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Abstract
In unsupervised domain adaptation (UDA), clas-
sifiers for the target domain are trained with mas-
sive true-label data from the source domain and
unlabeled data from the target domain. How-
ever, it may be difficult to collect fully-true-label
data in a source domain given limited budget. To
mitigate this problem, we consider a novel prob-
lem setting where the classifier for the target do-
main has to be trained with complementary-label
data from the source domain and unlabeled data
from the target domain named budget-friendly UDA
(BFUDA). The key benefit is that it is much less
costly to collect complementary-label source data
(required by BFUDA) than collecting the true-
label source data (required by ordinary UDA). To
this end, complementary label adversarial network
(CLARINET) is proposed to solve the BFUDA
problem. CLARINET maintains two deep net-
works simultaneously, where one focuses on clas-
sifying complementary-label source data and the
other takes care of the source-to-target distribu-
tional adaptation. Experiments show that CLAR-
INET significantly outperforms a series of compe-
tent baselines.

1 Introduction
Domain Adaptation (DA) aims to train a target-domain clas-
sifier with data in source and target domains [Yan et al., 2017;
Zhou et al., 2019b]. Based on the availability of data in the
target domain (e.g., fully-labeled, partially-labeled and unla-
beled), DA is divided into three categories: supervised DA
[Sukhija et al., 2016], semi-supervised DA [Ao et al., 2017;
Zhou et al., 2019a] and unsupervised DA (UDA) [Gong et al.,
2018; Liu et al., 2020; Saito et al., 2017; Fang et al., 2019]. In
practice, UDA methods have been applied to many real-world
problems, such as object recognition [Agresti et al., 2019;
Deng et al., 2019; Zhao et al., 2019].

UDA methods train a target-domain classifier with mas-
sive true-label data from the source domain (true-label source
∗Equal Contribution
†Corresponding Author

Figure 1: Budget-friendly unsupervised domain adaptation. The red
line denotes that UDA methods transfer knowledge from Ds (true-
label source data) to Dt (unlabeled target data). However, acquiring
fully-true-label source data is costly and unaffordable (black dash
line, xs → Ds, xs means unlabeled source data). This brings
budget-friendly unsupervised domain adaptation (BFUDA), namely
transferring knowledge fromDs (complementary-label source data)
to Dt. It is much less costly to collect complementary-label source
data (black line, required by BFUDA) than collecting the true-label
one (black dash line, required by UDA). To handle BFUDA, a weak
solution is a two-step approach (green dash line), which sequentially
combines complementary-label learning methods (Ds → D̂s, label
correction) and existing UDA methods (D̂s → Dt). This paper pro-
poses a one-step approach called complementary label adversarial
network (CLARINET, green line, Ds → Dt directly).

data) and unlabeled data from the target domain (unla-
beled target data). Existing works in the literature can
be roughly categorised into the following three groups:
integral-probability-metrics based UDA [Long et al., 2015];
adversarial-training based UDA [Ganin et al., 2016; Long
et al., 2018]; and causality-based UDA [Gong et al., 2016;
Gong et al., 2018; Zhang et al., 2015]. Since adversarial-
training based UDA methods extract better domain-invariant
representations via deep networks, they usually have good
target-domain accuracy [Sankaranarayanan et al., 2018].

However, the success of UDA still highly relies on the scale
of true-label source data. Namely, the target-domain accuracy
of a UDA method (e.g., CDAN) decays when the scale of
true-label source data decreases. Hence, massive true-label
source data are inevitably required by UDA methods, which
is very expensive and prohibitive especially when the budget
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Figure 2: Overview of the proposed complementary label
adversarial network (CLARINET). It consists of feature extractor
G, label predictor F and conditional domain discriminator D. gs
and gt are the outputs of G, representing the extracted features of
source and target data. fs and ft represent classifier predictions. T
is a mapping function which we propose to scatter the classifier pre-
dictions. In Algorithm 1, we show how to use two losses mentioned
in this figure to train CLARINET.

is limited [Liu et al., 2019]. This circumstance may hinder
the promotion of DA to more areas.

While determining the correct label from many candi-
dates is laborious, choosing one of the incorrect labels (i.e.,
complementary labels) would be much easier and thus less
costly, especially when we have many candidates [Ishida et
al., 2017]. For example, suppose that we need to annotate
labels of a bunch of animal images from 1, 000 candidates.
One strategy is to ask crowd-workers to choose the true la-
bels from 1, 000 candidates, while the other is to judge the
correctness of a label randomly given by the system from
the candidates. Apparently, the cost of the second strategy
is much lower than that of the first one [Ishida et al., 2019].

This brings us a novel problem setting, budget-friendly
UDA (abbreviated as BFUDA), which aims to transfer knowl-
edge from complementary-label source data to unlabeled tar-
get data (Figure 1). We describe this problem setting using
the word budget-friendly since, compared to ordinary UDA,
we can greatly save the labeling cost by annotating com-
plementary labels in the source domain rather than annotat-
ing true labels [Ishida et al., 2017; Yu et al., 2018]. Please
note that, existing UDA methods cannot handle BFUDA, as
they require fully-true-label source data [Liu et al., 2020;
Saito et al., 2017] or at least 20% true-label source data
(demonstrated in [Liu et al., 2019; Shu et al., 2019]).

A straightforward but weak solution to BFUDA is a two-
step approach, which sequentially combines complementary-
label learning (CLL) methods and existing UDA methods
(green dash line in Figure 1)1. CLL methods are used to
assign pseudo labels for complementary-label source data.
Then, we can train a target-domain classifier with pseudo-
label source data and unlabeled target data using existing

1We implement this two-step approach and take it as a baseline.

UDA methods. Nevertheless, pseudo-label source data con-
tain noise, which may cause poor domain-adaptation perfor-
mance of such two-step approach [Liu et al., 2019].

Therefore, we propose a powerful one-step solution to
BFUDA, complementary label adversarial network (CLAR-
INET). It maintains two deep networks trained by adversar-
ial way simultaneously, where one can accurately classify
complementary-label source data, and the other can discrimi-
nate source and target domains. Since Long et. al. [2018] and
Song et. al. [2009] have shown that multimodal structures of
distributions can only be captured sufficiently by the cross-
covariance dependency between the features and classes (i.e.,
true labels), we set the input of domain discriminatorD as the
outer product of feature representation (e.g., gs in Figure 2)
and mapped classifier prediction (e.g., T (fs) in Figure 2).

Due to the nature of complementary-label classification,
predicted probability of each class (i.e., each element of fs,
Figure 2) is relatively close. According to [Song et al., 2009],
this kind of predicted probabilities could not provide suffi-
cient information to capture the multimodal structure of dis-
tributions. To fix it, we propose a mapping function T to
make the predicted probabilities more scattered (i.e., T (fs),
Figure 2) than previous ones (i.e., fs, Figure 2). By doing
so, the mapped classifier predictions can better indicate their
choice. In this way, we can take full advantage of classifier
predictions and effectively align distributions of two domains.
Our ablation study (see Table 2) verifies that T indeed helps
improve the target-domain accuracy.

We conduct experiments on 6 BFUDA tasks and compare
CLARINET with a series of competent baselines. Empirical
results demonstrated that CLARINET can effectively trans-
fer knowledge from complementary-label source data to un-
labeled target data and is superior to all baselines.

2 Budget-friendly Unsupervised Domain
Adaptation

In this section, we propose a novel problem setting, called
budget-friendly unsupervised domain adaptation (BFUDA),
and prove a learning bound of this new problem. Then, we
show how BFUDA brings benefits to domain adaptation field.

2.1 Problem Setting
Let X ⊂ Rd be a feature (input) space and Y := {1, ...,K}
be a label (output) space. A domain is defined as follows.
Definition 1 (Domains for BFUDA). Given random vari-
ables Xs, Xt ∈ X , Ys, Y s, Yt ∈ Y , the source and target
domains are joint distributions P (Xs, Y s) and P (Xt, Yt),
where the joint distributions P (Xs, Ys) 6= P (Xt, Yt) and
P (Y s = c|Ys = c) = 0 for all c ∈ Y .

Then, we propose BFUDA problem as follows.
Problem 1 (BFUDA). Given independent and identically
distributed (i.i.d.) labeled samples Ds = {(xi

s, y
i
s)}

ns
i=1

drawn from the source domain P (Xs, Y s) and i.i.d. unla-
beled samples Dt = {xi

t}
nt
i=1 drawn from the target marginal

distribution P (Xt), the aim of BFUDA is to train a classifier
F : X → Y with Ds and Dt such that F can accurately
classify target data drawn from P (Xt).
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It is clear that it is impossible to design a suitable learning
procedure without any assumptions on P (Xs, Y s). In this
paper, we use the assumption for unbiased complementary
learning proposed by [Ishida et al., 2019; Ishida et al., 2017]:

P (Y s = k|Xs) =
1

K − 1

K∑
c=1,c6=k

P (Ys = c|Xs), (1)

for all k, c ∈ Y = {1, ...,K} and c 6= k.

2.2 Learning Bound of BFUDA
This subsection presents a learning bound of BFUDA. Prac-
titioner may safely skip it. The ` : RK × Y → R+ is a loss
function. The decision function is a vector-valued function
h : X → RK and hk is the k-th element of h. The comple-
mentary risk for h with respect to ` over P (Xs, Y s) is

Ls(h) = E`(h(Xs), Y s).

The risks for the decision function h with respect to loss `
over implicit distribution P (Xs, Ys), P (Xt, Yt) are:

Ls(h) = E`(h(Xs), Ys), Lt(h) = E`(h(Xt), Yt).

Then, we introduce our main theorem as follows.
Theorem 1. Given a loss function ` and a hypothesis H ⊂
{h : X → RK}, then under unbiased assumption, for any
h ∈ H, we have

Lt(h) ≤ Ls(h) +
1

2
d`H(PXs , PXt) + Λ,

where Ls(h) :=
∑K

k=1

∫
X `(h(x), k)dPXs

−(K−1)Ls(h),
PXs

, PXt
are source and target marginal distributions, Λ =

minh∈H Rs(h) + Rt(h), and d`H(PXs
, PXt

) is the distribu-
tion discrepancy defined in [Ben-David et al., 2010].

Proof. We firstly investigate the connection between Ls(h)
and Ls(h) under unbiased assumption in Eq. (1). Given
K × K matrix Q whose diagonal elements are 0 and other
elements are 1/K, we represent the unbiased assumption by
η = Qη, where η = [P (Y s = 1|Xs), ..., P (Y s = K|Xs)]

T

and η = [P (Ys = 1|Xs), ..., P (Ys = K|Xs)]
T . Note

that Q has inverse matrix Q−1 whose diagonal elements are
−(K − 2) and other elements are 1. Thus, we have that

Q−1η = η. (2)
According to Eq. (2), we have P (Ys = k|Xs) = 1 − (K −
1)P (Y s = k|Xs), which implies that

Ls(h) =
K∑

k=1

∫
X
`(h(x), k)dPXs

− (K − 1)Ls(h). (3)

Hence, Ls(h) = Ls(h). Combining Eq. (3) with the domain
adaptation bound presented in [Ben-David et al., 2010]

Lt(h) ≤ Ls(h) +
1

2
d`H(PXs , PXt) + Λ,

we prove this theorem.

In this bound, the first term, i.e., Eq. (3), is the source clas-
sification error based on complementary-label source data.
The second term is the distribution discrepancy distance be-
tween two domains and Λ is the difference in labeling func-
tions across the two domains. The empirical form of Eq. (3)
is known as complementary-label loss (see Eq. (5)).

2.3 How does BFUDA Bring Benefits to DA Field?
Collecting true-label data is always expensive in the real
world. Thus, learning from less expensive data [Kumar et
al., 2017; Sakai et al., 2017] has been extensively studied in
machine learning field, including label-noise learning [Han et
al., 2018b; Han et al., 2018a], complementary-label learning
[Ishida et al., 2019; Yu et al., 2018; Ishida et al., 2017] and so
on. Among all these research directions, obtaining comple-
mentary labels is a cost-effective option. As described in the
previous works mentioned above, compared with choosing
the true class out of many candidate classes precisely, collect-
ing complementary labels is obviously much easier and less
costly. In addition, a classifier trained with complementary-
label data is equivalent to a classifier trained with true-label
data as shown in [Ishida et al., 2019].

At present, the success of DA still highly relies on the
scale of true-label source data, which is a critical bottleneck.
With limited budget, it is unrealistic to obtain enough true-
label source data and thus cannot achieve a good distribution
adaptation result. For the same budget, we can get multi-
ple times more complementary-label data than the true-label
data. In addition, the adaptation scenario is limited to some
commonly used datasets, as they have sufficient true labels
to support distributional adaptation. Thus if we can reduce
the labeling cost in the source domain, for example, by us-
ing complementary-label data to replace true-label data (i.e.
BFUDA), we can promote DA to more fields. Due to exist-
ing UDA methods require at least 20% true-label source data
[Shu et al., 2019], they cannot handle BFUDA problem. To
address BFUDA problem directly, we propose a powerful so-
lution, CLARINET, as follows.

3 CLARINET: One-step BFUDA Approach
The proposed CLARINET (Figure 2) mainly consists of fea-
ture extractor G, label predictor F and domain discriminator
D. Furthermore, we add a mapping function T between the
label predictor F and domain discriminator D to take full
advantage of classifier predictions. In this section, we first
introduce two losses used to train CLARINET, and then the
whole training procedures of CLARINET is presented.

3.1 Loss Function in CLARINET
In this subsection, we show how to compute the two losses
mentioned above in CLARINET after obtaining mini-batch
ds from Ds and dt from Dt.
Complementary-label Loss. We first divided ds into K
disjoint subsets according to the complementary labels in ds,

ds = ∪Kk=1ds,k, ds,k = {(xi
k, k)}ns,k

i=1 , (4)

where ds,k ∩ ds,k′ = ∅ if k 6= k′ and ns,k = |ds,k|. Then,
following Eq. (3), the complementary-label loss on ds,k is

Ls(G,F, ds,k) = −(K − 1)
πk

ns,k

ns,k∑
i=1

`(F ◦G(xi
k), k)

+
K∑
j=1

πj

ns,j

ns,j∑
l=1

`(F ◦G(xl
j), k),

(5)
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where ` can be any loss and we use the cross-entropy loss,
πk is the proportion of the samples complementary-labeled
k. The total complementary-label loss on ds is as follows.

Ls(G,F, ds) =
K∑

k=1

Ls(G,F, ds,k). (6)

As shown in Section 2.2, the complementary-label loss
(i.e., Eq. (6)) is an unbiased estimator of the true-label-data
risk. Namely, the minimizer of complementary-label loss
agrees with the minimizer of the true-label-data risk with no
constraints on the loss ` and model F ◦G [Ishida et al., 2019].
Remark 1. Due to the negative part in Ls(G,F, ds), mini-
mizing it will cause over-fitting [Kiryo et al., 2017]. To over-
come this problem, we use a correctional way [Ishida et al.,
2019] to minimize Ls(G,F, ds) (lines 7-13 in Algorithm 1).
Scattered Conditional Adversarial Loss. According to
[Song et al., 2009], it is significant to capture multimodal
structures of distributions using cross-covariance dependency
between the features and classes (i.e., true labels). Since there
are no true-label target data in UDA, CDAN adopts outer
product of feature representations and classifier predictions
(i.e., outputs of the softmax layer) as new features of two do-
mains [Long et al., 2018]. The newly constructed features
have shown great ability to discriminate source and target do-
mains, since classifier predictions of true-label source data
are dispersed, expressing the predicted goal clearly.

However, in the complementary-label classification mode,
we observe that the predicted probability of each class (i.e.,
each element of fs in Figure 2) is relatively close. Namely, it
is hard to find significant predictive preference from the clas-
sifier predictions. According to [Song et al., 2009], this kind
of predictions cannot provide sufficient information to cap-
ture the multimodal structure of distributions. To fix it, we
propose a mapping function T to scatter the classifier predic-
tions f = [f1, ..., fK ]T (f could be fs or ft in Figure 2),

T (f) =

 f
1
l
1∑K

j=1 f
1
l
j

, ..,
f

1
l

k∑K
j=1 f

1
l
j

, ...,
f

1
l

K∑K
j=1 f

1
l
j

T

. (7)

It is a common approach of adjusting the “temperature” of
categorical distribution. As l → 0, the output of T (f) will
approach a Dirac (“one-hot”) distribution.

Then to prioritize the discriminator on those easy-to-
transfer examples, following [Long et al., 2018], we measure
the uncertainty of the prediction for sample x by

H(G,F,x) = −
K∑

k=1

T (fk(x))log T (fk(x)). (8)

Thus the scattered conditional adversarial loss is as follows,

Ladv(G,F,D, ds, dt) =

∑
x∈ds[X] ωs(x) log(D(g(x)))∑

x∈ds[X] ωs(x)

+

∑
x∈dt

ωt(x)log(1−D(g(x)))∑
x∈dt

ωt(x)
,

(9)

Algorithm 1 CLARINET: One-step BFUDA Approach
Input: Ds = {(xi

s, y
i
s)}

ns
i=1, Dt = {xi

t}nt
i=1.

Parameters: learning rate γ1 and γ2, epoch Tmax, start epoch Ts,
iteration Nmax, class number K, tradeoff λ, network parameter
θF◦G and θD .
Output: the neural network F ◦ G, namely the target domain clas-
sifier for Dt.
1: Initialize θF◦G and θD;
2: for t = 1, 2. . . . . . Tmax do
3: Shuffle the training set Ds, Dt;
4: for N = 1, 2. . . . . .Nmax do
5: Fetch mini-batch ds, dt from Ds, Dt;
6: Divide ds into {ds,k}Kk=1;
7: Calculate {Ls(G,F, ds,k)}Kk=1 using Eq. (5), and

Ls(G,F, ds) using Eq. (6);
8: if mink{Ls(G,F, ds,k)}Kk=1 ≥ 0 then
9: Update θF◦G = θF◦G − γ1OLs(G,F, ds);

10: else
11: Calculate Lneg =

∑K
k=1 min{0, Ls(G,F, ds,k)};

12: Update θF◦G = θF◦G + γ1OLneg;
13: end if
14: if t > Ts then
15: Calculate Ladv(G,F,D, ds, dt) using Eq. (9);
16: Update θD = θD − γ2OLadv(G,F,D, ds, dt);
17: Update θF◦G = θF◦G + γ2λOLadv(G,F,D, ds, dt);
18: end if
19: end for
20: end for

where ωs(x) and ωt(x) are 1 + e−H(G,F,x), g(x) is G(x) ⊗
T (F ◦G(x)) and ds[X] is the feature part of ds.

3.2 Training Procedure of CLARINET
Based on the two losses proposed in Section 3.1, in CLAR-
INET, we try to solve the following optimization problem,

min
G,F

Ls(G,F,Ds)− λLadv(G,F,D,Ds, Dt),

min
D

Ladv(G,F,D,Ds, Dt),
(10)

where D tries to distinguish the samples from different do-
mains by minimizing Ladv , while F ◦ G wants to maximize
the Ladv to make domains indistinguishable. To solve the
minimax optimization problem in Eq. (10), we add a gradi-
ent reversal layer [Ganin et al., 2016] between the domain
discriminator and the classifier, which multiplies the gradient
by a negative constant (-λ) during the back-propagation. λ is
a hyper-parameter between the two losses to tradeoff source
risk and domain discrepancy.

The training procedures of CLARINET are shown in Al-
gorithm 1. First, we initialize the whole network (line 1)
and shuffle the training set (line 3). During each epoch, af-
ter minbatch ds and dt are fetched (line 5), we divide the
source mini-batch ds into {ds,k}Kk=1 using Eq. (4) (line 6).
Then, {ds,k}Kk=1 are used to calculate the complementary-
label loss for each class (i.e., {Ls(G,F, ds,k)}Kk=1) and the
whole complementary-label loss Ls(G,F, ds) (line 7).

If mink{Ls(G,F, ds,k)}Kk=1 ≥ 0, we calculate the gradi-
ent OLs(G,F, ds) and update parameters of G and F using
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Figure 3: Test Accuracy vs. Epochs on 6 BFUDA Task. In (a)-(f), we compare target-domain accuracy of one-step approach, i.e., CLARINET
(ours), with that of two-step approach (ours). It is clear to see that the accuracy of CLARINET gradually and steadily increases and eventually
converges, achieving the best accuracy on each task.

gradient descent (lines 8-9). Otherwise, we sum negative ele-
ments in {Ls(G,F, ds,k)}Kk=1 as Lneg (line 11) and calculate
the gradient with OLneg (line 12). Then, we update parame-
ters of G and F using gradient ascent (line 12), which is sug-
gested by [Ishida et al., 2019]. When the number of epochs
(i.e., t) is over Ts, we start to update parameters of D (line
14). We calculate the scattered conditional adversarial loss
Ladv (line 15). Then, Ladv is minimized over D (line 16),
but maximized over F ◦G (line 17) for adversarial training.

4 Experiments
Based on five commonly used datasets: MNIST (M), USPS
(U), SVHN (S), MNIST-M (m) and SYN-DIGITS (Y), we ver-
ify efficacy of CLARINET on 6 BFUDA tasks: M→ U, U→
M, S→M, M→ m, Y→M and Y→ S. Note that, we generate
complementary-label data according to [Ishida et al., 2019].

4.1 Baselines
We compare CLARINET with the following baselines: gra-
dient ascent complementary label learning (GAC) [Ishida et
al., 2019], namely non-transfer method, and several two-step
methods, which sequentially combine GAC with UDA meth-
ods (including DAN [Long et al., 2015], DANN [Ganin et
al., 2016] and CDAN [Long et al., 2018]). In two-step ap-

proach, GAC method is first used to assign pseudo labels for
complementary-label source data. Then, we train the classi-
fier with pseudo-label source data and unlabeled target data
using UDA methods. Thus, we have four possible baselines:
GAC, GAC+DAN, GAC+DANN and GAC+CDAN. For two-
step methods, they share the same pseudo-label source data
on each task. Note that, in this paper, we use the entropy
conditioning variant of CDAN.

4.2 Experimental Setup
We design our feature extractor G, label predictor F and do-
main discriminator D according to the architecture from pre-
vious works. More precisely, we pick the structures of fea-
ture extractor G from [Ganin et al., 2016; Long et al., 2018].
The label predictor F and domain discriminator D all share
the same structure in all tasks, following CDAN [Long et al.,
2018]. We follow the standard protocols for unsupervised
domain adaptation and compare the average classification ac-
curacy based on 5 random experiments. For each experiment,
we take the result of the last epoch. The batch size is set to
128 and the number of epochs is set to 500. SGD optimizer
(momentum = 0.9, weight decay = 5×10−5) is with an initial
learning rate of 0.005 in adversarial network and 5× 10−5 in
classifier. In mapping function T , l is set to 0.5. We update
λ according to [Long et al., 2018]. For parameters of each
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Tasks GAC
Two-step approaches (ours)

CLARINET
GAC+DAN GAC+DANN GAC+CDAN E (ours)

U →M 51.860 60.692±1.300 77.580±0.770 71.498±1.077 83.692±0.928
M → U 77.796 87.215±0.603 88.688±1.280 92.366±0.365 94.538±0.292
S →M 39.260 45.132±1.363 50.882±2.440 61.922±2.983 63.070±1.990
M → m 45.045 43.346±2.224 62.273±2.261 71.379±0.620 71.717±1.262
Y →M 77.070 81.150±0.591 92.328±0.138 95.532±0.873 97.040±0.212
Y → S 72.480 78.270±0.311 75.147±1.401 82.878±0.278 84.499±0.537

Average 60.585 65.968 74.483 79.263 82.426

Table 1: Results on 6 BFUDA Tasks. Bold value represents the highest accuracy (%) on each row. Please note, the two-step methods and
CLARINET are all first proposed in our paper.

Methods U →M M → U S →M M → m Y →M Y → S Average

C w/ LCE 0.445±0.722 0.055±0.129 3.708±0.688 7.088±0.424 1.832±0.102 1.298±0.070 2.404
C w/o T 83.192±1.796 93.419±0.588 52.438±1.927 72.128±1.569 95.442±1.004 83.055±0.652 79.946
CLARINET 83.692±0.928 94.538±0.292 63.070±1.990 71.717±1.262 97.040±0.212 84.499±0.537 82.426

Table 2: Ablation Study. Bold value represents the highest accuracy (%) on each column. We prove UDA methods cannot handle BFUDA
tasks directly and the mapping function T can help improve the adaptation performance under BFUDA.

baseline, we all follow the original settings. We implement
all methods with default parameters by PyTorch. The code of
CLARINET is available at github.com/Yiyang98/BFUDA.

4.3 Results on BFUDA Tasks
Table 1 reports the target-domain accuracy of 5 methods on 6
BFUDA tasks. As shown, our CLARINET performs best on
each task and the average accuracy of CLARINET is signif-
icantly higher than those of baselines. Compared with GAC
method, CLARINET successfully transfers knowledge from
complementary-label source data to unlabeled target data.
Since CDAN has shown much better adaptation performance
than DANN and DAN [Long et al., 2018], GAC+CDAN
should outperform other two-step methods on each task.
However, on the task U→M , the accuracy of GAC+CDAN
is much lower than that of GAC+DANN. This abnormal
phenomenon shows that the noise contained in pseudo-label
source data significantly reduces transferability of existing
UDA methods. Namely, we cannot obtain the reliable adap-
tation performance by using two-step BFUDA approach.

Figure 3 shows the target-domain accuracy of two-step
methods and CLARINET on 6 BFUDA tasks when increas-
ing epochs. It is clear to see that the accuracy of CLAR-
INET gradually and steadily increases and eventually con-
verges, achieving the best accuracy on each task. The ac-
curacy of GAC+CDAN always reaches plateau quickly. For
GAC+DANN, its accuracy is unstable and significantly drops
after certain epochs on M→U , M→m tasks. While the ac-
curacy of GAC+DAN is relatively stable but not satisfactory.

4.4 Ablation Study
Finally, we conduct experiments to show the contributions of
components in CLARINET. We consider following baselines:

• C w/ LCE : train CLARINET by Algorithm 1, while re-
placing Ls(G,F,Ds) by cross-entropy loss.

• C w/o T : train CLARINET by Algorithm 1, without
mapping function T .

C w/ LCE uses the cross-entropy loss to replace the
complementary-label loss. The target-domain accuracy of C
w/ LCE will show if UDA methods can address the BFUDA
problem. Comparing CLARINET with C w/o T reveals
whether the mapping function T takes effect. As shown in Ta-
ble 2, the target-domain accuracy of C w/ LCE is much lower
than that of other methods. Namely UDA methods cannot
handle BFUDA tasks directly. Although C w/o T achieves
better accuracy than two-step methods, its accuracy is still
worse than CLARINET’s. Thus, the mapping function T can
help improve the adaptation performance under BFUDA.

5 Conclusion
This paper presents a new problem setting for the do-
main adaptation field, called budget-friendly unsupervised
domain adaptation (BFUDA), which exploits economical
complementary-label source data instead of expensive true-
label source data. Since existing UDA methods cannot ad-
dress BFUDA problem, we propose a novel one-step BFUDA
approach, called complementary label adversarial network
(CLARINET). Experiments conducted on 6 BFUDA tasks
confirm that CLARINET effectively achieves distributional
adaptation from complementary-label source data to unla-
beled target data and outperforms competitive baselines.
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