset. In addition, performing
feature selection in a label-wise effective manner contributes
to multi-label learning, hence the appropriate usage of label-
ing information (e.g., label correlation) is a crucial step dur-
ing the feature selection process.
Considering that many feature evaluation criteria are pro-

posed to maximize feature relevance and minimize feature
redundancy [Brown et al., 2012] (Eq. (2) shows the general
framework), we take the advantage to measure feature impor-
tance. Different to the heuristic search, we propose a global
learning framework to achieve the purpose with optimization.

max
Z

q∑
u=1

d∑
i=1

(I(fi, lu)ziu −
d∑

j=1

I(fi, fj)ziuzju) (3)

where Z ∈ Rd×c denotes the feature coefficient matrix, ziu ∈
Z denotes the importance of feature fi with respect to label
lu. I(fi, lu) and I(fi, fj) denote the mutual information of
feature fi with label lu and feature fj , respectively. From Eq.
(3), we can see that the importance of a feature to a label is
positively related to the relevance between the feature and the
label (as shown in the first term), which is also limited by the
redundancy of the feature with other features (as shown in the
second term). Based on this, the importance of all features to
each label can be identified by assigning feature weights, i.e.,
matrix Z. To provide a compact formulation in a quadratic
form, Eq. (3) can infer to the following optimization problem.

min
Z

||Z− C||2F +

q∑
u=1

zT.uGz.u (4)

where C is the matrix which preserves the correlation be-
tween features and labels. For arbitrary element cij ∈ C,
cij = I(fi, lj). G is the symmetric matrix containing the
correlation information of features, whose arbitrary element
gij = I(fi, fj).
Next, we learn the global label relevance by exploiting

second-order label correlation, thereby improving the gen-
eralization performance. According to the feature selection
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mechanism in Eq. (4), feature selection result for each label
is determined by a feature weight vector of Z, such as vector
z.u for label lu. For any two labels lu and lj , with the case
that the two labels are strongly correlated, their feature selec-
tion results (i.e., the corresponding coefficients z.u and z.j)
should be similar. Otherwise, the distribution of discrimina-
tive features indicated by z.u and z.j should be in difference,
hence the newly classification information for label lu and la-
bel lj can be protected. To achieve the purpose, a regularizer
for matrix Z is defined as follow:

q∑
u=1

q∑
j=1

rujzT.uz.j (5)

where ruj = 1 − suj , suj denotes the correlation between
label lu and label lj . For simplicity, suj is calculated by the
Cosine similarity.
Integrating Eq. (4) with Eq. (5), we can obtain the

optimization objective function of GRRO. In the light of
that

∑q
u=1 z

T
.uGz.u =

∑q
u=1(Z

TGZ)uu = tr(ZTGZ) and∑q
u=1

∑q
j=1 rujz

T
.uz.j = tr(RZTZ), the optimization objec-

tive function can be further written as the following form:
min
Z

||Z− C||2F + αtr(ZTGZ) + βtr(RZTZ) (6)

where α and β are tradeoff parameters. It can be observed in
Eq. (6) that feature coefficient matrix Z is involved in all the
terms, which makes the optimized feature selection result af-
fected by the feature relevance, feature redundancy, and label
correlation simultaneously.

3.3 Discussions & Practical Issues
Several important issues are discussed to make the proposed
GRRO method practical and complete.
We first introduce the solution of GRRO. From Eq. (6), we

can see that matrices G and R are positive semidefinite, and
ZTGZ ≥ 0 and RZTZ ≥ 0 for any nonzero Z hold. Thus,
we can get the solution for Z by setting the derivative of the
objective function in Eq. (6) w.r.t. Z to 0, as follow:

2(Z− C) + α(G+GT )Z+ βZ(R+ RT ) = 0 (7)
Both G and R are symmetric matrices, therefore, we can

transform Eq. (7) into the following one:
(I+ αG)Z+ βZR = C (8)

where I denotes the identity matrix. Eq. (8) is the matrix e-
quation with the form of AZ + ZB = C, where A = I + αG
and B = βR. To solve this equation, some existing methods
[Wu et al., 2014; Zhang et al., 2019] can be employed to ob-
tain matrix Z. Here, we use the Lyapunov function1 in Matlab
to solve the mathematical problem. After that, the importance
of each feature can be obtained based on the value of ||zi.||2
(1 ≤ i ≤ d).
Time complexity. GRRO first calculates the correlation in
terms of features and labels, and then uses these calculations
to generate the optimal solution for feature selection. In this
process, the time cost is dominated by these correlation cal-
culations, which lead to a complexity of O(d2 + q2 + dq).
It can be seen that the time complexity is quadratic regarding
the number of features d and the number of labels q.

1https://www.mathworks.com/help/control/ref/lyap.html

Data set Training Test Features Labels Domain
Bibtex 4880 2515 1836 159 Text
Birds 322 323 260 19 Audio
Corel5k 4500 500 499 374 Image
Corel16k001 9241 4525 500 153 Image
Corel16k002 9165 4596 500 164 Image
Emotions 391 202 72 6 Music
Genbase 463 199 1186 27 Biology
Image 1000 1000 294 5 Image
Langlog 978 482 1004 75 Text
Medical 645 333 1449 45 Text
Slashdot 2546 1236 1079 22 Text
Yeast 1499 918 103 14 Biology
Arts 2000 3000 462 26 Text
Business 2000 3000 438 30 Text
Entertainment 2000 3000 640 21 Text
Health 2000 3000 612 32 Text
Recreation 2000 3000 606 22 Text
Reference 2000 3000 793 33 Text
Science 2000 3000 743 40 Text
Social 2000 3000 1047 39 Text

Table 1: Characteristics of multi-label data sets

Scalability. GRRO achieves multi-label feature selection
across all labels while feature selection result for each label
is available. By virtue of this property, GRRO is easily s-
calable for multi-label data understanding. For example, the
proposed method enables label correlation exploitation with
feature selection results of different labels. Moveover, it is
flexible to utilize the inherent properties of multi-label data.
In this next section, we consider label-specific features to fur-
ther enhance the generalization performance.

3.4 Extension to Label-specific Feature Selection
For GRRO, the importance of each feature is determined by
summing the weights of the feature to all labels. In the light
of that different labels have their own inherent characteristics
for distinguishing each other [Zhang and Wu, 2015], a more
reasonable manner is that selected features should be label-
specific. Following the principle, we extend GRRO with
label-specific features, and call the extension as GRRO-LS.
Specially, the global optimization result, i.e., matrix Z gen-

erated by Eq. (6), is utilized as the priori knowledge to ex-
ploit label-specific feature selection locally. Considering that
feature selection result for each label is available by employ-
ing matrix Z, label-specific feature learning can be modeled
by a search on discriminative features for each label. For-
mally, for arbitrary label lu (1 ≤ u ≤ q), we define Tu as the
index set to preserve the location of its label-specific features,
which satisfies:

max
Tu

∑
h∈Tu

zhu s.t. |Tu| = k (9)

From Eq. (9), we can see that index set Tu indicates the
k features with the larger weight based on z.u, and these fea-
tures are specified as the label-specific features with respect
to label lu. As the index sets of all labels are found out, we
construct a new feature coefficient matrix Znew ∈ Rd×c. For
arbitrary element znewiu ∈ Znew, it is defined as follow:

znewiu =

{
ziu, i ∈ Tu
0, otherwise

(10)

Note that the generated Znew only contains the weight in-
formation of label-specific features. Then we estimate the im-
portance of each feature by the value of ||znewi. ||2 (1 ≤ i ≤ d),
thus achieving label-specific feature selection.
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Data set Macro-F1↑
GRRO GRRO-LS PMU MDMR FIMF SCLS MICO

Bibtex 0.0495±0.0283 (2) 0.0545±0.0332 (1) 0.0026±0.0017 (7) 0.0225±0.0050 (5) 0.0062±0.0032 (6) 0.0355±0.0160 (4) 0.0362±0.0188 (3)
Birds 0.1318±0.0236 (1) 0.1222±0.0246 (2) 0.0890±0.0215 (6) 0.1061±0.0146 (4) 0.0769±0.0175 (7) 0.1012±0.0205 (5) 0.1110±0.0286 (3)
Corel5k 0.2979±0.0015 (3) 0.3010±0.0024 (1) 0.2968±0.0006 (5) 0.2968±0.0006 (5) 0.2968±0.0008 (5) 0.2981±0.0014 (2) 0.2979±0.0013 (3)
Corel16k001 0.0021±0.0013 (3) 0.0035±0.0016 (1) 0.0001±0.0001 (7) 0.0019±0.0013 (4) 0.0025±0.0018 (2) 0.0016±0.0013 (6) 0.0017±0.0012 (5)
Corel16k002 0.0049±0.0014 (2) 0.0050±0.0015 (1) 0.0001±0.0001 (6) 0.0035±0.0004 (5) 0.0001±0.0000 (6) 0.0039±0.0006 (4) 0.0044±0.0014 (3)
Emotions 0.5635±0.0821 (1) 0.5510±0.0808 (2) 0.4908±0.1069 (7) 0.5451±0.0680 (3) 0.5229±0.1138 (5) 0.5094±0.0617 (6) 0.5363±0.0673 (4)
Genbase 0.5858±0.1435 (2) 0.5803±0.1446 (3) 0.5393±0.1225 (7) 0.5533±0.1231 (6) 0.5903±0.1571 (1) 0.5663±0.1317 (4) 0.5646±0.1425 (5)
Image 0.4270±0.1033 (5) 0.4281±0.0931 (3) 0.4281±0.0689 (3) 0.4417±0.0657 (2) 0.3170±0.1089 (7) 0.4486±0.0726 (1) 0.3774±0.0974 (6)
Langlog 0.1199±0.0027 (1) 0.1178±0.0030 (2) 0.1079±0.0015 (6) 0.1103±0.0022 (5) 0.1070±0.0005 (7) 0.1139±0.0029 (4) 0.1150±0.0051 (3)
Medical 0.3516±0.0596 (2) 0.3520±0.0573 (1) 0.2472±0.0162 (7) 0.3022±0.0342 (6) 0.3122±0.0559 (5) 0.3228±0.0490 (3) 0.3139±0.0555 (4)
Slashdot 0.2193±0.0272 (2) 0.2254±0.0318 (1) 0.1718±0.0106 (7) 0.1893±0.0155 (6) 0.2024±0.0203 (5) 0.2126±0.0244 (4) 0.2167±0.0271 (3)
Yeast 0.3205±0.0473 (3) 0.3220±0.0472 (2) 0.3049±0.0410 (5) 0.2987±0.0402 (7) 0.3008±0.0500 (6) 0.3320±0.0522 (1) 0.3196±0.0468 (4)
Arts 0.0777±0.0191 (1) 0.0759±0.0212 (3) 0.0499±0.0143 (7) 0.0632±0.0107 (5) 0.0529±0.0182 (6) 0.0773±0.0180 (2) 0.0702±0.0152 (4)
Business 0.1556±0.0162 (2) 0.1533±0.0137 (3) 0.0519±0.0095 (7) 0.1404±0.0071 (5) 0.1329±0.0149 (6) 0.1519±0.0121 (4) 0.1582±0.0179 (1)
Entertainment 0.1102±0.0363 (2) 0.1227±0.0399 (1) 0.0641±0.0120 (7) 0.0864±0.0121 (5) 0.0642±0.0197 (6) 0.1183±0.0319 (3) 0.0927±0.0342 (4)
Health 0.2237±0.0345 (2) 0.2280±0.0330 (1) 0.1291±0.0193 (7) 0.2008±0.0190 (6) 0.2048±0.0247 (5) 0.2175±0.0304 (3) 0.2141±0.0257 (4)
Recreation 0.1297±0.0316 (3) 0.1371±0.0356 (1) 0.0073±0.0077 (7) 0.1231±0.0238 (5) 0.0585±0.0266 (6) 0.1302±0.0270 (2) 0.1284±0.0305 (4)
Reference 0.1236±0.0181 (1) 0.1220±0.0177 (2) 0.0399±0.0074 (7) 0.1004±0.0068 (6) 0.1040±0.0138 (5) 0.1200±0.0170 (3) 0.1168±0.0186 (4)
Science 0.0534±0.0116 (3) 0.0604±0.0143 (1) 0.0163±0.0069 (7) 0.0416±0.0074 (5) 0.0387±0.0099 (6) 0.0486±0.0092 (4) 0.0541±0.0136 (2)
Social 0.1190±0.0180 (3) 0.1317±0.0220 (1) 0.1138±0.0111 (6) 0.1149±0.0125 (5) 0.1099±0.0149 (7) 0.1213±0.0159 (2) 0.1121±0.0170 (4)

Data set Micro-F1↑
GRRO GRRO-LS PMU MDMR FIMF SCLS MICO

Bibtex 0.2165±0.0601 (2) 0.2205±0.0715 (1) 0.0153±0.0107 (7) 0.1610±0.0124 (5) 0.0794±0.0354 (6) 0.1957±0.0382 (4) 0.1988±0.0475 (3)
Birds 0.5045±0.0344 (1) 0.4890±0.0322 (3) 0.3661±0.0390 (6) 0.4080±0.0383 (5) 0.3607±0.0403 (7) 0.4314±0.0353 (4) 0.4999±0.0316 (2)
Corel5k 0.0064±0.0041 (2) 0.0170±0.0095 (1) 0.0003±0.0006 (7) 0.0004±0.0009 (6) 0.0010±0.0012 (5) 0.0050±0.0044 (4) 0.0055±0.0042 (3)
Corel16k001 0.0052±0.0038 (2) 0.0072±0.0045 (1) 0.0001±0.0002 (7) 0.0015±0.0010 (6) 0.0018±0.0012 (5) 0.0033±0.0031 (4) 0.0046±0.0036 (3)
Corel16k002 0.0089±0.0036 (2) 0.0095±0.0035 (1) 0.0002±0.0002 (6) 0.0038±0.0005 (5) 0.0001±0.0001 (7) 0.0078±0.0027 (4) 0.0086±0.0039 (3)
Emotions 0.6014±0.0616 (1) 0.5955±0.0561 (2) 0.5178±0.0948 (7) 0.5782±0.0506 (4) 0.5615±0.0969 (5) 0.5527±0.0477 (6) 0.5935±0.0510 (3)
Genbase 0.9065±0.1285 (2) 0.9066±0.1290 (1) 0.8778±0.1282 (7) 0.9003±0.1258 (4) 0.8948±0.1378 (6) 0.9053±0.1280 (3) 0.8974±0.1285 (5)
Image 0.4394±0.0976 (4) 0.4409±0.0920 (3) 0.4355±0.0660 (5) 0.4495±0.0615 (2) 0.3320±0.1037 (7) 0.4564±0.0691 (1) 0.3934±0.0904 (6)
Langlog 0.0973±0.0169 (1) 0.0782±0.0175 (2) 0.0058±0.0080 (6) 0.0306±0.0231 (5) 0.0011±0.0016 (7) 0.0536±0.0236 (4) 0.0638±0.0435 (3)
Medical 0.7022±0.0707 (2) 0.7117±0.0771 (1) 0.5447±0.0362 (7) 0.6576±0.0710 (6) 0.6587±0.0870 (5) 0.6599±0.0628 (4) 0.6624±0.0674 (3)
Slashdot 0.2276±0.0423 (2) 0.2330±0.0492 (1) 0.1338±0.0182 (7) 0.1739±0.0243 (6) 0.1990±0.0321 (5) 0.2220±0.0407 (4) 0.2240±0.0419 (3)
Yeast 0.6059±0.0340 (3) 0.6054±0.0349 (4) 0.5949±0.0280 (6) 0.5884±0.0281 (7) 0.5976±0.0341 (5) 0.6085±0.0340 (1) 0.6065±0.0344 (2)
Arts 0.1967±0.0381 (2) 0.1996±0.0468 (1) 0.1227±0.0355 (7) 0.1693±0.0274 (5) 0.1276±0.0482 (6) 0.1891±0.0368 (3) 0.1797±0.0339 (4)
Business 0.6905±0.0087 (3) 0.6907±0.0086 (2) 0.6757±0.0039 (7) 0.6825±0.0046 (5) 0.6789±0.0057 (6) 0.6894±0.0065 (4) 0.6913±0.0098 (1)
Entertainment 0.2866±0.0858 (2) 0.2931±0.0773 (1) 0.1085±0.0216 (7) 0.2158±0.0316 (5) 0.1217±0.0438 (6) 0.2806±0.0544 (3) 0.2387±0.0838 (4)
Health 0.5167±0.0242 (1) 0.5123±0.0245 (2) 0.4376±0.0290 (7) 0.4585±0.0290 (6) 0.4682±0.0270 (5) 0.4777±0.0254 (4) 0.4996±0.0216 (3)
Recreation 0.2671±0.0532 (2) 0.2713±0.0552 (1) 0.0105±0.0117 (7) 0.2302±0.0329 (5) 0.1174±0.0492 (6) 0.2623±0.0449 (4) 0.2636±0.0535 (3)
Reference 0.3796±0.0353 (2) 0.3830±0.0421 (1) 0.3265±0.0266 (7) 0.3267±0.0254 (6) 0.3289±0.0366 (5) 0.3693±0.0390 (3) 0.3665±0.0390 (4)
Science 0.1659±0.0346 (3) 0.1830±0.0423 (1) 0.0407±0.0194 (7) 0.1187±0.0223 (5) 0.1148±0.0240 (6) 0.1502±0.0312 (4) 0.1700±0.0379 (2)
Social 0.5040±0.0550 (2) 0.5152±0.0627 (1) 0.4379±0.0527 (7) 0.4468±0.0595 (6) 0.4740±0.0469 (5) 0.4813±0.0491 (4) 0.4936±0.0531 (3)

Table 2: Comparison results of multi-label feature selection methods (mean±std. deviation) in terms of macro-F1 and micro-F1

4 Experiments
4.1 Experimental Setup
Data sets. A total of twenty benchmark multi-label data set-
s are employed in the experiment2. Table 1 summarizes de-
tailed characteristics of these data sets, which are mainly from
the domains including text, multimedia, and biology. We use
the same train/test splits of these data sets to report and com-
pare the results.
Evaluation metrics. Six widely used multi-label evalua-
tion metrics are employed for performance evaluation, in-
cluding two label-based metrics macro-F1 and micro-F1, and
four example-based metricsHamming loss, ranking loss, cov-
erage, and average precision. Concrete metric definitions can
be found in [Wu and Zhou, 2017]. These metrics can evalu-
ate the performance of multi-label algorithms from various
aspects. For macro-F1, micro-F1 and average precision, the
larger the values the better the performance. For the other
metrics, the smaller the values the better the performance.
Comparing algorithms. Five multi-label feature selection
methods are selected to compare. All of them are information
theoretical based methods, including four heuristic methods
PMU [Lee and Kim, 2013], MDMR [Lin et al., 2015], FIM-
F [Lee and Kim, 2015], and SCLS [Lee and Kim, 2017], and
one optimization method MICO [Sun et al., 2019].

2Public available at http://www.uco.es/kdis/mllresources/

Hyper-parameters. For the proposed method, both of
α and β are searched in {10−3, 10−2, ..., 103}, and k is
searched in {5, 10, ..., 50}. The parameter of each compar-
ing method (if any) is set as the corresponding reference sug-
gested. ML-KNN [Zhang and Zhou, 2007] (with the default
setting) is used as the classifier for performance evaluation.
For the parameter-tuning, we adopt a grid-search strategy to
seek the optimal parameter, which is determined by making
the average classification result (ACR) on test data smallest.
Here, we define the formula for the ACR as follow:

ACR(para) =
30∑
i=1

(HLi(f,U) +RLi(f,U)) (11)

where para denotes the collection of algorithm parameter(s),
U is the test set, and f denotes the classifier, i.e., ML-KNN.
HLi(f,U) andRLi(f,U) output the result of Hamming loss
and ranking loss respectively while selecting top-i features.
Computational device. Experiments are performed on a
PC with an Intel i7-7700K 4.20GHz CPU and 32GB RAM.

4.2 Performance Evaluation
To evaluate the performance, we focus on top-50 features se-
lected by each method, and the average result with 50 groups
of feature subsets3 is recorded to make a comparison. Due to

3The first group is composed of the top-1 feature, the second one
is composed of the top-2 features, and so on.
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(a) Hamming loss (b) Ranking loss (c) Coverage

(d) Average precision (e) Macro-F1 (f) Micro-F1

Figure 1: Comparison of the control method against comparing methods with the Nemenyi test (CD = 2.0146 at 0.05 significance level)

space limit, we only present the average result of each method
on macro-F1 and micro-F1 in this paper (as shown in Table
2), and the details on the other metrics are available on the
web4. From Table 2, we have a couple of observations. (1)
Compared with the selected comparing methods, GRRO and
GRRO-LS achieve better performance on 11 and 14 out of
20 data sets with respect to macro-F1 respectively, while on
micro-F1, both of them can win on 16 out of 20 data sets. (2)
On all the 20 data sets, GRRO-LS is superior to GRRO on 13
data sets regarding macro-F1, 15 data sets regarding micro-
F1. This suggests that exploiting label specific features is
conducive to the performance improvement. (3) These com-
paring methods achieve the best performance on up to 2 out of
20 data sets. Thus, we conclude that the proposed method is
effective for multi-label feature selection, and has the advan-
tages compared with some other well-established methods.
To further analyze the performance among all the methods,

Friedman test [Demsar, 2006] is used as the favorable statisti-
cal significance test for the method comparison on the 20 data
sets. Table 3 illustrates the Friedman statistic FF and the cor-
responding critical value on each metric, and we can see that
the null hypothesis, which follows the principle that all the
methods have equal performance, is clearly rejected in terms
of each metric at significance level α = 0.05. Thus, the post-
hoc Nemenyi test [Demsar, 2006] is utilized to complete the
performance analysis. Here, GRRO or GRRO-LS is regarded
as the control method respectively whose average rank dif-
ference against the comparing method is calibrated with the
critical difference (CD). Accordingly, GRRO or GRRO-LS
is deemed to have significantly different performance to one
comparing method if their average ranks differ by at least one
CD (CD = 2.0146 in this paper).
Fig. 1 shows the CD diagrams [Demsar, 2006] w.r.t. each

metric. Specially, any comparing method whose average rank
is within one CD to that of GRRO or GRRO-LS is connected.
Otherwise, the method, which is not connected with GRRO
or GRRO-LS, is considered to have the significant different
performance with the control method. From Fig. 1, we can
see that GRRO-LS and GRRO rank 1st and 2nd respectively
among all the methods, which have no significant difference
on all the metrics, and significantly perform better than P-
MU, FIMF, and MDMR. Compared with MICO, GRRO-LS

4https://jiazhang-ml.pub/Supplement-GRRO.pdf

Evaluation metric FF Critical value(α = 0.05)
Hamming loss 21.1661

≈2.17

Ranking loss 36.8824
Coverage 32.2524
Average precision 38.4204
Macro-F1 33.3880
Micro-F1 77.3768

Table 3: Friedman statistics FF and the critical value on evaluation
metrics (# comparing algorithms c = 7,# data sets N = 20)

has significantly better performance on ranking loss, cover-
age, and macro-F1, which also significantly outperforms S-
CLS on Hamming loss and micro-F1. Thus, the proposed
method (namely GRRO-LS) can achieve highly competitive
performance against the selected comparing methods.

4.3 Influence of Selected Features
In this section, an experiment is conducted on the Medical
date set to learn the influence of selected features.
The experimental result is shown in Fig. 2, in which the

performance on each metric is figured out by varying the
number of selected features. From Fig. 2, we observe: With
the increasing of the number of selected features, the perfor-
mance of all the methods first has a significant improvement,
and then keeps stable or even degrades. It can be seen that
feature selection benefits to the performance.

4.4 Running Time Comparison
Table 4 shows the timing results (in second) on multi-label
feature selection. According to Table 4, we can observe that
the proposed method performs the best in terms of average
ranking (Ave. Rank.). To be specific, GRRO is obviously
superior to PMU and MDMR. FIMF avoids ineffective and
repetitive calculations to improve the computation efficiency,
hence GRRO is slower than FIMF on some data sets. How-
ever, FIMF is less efficient than GRRO on large-scale data
analysis, such as Bibtex, Corel16k001, and Corel16k002. S-
CLS designs feature evaluation criteria to handle large label
sets. We can see from Table 4 that GRRO can achieve su-
perior or at least comparable performance on such data sets
against SCLS, such as Bibtex and Corel5k, and GRRO also
achieves statistically superior to SCLS on most of the other
data sets. Similar with GRRO, MICO adopts an optimization
strategy to conduct multi-label feature selection, but it has a
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Figure 2: Influence of selected feature number on Medical data set
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low convergence rate with iterative optimization. Thus, GR-
RO is more computationally efficient than MICO. Remark:
GRRO-LS and GRRO have the similar result on running time.

4.5 Parameter Analysis
Our method includes three parameters: α and β are to reflect
the influence of feature redundancy and label correlation re-
spectively, and k is the number of label-specific features. We
analyze these parameters on the Medical data set, and show
the experimental result in Fig. 3. Fig. 3(a) shows the average
classification result (ACR), which is calculated by Eq. (11),
when different pairs of α and β are employed. From Fig.
3(a), we observe that ACR is going to change dramatically in
some cases. Thus, the proposed method is sensitive to α and
β. Fig. 3(b) shows the influence of parameter k, and it reflects
that the performance is going to deteriorate while k becomes
large, and the optimal result is obtained while k = 5. A simi-

Data set PMU MDMR FIMF SCLS MICO GRRO
Bibtex – – – 194.30 – 200.61
Birds 40.02 37.65 0.66 1.51 1.39 0.89
Corel5k – – – 95.22 42.18 22.95
Corel16k001 – – 743.89 87.20 50.02 32.46
Corel16k002 – – 937.84 92.20 50.04 33.23
Emotions 2.83 2.73 0.06 0.32 0.64 0.05
Genbase 295.57 263.61 5.95 3.04 11.01 10.83
Image 23.26 22.39 0.09 2.47 2.80 1.16
Langlog – – 49.99 16.65 100.89 14.15
Medical 876.15 713.29 21.50 13.12 193.50 20.90
Slashdot 808.58 717.25 8.47 22.48 56.61 36.07
Yeast 30.21 27.21 0.25 1.22 0.95 0.23
Arts 345.59 304.52 4.05 8.22 11.39 5.42
Business 387.55 334.92 5.19 8.12 9.72 4.98
Entertainment 383.35 344.17 3.78 10.81 28.30 10.01
Health 589.30 502.54 8.23 12.01 24.68 9.50
Recreation 382.83 339.72 3.92 10.23 23.67 9.12
Reference 796.20 671.31 11.51 16.01 56.24 15.98
Science 944.48 765.26 15.54 16.03 46.30 14.28
Social – – 20.82 22.70 148.17 27.57
Ave. Rank. 6.00 5.00 2.05 2.65 3.55 1.75

Table 4: Running time (sec) of the multi-label feature selection
methods. – denotes that time cost is over 1000 seconds

Data set Optimal k value
Bibtex, Birds, Corel5k, Corel16k001, Emotions, Entertainments, Health, 5Medical, Recreation, Science, Slashdot, Social
Business,Langlog, Reference 10
Education, Image 15
Corel16k002, Genbase, Yeast ≥20

Table 5: Optimal value distribution of k on the 20 data sets

lar phenomenon occurs on most of other data sets, as listed in
Table 5. This suggests that generally a small value of k (e.g.,
k = 5) helps to the label-specific feature selection.

5 Conclusion
In this paper, we developed information theoretical based
methods for multi-label feature selection. Our main contri-
bution is to propose a general global optimization framework
incorporating feature relevance, feature redundancy, and la-
bel correlation. In addition to label correlation exploitation,
the proposed method is capable for exploiting the other prop-
erties of multi-label learning to further improve the perfor-
mance, such as label-specific features. Experiments on twen-
ty benchmark data sets in terms of six evaluation metrics
showed that the proposed method can significantly improve
the performance with feature selection.
In future work, we have interest in further study of labeling

information exploitation considering the issues of the class-
imbalance and the relative labeling-importance, and will also
pay attention to the analysis of genetic data with high dimen-
sionality, such as the application on autism spectrum disorder.
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